1713 lines
41 KiB
C
1713 lines
41 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/* Portions Copyright 2007 Jeremy Teo */
|
|
|
|
#ifdef _KERNEL
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/mntent.h>
|
|
#include <sys/mkdev.h>
|
|
#include <sys/u8_textprep.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/vfs_opreg.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/file.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/mode.h>
|
|
#include <sys/atomic.h>
|
|
#include <vm/pvn.h>
|
|
#include "fs/fs_subr.h"
|
|
#include <sys/zfs_dir.h>
|
|
#include <sys/zfs_acl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/zfs_fuid.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/kidmap.h>
|
|
#endif /* _KERNEL */
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfs_znode.h>
|
|
|
|
#include "zfs_prop.h"
|
|
|
|
/*
|
|
* Define ZNODE_STATS to turn on statistic gathering. By default, it is only
|
|
* turned on when DEBUG is also defined.
|
|
*/
|
|
#ifdef DEBUG
|
|
#define ZNODE_STATS
|
|
#endif /* DEBUG */
|
|
|
|
#ifdef ZNODE_STATS
|
|
#define ZNODE_STAT_ADD(stat) ((stat)++)
|
|
#else
|
|
#define ZNODE_STAT_ADD(stat) /* nothing */
|
|
#endif /* ZNODE_STATS */
|
|
|
|
#define POINTER_IS_VALID(p) (!((uintptr_t)(p) & 0x3))
|
|
#define POINTER_INVALIDATE(pp) (*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
|
|
|
|
/*
|
|
* Functions needed for userland (ie: libzpool) are not put under
|
|
* #ifdef_KERNEL; the rest of the functions have dependencies
|
|
* (such as VFS logic) that will not compile easily in userland.
|
|
*/
|
|
#ifdef _KERNEL
|
|
#ifdef HAVE_ZPL
|
|
/*
|
|
* Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
|
|
* be freed before it can be safely accessed.
|
|
*/
|
|
krwlock_t zfsvfs_lock;
|
|
|
|
static kmem_cache_t *znode_cache = NULL;
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
|
|
{
|
|
/*
|
|
* We should never drop all dbuf refs without first clearing
|
|
* the eviction callback.
|
|
*/
|
|
panic("evicting znode %p\n", user_ptr);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static int
|
|
zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
|
|
{
|
|
znode_t *zp = buf;
|
|
|
|
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
|
|
|
|
zp->z_vnode = vn_alloc(kmflags);
|
|
if (zp->z_vnode == NULL) {
|
|
return (-1);
|
|
}
|
|
ZTOV(zp)->v_data = zp;
|
|
|
|
list_link_init(&zp->z_link_node);
|
|
|
|
mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
|
|
rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
|
|
mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
avl_create(&zp->z_range_avl, zfs_range_compare,
|
|
sizeof (rl_t), offsetof(rl_t, r_node));
|
|
|
|
zp->z_dbuf = NULL;
|
|
zp->z_dirlocks = NULL;
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static void
|
|
zfs_znode_cache_destructor(void *buf, void *arg)
|
|
{
|
|
znode_t *zp = buf;
|
|
|
|
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
|
|
ASSERT(ZTOV(zp)->v_data == zp);
|
|
vn_free(ZTOV(zp));
|
|
ASSERT(!list_link_active(&zp->z_link_node));
|
|
mutex_destroy(&zp->z_lock);
|
|
rw_destroy(&zp->z_parent_lock);
|
|
rw_destroy(&zp->z_name_lock);
|
|
mutex_destroy(&zp->z_acl_lock);
|
|
avl_destroy(&zp->z_range_avl);
|
|
mutex_destroy(&zp->z_range_lock);
|
|
|
|
ASSERT(zp->z_dbuf == NULL);
|
|
ASSERT(zp->z_dirlocks == NULL);
|
|
}
|
|
|
|
#ifdef ZNODE_STATS
|
|
static struct {
|
|
uint64_t zms_zfsvfs_invalid;
|
|
uint64_t zms_zfsvfs_recheck1;
|
|
uint64_t zms_zfsvfs_unmounted;
|
|
uint64_t zms_zfsvfs_recheck2;
|
|
uint64_t zms_obj_held;
|
|
uint64_t zms_vnode_locked;
|
|
uint64_t zms_not_only_dnlc;
|
|
} znode_move_stats;
|
|
#endif /* ZNODE_STATS */
|
|
|
|
static void
|
|
zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
|
|
{
|
|
vnode_t *vp;
|
|
|
|
/* Copy fields. */
|
|
nzp->z_zfsvfs = ozp->z_zfsvfs;
|
|
|
|
/* Swap vnodes. */
|
|
vp = nzp->z_vnode;
|
|
nzp->z_vnode = ozp->z_vnode;
|
|
ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
|
|
ZTOV(ozp)->v_data = ozp;
|
|
ZTOV(nzp)->v_data = nzp;
|
|
|
|
nzp->z_id = ozp->z_id;
|
|
ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
|
|
ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
|
|
nzp->z_unlinked = ozp->z_unlinked;
|
|
nzp->z_atime_dirty = ozp->z_atime_dirty;
|
|
nzp->z_zn_prefetch = ozp->z_zn_prefetch;
|
|
nzp->z_blksz = ozp->z_blksz;
|
|
nzp->z_seq = ozp->z_seq;
|
|
nzp->z_mapcnt = ozp->z_mapcnt;
|
|
nzp->z_last_itx = ozp->z_last_itx;
|
|
nzp->z_gen = ozp->z_gen;
|
|
nzp->z_sync_cnt = ozp->z_sync_cnt;
|
|
nzp->z_phys = ozp->z_phys;
|
|
nzp->z_dbuf = ozp->z_dbuf;
|
|
|
|
/* Update back pointers. */
|
|
(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
|
|
znode_evict_error);
|
|
|
|
/*
|
|
* Invalidate the original znode by clearing fields that provide a
|
|
* pointer back to the znode. Set the low bit of the vfs pointer to
|
|
* ensure that zfs_znode_move() recognizes the znode as invalid in any
|
|
* subsequent callback.
|
|
*/
|
|
ozp->z_dbuf = NULL;
|
|
POINTER_INVALIDATE(&ozp->z_zfsvfs);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
static kmem_cbrc_t
|
|
zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
|
|
{
|
|
znode_t *ozp = buf, *nzp = newbuf;
|
|
zfsvfs_t *zfsvfs;
|
|
vnode_t *vp;
|
|
|
|
/*
|
|
* The znode is on the file system's list of known znodes if the vfs
|
|
* pointer is valid. We set the low bit of the vfs pointer when freeing
|
|
* the znode to invalidate it, and the memory patterns written by kmem
|
|
* (baddcafe and deadbeef) set at least one of the two low bits. A newly
|
|
* created znode sets the vfs pointer last of all to indicate that the
|
|
* znode is known and in a valid state to be moved by this function.
|
|
*/
|
|
zfsvfs = ozp->z_zfsvfs;
|
|
if (!POINTER_IS_VALID(zfsvfs)) {
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
|
|
/*
|
|
* Close a small window in which it's possible that the filesystem could
|
|
* be unmounted and freed, and zfsvfs, though valid in the previous
|
|
* statement, could point to unrelated memory by the time we try to
|
|
* prevent the filesystem from being unmounted.
|
|
*/
|
|
rw_enter(&zfsvfs_lock, RW_WRITER);
|
|
if (zfsvfs != ozp->z_zfsvfs) {
|
|
rw_exit(&zfsvfs_lock);
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
|
|
/*
|
|
* If the znode is still valid, then so is the file system. We know that
|
|
* no valid file system can be freed while we hold zfsvfs_lock, so we
|
|
* can safely ensure that the filesystem is not and will not be
|
|
* unmounted. The next statement is equivalent to ZFS_ENTER().
|
|
*/
|
|
rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
|
|
if (zfsvfs->z_unmounted) {
|
|
ZFS_EXIT(zfsvfs);
|
|
rw_exit(&zfsvfs_lock);
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
rw_exit(&zfsvfs_lock);
|
|
|
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
|
/*
|
|
* Recheck the vfs pointer in case the znode was removed just before
|
|
* acquiring the lock.
|
|
*/
|
|
if (zfsvfs != ozp->z_zfsvfs) {
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
ZFS_EXIT(zfsvfs);
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
|
|
return (KMEM_CBRC_DONT_KNOW);
|
|
}
|
|
|
|
/*
|
|
* At this point we know that as long as we hold z_znodes_lock, the
|
|
* znode cannot be freed and fields within the znode can be safely
|
|
* accessed. Now, prevent a race with zfs_zget().
|
|
*/
|
|
if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
ZFS_EXIT(zfsvfs);
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
|
|
return (KMEM_CBRC_LATER);
|
|
}
|
|
|
|
vp = ZTOV(ozp);
|
|
if (mutex_tryenter(&vp->v_lock) == 0) {
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
ZFS_EXIT(zfsvfs);
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
|
|
return (KMEM_CBRC_LATER);
|
|
}
|
|
|
|
/* Only move znodes that are referenced _only_ by the DNLC. */
|
|
if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
|
|
mutex_exit(&vp->v_lock);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
ZFS_EXIT(zfsvfs);
|
|
ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
|
|
return (KMEM_CBRC_LATER);
|
|
}
|
|
|
|
/*
|
|
* The znode is known and in a valid state to move. We're holding the
|
|
* locks needed to execute the critical section.
|
|
*/
|
|
zfs_znode_move_impl(ozp, nzp);
|
|
mutex_exit(&vp->v_lock);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
|
|
|
|
list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
ZFS_EXIT(zfsvfs);
|
|
|
|
return (KMEM_CBRC_YES);
|
|
}
|
|
|
|
void
|
|
zfs_znode_init(void)
|
|
{
|
|
/*
|
|
* Initialize zcache
|
|
*/
|
|
rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
|
|
ASSERT(znode_cache == NULL);
|
|
znode_cache = kmem_cache_create("zfs_znode_cache",
|
|
sizeof (znode_t), 0, zfs_znode_cache_constructor,
|
|
zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
|
|
kmem_cache_set_move(znode_cache, zfs_znode_move);
|
|
}
|
|
|
|
void
|
|
zfs_znode_fini(void)
|
|
{
|
|
/*
|
|
* Cleanup vfs & vnode ops
|
|
*/
|
|
zfs_remove_op_tables();
|
|
|
|
/*
|
|
* Cleanup zcache
|
|
*/
|
|
if (znode_cache)
|
|
kmem_cache_destroy(znode_cache);
|
|
znode_cache = NULL;
|
|
rw_destroy(&zfsvfs_lock);
|
|
}
|
|
|
|
struct vnodeops *zfs_dvnodeops;
|
|
struct vnodeops *zfs_fvnodeops;
|
|
struct vnodeops *zfs_symvnodeops;
|
|
struct vnodeops *zfs_xdvnodeops;
|
|
struct vnodeops *zfs_evnodeops;
|
|
struct vnodeops *zfs_sharevnodeops;
|
|
|
|
void
|
|
zfs_remove_op_tables()
|
|
{
|
|
/*
|
|
* Remove vfs ops
|
|
*/
|
|
ASSERT(zfsfstype);
|
|
(void) vfs_freevfsops_by_type(zfsfstype);
|
|
zfsfstype = 0;
|
|
|
|
/*
|
|
* Remove vnode ops
|
|
*/
|
|
if (zfs_dvnodeops)
|
|
vn_freevnodeops(zfs_dvnodeops);
|
|
if (zfs_fvnodeops)
|
|
vn_freevnodeops(zfs_fvnodeops);
|
|
if (zfs_symvnodeops)
|
|
vn_freevnodeops(zfs_symvnodeops);
|
|
if (zfs_xdvnodeops)
|
|
vn_freevnodeops(zfs_xdvnodeops);
|
|
if (zfs_evnodeops)
|
|
vn_freevnodeops(zfs_evnodeops);
|
|
if (zfs_sharevnodeops)
|
|
vn_freevnodeops(zfs_sharevnodeops);
|
|
|
|
zfs_dvnodeops = NULL;
|
|
zfs_fvnodeops = NULL;
|
|
zfs_symvnodeops = NULL;
|
|
zfs_xdvnodeops = NULL;
|
|
zfs_evnodeops = NULL;
|
|
zfs_sharevnodeops = NULL;
|
|
}
|
|
|
|
extern const fs_operation_def_t zfs_dvnodeops_template[];
|
|
extern const fs_operation_def_t zfs_fvnodeops_template[];
|
|
extern const fs_operation_def_t zfs_xdvnodeops_template[];
|
|
extern const fs_operation_def_t zfs_symvnodeops_template[];
|
|
extern const fs_operation_def_t zfs_evnodeops_template[];
|
|
extern const fs_operation_def_t zfs_sharevnodeops_template[];
|
|
|
|
int
|
|
zfs_create_op_tables()
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
|
|
* due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
|
|
* In this case we just return as the ops vectors are already set up.
|
|
*/
|
|
if (zfs_dvnodeops)
|
|
return (0);
|
|
|
|
error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
|
|
&zfs_dvnodeops);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
|
|
&zfs_fvnodeops);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
|
|
&zfs_symvnodeops);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
|
|
&zfs_xdvnodeops);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
|
|
&zfs_evnodeops);
|
|
if (error)
|
|
return (error);
|
|
|
|
error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
|
|
&zfs_sharevnodeops);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
|
|
{
|
|
zfs_acl_ids_t acl_ids;
|
|
vattr_t vattr;
|
|
znode_t *sharezp;
|
|
vnode_t *vp;
|
|
znode_t *zp;
|
|
int error;
|
|
|
|
vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
|
|
vattr.va_type = VDIR;
|
|
vattr.va_mode = S_IFDIR|0555;
|
|
vattr.va_uid = crgetuid(kcred);
|
|
vattr.va_gid = crgetgid(kcred);
|
|
|
|
sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
|
|
sharezp->z_unlinked = 0;
|
|
sharezp->z_atime_dirty = 0;
|
|
sharezp->z_zfsvfs = zfsvfs;
|
|
|
|
vp = ZTOV(sharezp);
|
|
vn_reinit(vp);
|
|
vp->v_type = VDIR;
|
|
|
|
VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
|
|
kcred, NULL, &acl_ids));
|
|
zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE,
|
|
&zp, 0, &acl_ids);
|
|
ASSERT3P(zp, ==, sharezp);
|
|
ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
|
|
POINTER_INVALIDATE(&sharezp->z_zfsvfs);
|
|
error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
|
|
ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
|
|
zfsvfs->z_shares_dir = sharezp->z_id;
|
|
|
|
zfs_acl_ids_free(&acl_ids);
|
|
ZTOV(sharezp)->v_count = 0;
|
|
dmu_buf_rele(sharezp->z_dbuf, NULL);
|
|
sharezp->z_dbuf = NULL;
|
|
kmem_cache_free(znode_cache, sharezp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* define a couple of values we need available
|
|
* for both 64 and 32 bit environments.
|
|
*/
|
|
#ifndef NBITSMINOR64
|
|
#define NBITSMINOR64 32
|
|
#endif
|
|
#ifndef MAXMAJ64
|
|
#define MAXMAJ64 0xffffffffUL
|
|
#endif
|
|
#ifndef MAXMIN64
|
|
#define MAXMIN64 0xffffffffUL
|
|
#endif
|
|
|
|
/*
|
|
* Create special expldev for ZFS private use.
|
|
* Can't use standard expldev since it doesn't do
|
|
* what we want. The standard expldev() takes a
|
|
* dev32_t in LP64 and expands it to a long dev_t.
|
|
* We need an interface that takes a dev32_t in ILP32
|
|
* and expands it to a long dev_t.
|
|
*/
|
|
static uint64_t
|
|
zfs_expldev(dev_t dev)
|
|
{
|
|
#ifndef _LP64
|
|
major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
|
|
return (((uint64_t)major << NBITSMINOR64) |
|
|
((minor_t)dev & MAXMIN32));
|
|
#else
|
|
return (dev);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Special cmpldev for ZFS private use.
|
|
* Can't use standard cmpldev since it takes
|
|
* a long dev_t and compresses it to dev32_t in
|
|
* LP64. We need to do a compaction of a long dev_t
|
|
* to a dev32_t in ILP32.
|
|
*/
|
|
dev_t
|
|
zfs_cmpldev(uint64_t dev)
|
|
{
|
|
#ifndef _LP64
|
|
minor_t minor = (minor_t)dev & MAXMIN64;
|
|
major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
|
|
|
|
if (major > MAXMAJ32 || minor > MAXMIN32)
|
|
return (NODEV32);
|
|
|
|
return (((dev32_t)major << NBITSMINOR32) | minor);
|
|
#else
|
|
return (dev);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
|
|
{
|
|
znode_t *nzp;
|
|
|
|
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
|
|
ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
ASSERT(zp->z_dbuf == NULL);
|
|
zp->z_dbuf = db;
|
|
nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
|
|
|
|
/*
|
|
* there should be no
|
|
* concurrent zgets on this object.
|
|
*/
|
|
if (nzp != NULL)
|
|
panic("existing znode %p for dbuf %p", (void *)nzp, (void *)db);
|
|
|
|
/*
|
|
* Slap on VROOT if we are the root znode
|
|
*/
|
|
if (zp->z_id == zfsvfs->z_root)
|
|
ZTOV(zp)->v_flag |= VROOT;
|
|
|
|
mutex_exit(&zp->z_lock);
|
|
vn_exists(ZTOV(zp));
|
|
}
|
|
|
|
void
|
|
zfs_znode_dmu_fini(znode_t *zp)
|
|
{
|
|
dmu_buf_t *db = zp->z_dbuf;
|
|
ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
|
|
zp->z_unlinked ||
|
|
RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
|
|
ASSERT(zp->z_dbuf != NULL);
|
|
zp->z_dbuf = NULL;
|
|
VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
|
|
dmu_buf_rele(db, NULL);
|
|
}
|
|
|
|
/*
|
|
* Construct a new znode/vnode and intialize.
|
|
*
|
|
* This does not do a call to dmu_set_user() that is
|
|
* up to the caller to do, in case you don't want to
|
|
* return the znode
|
|
*/
|
|
static znode_t *
|
|
zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
|
|
{
|
|
znode_t *zp;
|
|
vnode_t *vp;
|
|
|
|
zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
|
|
|
|
ASSERT(zp->z_dirlocks == NULL);
|
|
ASSERT(zp->z_dbuf == NULL);
|
|
ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
|
|
|
|
/*
|
|
* Defer setting z_zfsvfs until the znode is ready to be a candidate for
|
|
* the zfs_znode_move() callback.
|
|
*/
|
|
zp->z_phys = NULL;
|
|
zp->z_unlinked = 0;
|
|
zp->z_atime_dirty = 0;
|
|
zp->z_mapcnt = 0;
|
|
zp->z_last_itx = 0;
|
|
zp->z_id = db->db_object;
|
|
zp->z_blksz = blksz;
|
|
zp->z_seq = 0x7A4653;
|
|
zp->z_sync_cnt = 0;
|
|
|
|
vp = ZTOV(zp);
|
|
vn_reinit(vp);
|
|
|
|
zfs_znode_dmu_init(zfsvfs, zp, db);
|
|
|
|
zp->z_gen = zp->z_phys->zp_gen;
|
|
|
|
vp->v_vfsp = zfsvfs->z_parent->z_vfs;
|
|
vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
|
|
|
|
switch (vp->v_type) {
|
|
case VDIR:
|
|
if (zp->z_phys->zp_flags & ZFS_XATTR) {
|
|
vn_setops(vp, zfs_xdvnodeops);
|
|
vp->v_flag |= V_XATTRDIR;
|
|
} else {
|
|
vn_setops(vp, zfs_dvnodeops);
|
|
}
|
|
zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
|
|
break;
|
|
case VBLK:
|
|
case VCHR:
|
|
vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
|
|
/*FALLTHROUGH*/
|
|
case VFIFO:
|
|
case VSOCK:
|
|
case VDOOR:
|
|
vn_setops(vp, zfs_fvnodeops);
|
|
break;
|
|
case VREG:
|
|
vp->v_flag |= VMODSORT;
|
|
if (zp->z_phys->zp_parent == zfsvfs->z_shares_dir)
|
|
vn_setops(vp, zfs_sharevnodeops);
|
|
else
|
|
vn_setops(vp, zfs_fvnodeops);
|
|
break;
|
|
case VLNK:
|
|
vn_setops(vp, zfs_symvnodeops);
|
|
break;
|
|
default:
|
|
vn_setops(vp, zfs_evnodeops);
|
|
break;
|
|
}
|
|
|
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
|
list_insert_tail(&zfsvfs->z_all_znodes, zp);
|
|
membar_producer();
|
|
/*
|
|
* Everything else must be valid before assigning z_zfsvfs makes the
|
|
* znode eligible for zfs_znode_move().
|
|
*/
|
|
zp->z_zfsvfs = zfsvfs;
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
|
|
VFS_HOLD(zfsvfs->z_vfs);
|
|
return (zp);
|
|
}
|
|
|
|
/*
|
|
* Create a new DMU object to hold a zfs znode.
|
|
*
|
|
* IN: dzp - parent directory for new znode
|
|
* vap - file attributes for new znode
|
|
* tx - dmu transaction id for zap operations
|
|
* cr - credentials of caller
|
|
* flag - flags:
|
|
* IS_ROOT_NODE - new object will be root
|
|
* IS_XATTR - new object is an attribute
|
|
* IS_REPLAY - intent log replay
|
|
* bonuslen - length of bonus buffer
|
|
* setaclp - File/Dir initial ACL
|
|
* fuidp - Tracks fuid allocation.
|
|
*
|
|
* OUT: zpp - allocated znode
|
|
*
|
|
*/
|
|
void
|
|
zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
|
|
uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_ids_t *acl_ids)
|
|
{
|
|
dmu_buf_t *db;
|
|
znode_phys_t *pzp;
|
|
zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
|
|
timestruc_t now;
|
|
uint64_t gen, obj;
|
|
int err;
|
|
|
|
ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
|
|
|
|
if (zfsvfs->z_replay) {
|
|
obj = vap->va_nodeid;
|
|
flag |= IS_REPLAY;
|
|
now = vap->va_ctime; /* see zfs_replay_create() */
|
|
gen = vap->va_nblocks; /* ditto */
|
|
} else {
|
|
obj = 0;
|
|
gethrestime(&now);
|
|
gen = dmu_tx_get_txg(tx);
|
|
}
|
|
|
|
/*
|
|
* Create a new DMU object.
|
|
*/
|
|
/*
|
|
* There's currently no mechanism for pre-reading the blocks that will
|
|
* be to needed allocate a new object, so we accept the small chance
|
|
* that there will be an i/o error and we will fail one of the
|
|
* assertions below.
|
|
*/
|
|
if (vap->va_type == VDIR) {
|
|
if (flag & IS_REPLAY) {
|
|
err = zap_create_claim_norm(zfsvfs->z_os, obj,
|
|
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
|
|
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
|
|
ASSERT3U(err, ==, 0);
|
|
} else {
|
|
obj = zap_create_norm(zfsvfs->z_os,
|
|
zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
|
|
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
|
|
}
|
|
} else {
|
|
if (flag & IS_REPLAY) {
|
|
err = dmu_object_claim(zfsvfs->z_os, obj,
|
|
DMU_OT_PLAIN_FILE_CONTENTS, 0,
|
|
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
|
|
ASSERT3U(err, ==, 0);
|
|
} else {
|
|
obj = dmu_object_alloc(zfsvfs->z_os,
|
|
DMU_OT_PLAIN_FILE_CONTENTS, 0,
|
|
DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
|
|
}
|
|
}
|
|
VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
/*
|
|
* Initialize the znode physical data to zero.
|
|
*/
|
|
ASSERT(db->db_size >= sizeof (znode_phys_t));
|
|
bzero(db->db_data, db->db_size);
|
|
pzp = db->db_data;
|
|
|
|
/*
|
|
* If this is the root, fix up the half-initialized parent pointer
|
|
* to reference the just-allocated physical data area.
|
|
*/
|
|
if (flag & IS_ROOT_NODE) {
|
|
dzp->z_dbuf = db;
|
|
dzp->z_phys = pzp;
|
|
dzp->z_id = obj;
|
|
}
|
|
|
|
/*
|
|
* If parent is an xattr, so am I.
|
|
*/
|
|
if (dzp->z_phys->zp_flags & ZFS_XATTR)
|
|
flag |= IS_XATTR;
|
|
|
|
if (vap->va_type == VBLK || vap->va_type == VCHR) {
|
|
pzp->zp_rdev = zfs_expldev(vap->va_rdev);
|
|
}
|
|
|
|
if (zfsvfs->z_use_fuids)
|
|
pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
|
|
|
|
if (vap->va_type == VDIR) {
|
|
pzp->zp_size = 2; /* contents ("." and "..") */
|
|
pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
|
|
}
|
|
|
|
pzp->zp_parent = dzp->z_id;
|
|
if (flag & IS_XATTR)
|
|
pzp->zp_flags |= ZFS_XATTR;
|
|
|
|
pzp->zp_gen = gen;
|
|
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
|
|
|
|
if (vap->va_mask & AT_ATIME) {
|
|
ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
|
|
} else {
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_atime);
|
|
}
|
|
|
|
if (vap->va_mask & AT_MTIME) {
|
|
ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
|
|
} else {
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
|
|
}
|
|
|
|
pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
|
|
if (!(flag & IS_ROOT_NODE)) {
|
|
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
|
|
*zpp = zfs_znode_alloc(zfsvfs, db, 0);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
|
|
} else {
|
|
/*
|
|
* If we are creating the root node, the "parent" we
|
|
* passed in is the znode for the root.
|
|
*/
|
|
*zpp = dzp;
|
|
}
|
|
pzp->zp_uid = acl_ids->z_fuid;
|
|
pzp->zp_gid = acl_ids->z_fgid;
|
|
pzp->zp_mode = acl_ids->z_mode;
|
|
VERIFY(0 == zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx));
|
|
if (vap->va_mask & AT_XVATTR)
|
|
zfs_xvattr_set(*zpp, (xvattr_t *)vap);
|
|
}
|
|
|
|
void
|
|
zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
|
|
{
|
|
xoptattr_t *xoap;
|
|
|
|
xoap = xva_getxoptattr(xvap);
|
|
ASSERT(xoap);
|
|
|
|
if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
|
|
ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
|
|
XVA_SET_RTN(xvap, XAT_CREATETIME);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
|
|
ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
|
|
XVA_SET_RTN(xvap, XAT_READONLY);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
|
|
ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
|
|
XVA_SET_RTN(xvap, XAT_HIDDEN);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
|
|
ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
|
|
XVA_SET_RTN(xvap, XAT_SYSTEM);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
|
|
ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
|
|
XVA_SET_RTN(xvap, XAT_ARCHIVE);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
|
|
ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
|
|
XVA_SET_RTN(xvap, XAT_IMMUTABLE);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
|
|
ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
|
|
XVA_SET_RTN(xvap, XAT_NOUNLINK);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
|
|
ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
|
|
XVA_SET_RTN(xvap, XAT_APPENDONLY);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
|
|
ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
|
|
XVA_SET_RTN(xvap, XAT_NODUMP);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
|
|
ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
|
|
XVA_SET_RTN(xvap, XAT_OPAQUE);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
|
|
ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
|
|
xoap->xoa_av_quarantined);
|
|
XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
|
|
ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
|
|
XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
|
|
}
|
|
if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
|
|
(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
|
|
sizeof (xoap->xoa_av_scanstamp));
|
|
zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
|
|
XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
|
|
}
|
|
}
|
|
|
|
int
|
|
zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_buf_t *db;
|
|
znode_t *zp;
|
|
int err;
|
|
|
|
*zpp = NULL;
|
|
|
|
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
|
|
|
|
err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
|
|
if (err) {
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
return (err);
|
|
}
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
if (doi.doi_bonus_type != DMU_OT_ZNODE ||
|
|
doi.doi_bonus_size < sizeof (znode_phys_t)) {
|
|
dmu_buf_rele(db, NULL);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
return (EINVAL);
|
|
}
|
|
|
|
zp = dmu_buf_get_user(db);
|
|
if (zp != NULL) {
|
|
mutex_enter(&zp->z_lock);
|
|
|
|
/*
|
|
* Since we do immediate eviction of the z_dbuf, we
|
|
* should never find a dbuf with a znode that doesn't
|
|
* know about the dbuf.
|
|
*/
|
|
ASSERT3P(zp->z_dbuf, ==, db);
|
|
ASSERT3U(zp->z_id, ==, obj_num);
|
|
if (zp->z_unlinked) {
|
|
err = ENOENT;
|
|
} else {
|
|
VN_HOLD(ZTOV(zp));
|
|
*zpp = zp;
|
|
err = 0;
|
|
}
|
|
dmu_buf_rele(db, NULL);
|
|
mutex_exit(&zp->z_lock);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Not found create new znode/vnode
|
|
*/
|
|
zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
*zpp = zp;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_rezget(znode_t *zp)
|
|
{
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
dmu_object_info_t doi;
|
|
dmu_buf_t *db;
|
|
uint64_t obj_num = zp->z_id;
|
|
int err;
|
|
|
|
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
|
|
|
|
err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
|
|
if (err) {
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
return (err);
|
|
}
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
if (doi.doi_bonus_type != DMU_OT_ZNODE ||
|
|
doi.doi_bonus_size < sizeof (znode_phys_t)) {
|
|
dmu_buf_rele(db, NULL);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
|
|
dmu_buf_rele(db, NULL);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
return (EIO);
|
|
}
|
|
|
|
zfs_znode_dmu_init(zfsvfs, zp, db);
|
|
zp->z_unlinked = (zp->z_phys->zp_links == 0);
|
|
zp->z_blksz = doi.doi_data_block_size;
|
|
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
|
|
{
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
objset_t *os = zfsvfs->z_os;
|
|
uint64_t obj = zp->z_id;
|
|
uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
|
|
|
|
ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
|
|
if (acl_obj)
|
|
VERIFY(0 == dmu_object_free(os, acl_obj, tx));
|
|
VERIFY(0 == dmu_object_free(os, obj, tx));
|
|
zfs_znode_dmu_fini(zp);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
|
|
zfs_znode_free(zp);
|
|
}
|
|
|
|
void
|
|
zfs_zinactive(znode_t *zp)
|
|
{
|
|
vnode_t *vp = ZTOV(zp);
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
uint64_t z_id = zp->z_id;
|
|
|
|
ASSERT(zp->z_dbuf && zp->z_phys);
|
|
|
|
/*
|
|
* Don't allow a zfs_zget() while were trying to release this znode
|
|
*/
|
|
ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
|
|
|
|
mutex_enter(&zp->z_lock);
|
|
mutex_enter(&vp->v_lock);
|
|
vp->v_count--;
|
|
if (vp->v_count > 0 || vn_has_cached_data(vp)) {
|
|
/*
|
|
* If the hold count is greater than zero, somebody has
|
|
* obtained a new reference on this znode while we were
|
|
* processing it here, so we are done. If we still have
|
|
* mapped pages then we are also done, since we don't
|
|
* want to inactivate the znode until the pages get pushed.
|
|
*
|
|
* XXX - if vn_has_cached_data(vp) is true, but count == 0,
|
|
* this seems like it would leave the znode hanging with
|
|
* no chance to go inactive...
|
|
*/
|
|
mutex_exit(&vp->v_lock);
|
|
mutex_exit(&zp->z_lock);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
|
|
return;
|
|
}
|
|
mutex_exit(&vp->v_lock);
|
|
|
|
/*
|
|
* If this was the last reference to a file with no links,
|
|
* remove the file from the file system.
|
|
*/
|
|
if (zp->z_unlinked) {
|
|
mutex_exit(&zp->z_lock);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
|
|
zfs_rmnode(zp);
|
|
return;
|
|
}
|
|
mutex_exit(&zp->z_lock);
|
|
zfs_znode_dmu_fini(zp);
|
|
ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
|
|
zfs_znode_free(zp);
|
|
}
|
|
|
|
void
|
|
zfs_znode_free(znode_t *zp)
|
|
{
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
|
|
vn_invalid(ZTOV(zp));
|
|
|
|
ASSERT(ZTOV(zp)->v_count == 0);
|
|
|
|
mutex_enter(&zfsvfs->z_znodes_lock);
|
|
POINTER_INVALIDATE(&zp->z_zfsvfs);
|
|
list_remove(&zfsvfs->z_all_znodes, zp);
|
|
mutex_exit(&zfsvfs->z_znodes_lock);
|
|
|
|
kmem_cache_free(znode_cache, zp);
|
|
|
|
VFS_RELE(zfsvfs->z_vfs);
|
|
}
|
|
|
|
void
|
|
zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
|
|
{
|
|
timestruc_t now;
|
|
|
|
ASSERT(MUTEX_HELD(&zp->z_lock));
|
|
|
|
gethrestime(&now);
|
|
|
|
if (tx) {
|
|
dmu_buf_will_dirty(zp->z_dbuf, tx);
|
|
zp->z_atime_dirty = 0;
|
|
zp->z_seq++;
|
|
} else {
|
|
zp->z_atime_dirty = 1;
|
|
}
|
|
|
|
if (flag & AT_ATIME)
|
|
ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
|
|
|
|
if (flag & AT_MTIME) {
|
|
ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
|
|
if (zp->z_zfsvfs->z_use_fuids)
|
|
zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
|
|
}
|
|
|
|
if (flag & AT_CTIME) {
|
|
ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
|
|
if (zp->z_zfsvfs->z_use_fuids)
|
|
zp->z_phys->zp_flags |= ZFS_ARCHIVE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the requested znode timestamps with the current time.
|
|
* If we are in a transaction, then go ahead and mark the znode
|
|
* dirty in the transaction so the timestamps will go to disk.
|
|
* Otherwise, we will get pushed next time the znode is updated
|
|
* in a transaction, or when this znode eventually goes inactive.
|
|
*
|
|
* Why is this OK?
|
|
* 1 - Only the ACCESS time is ever updated outside of a transaction.
|
|
* 2 - Multiple consecutive updates will be collapsed into a single
|
|
* znode update by the transaction grouping semantics of the DMU.
|
|
*/
|
|
void
|
|
zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
|
|
{
|
|
mutex_enter(&zp->z_lock);
|
|
zfs_time_stamper_locked(zp, flag, tx);
|
|
mutex_exit(&zp->z_lock);
|
|
}
|
|
|
|
/*
|
|
* Grow the block size for a file.
|
|
*
|
|
* IN: zp - znode of file to free data in.
|
|
* size - requested block size
|
|
* tx - open transaction.
|
|
*
|
|
* NOTE: this function assumes that the znode is write locked.
|
|
*/
|
|
void
|
|
zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
|
|
{
|
|
int error;
|
|
u_longlong_t dummy;
|
|
|
|
if (size <= zp->z_blksz)
|
|
return;
|
|
/*
|
|
* If the file size is already greater than the current blocksize,
|
|
* we will not grow. If there is more than one block in a file,
|
|
* the blocksize cannot change.
|
|
*/
|
|
if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
|
|
return;
|
|
|
|
error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
|
|
size, 0, tx);
|
|
if (error == ENOTSUP)
|
|
return;
|
|
ASSERT3U(error, ==, 0);
|
|
|
|
/* What blocksize did we actually get? */
|
|
dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
|
|
}
|
|
|
|
/*
|
|
* This is a dummy interface used when pvn_vplist_dirty() should *not*
|
|
* be calling back into the fs for a putpage(). E.g.: when truncating
|
|
* a file, the pages being "thrown away* don't need to be written out.
|
|
*/
|
|
/* ARGSUSED */
|
|
static int
|
|
zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
|
|
int flags, cred_t *cr)
|
|
{
|
|
ASSERT(0);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Increase the file length
|
|
*
|
|
* IN: zp - znode of file to free data in.
|
|
* end - new end-of-file
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*/
|
|
static int
|
|
zfs_extend(znode_t *zp, uint64_t end)
|
|
{
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
dmu_tx_t *tx;
|
|
rl_t *rl;
|
|
uint64_t newblksz;
|
|
int error;
|
|
|
|
/*
|
|
* We will change zp_size, lock the whole file.
|
|
*/
|
|
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
|
|
|
|
/*
|
|
* Nothing to do if file already at desired length.
|
|
*/
|
|
if (end <= zp->z_phys->zp_size) {
|
|
zfs_range_unlock(rl);
|
|
return (0);
|
|
}
|
|
top:
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
|
dmu_tx_hold_bonus(tx, zp->z_id);
|
|
if (end > zp->z_blksz &&
|
|
(!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
|
|
/*
|
|
* We are growing the file past the current block size.
|
|
*/
|
|
if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
|
|
ASSERT(!ISP2(zp->z_blksz));
|
|
newblksz = MIN(end, SPA_MAXBLOCKSIZE);
|
|
} else {
|
|
newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
|
|
}
|
|
dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
|
|
} else {
|
|
newblksz = 0;
|
|
}
|
|
|
|
error = dmu_tx_assign(tx, TXG_NOWAIT);
|
|
if (error) {
|
|
if (error == ERESTART) {
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
dmu_tx_abort(tx);
|
|
zfs_range_unlock(rl);
|
|
return (error);
|
|
}
|
|
dmu_buf_will_dirty(zp->z_dbuf, tx);
|
|
|
|
if (newblksz)
|
|
zfs_grow_blocksize(zp, newblksz, tx);
|
|
|
|
zp->z_phys->zp_size = end;
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free space in a file.
|
|
*
|
|
* IN: zp - znode of file to free data in.
|
|
* off - start of section to free.
|
|
* len - length of section to free.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*/
|
|
static int
|
|
zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
|
|
{
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
rl_t *rl;
|
|
int error;
|
|
|
|
/*
|
|
* Lock the range being freed.
|
|
*/
|
|
rl = zfs_range_lock(zp, off, len, RL_WRITER);
|
|
|
|
/*
|
|
* Nothing to do if file already at desired length.
|
|
*/
|
|
if (off >= zp->z_phys->zp_size) {
|
|
zfs_range_unlock(rl);
|
|
return (0);
|
|
}
|
|
|
|
if (off + len > zp->z_phys->zp_size)
|
|
len = zp->z_phys->zp_size - off;
|
|
|
|
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Truncate a file
|
|
*
|
|
* IN: zp - znode of file to free data in.
|
|
* end - new end-of-file.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*/
|
|
static int
|
|
zfs_trunc(znode_t *zp, uint64_t end)
|
|
{
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
vnode_t *vp = ZTOV(zp);
|
|
dmu_tx_t *tx;
|
|
rl_t *rl;
|
|
int error;
|
|
|
|
/*
|
|
* We will change zp_size, lock the whole file.
|
|
*/
|
|
rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
|
|
|
|
/*
|
|
* Nothing to do if file already at desired length.
|
|
*/
|
|
if (end >= zp->z_phys->zp_size) {
|
|
zfs_range_unlock(rl);
|
|
return (0);
|
|
}
|
|
|
|
error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
|
|
if (error) {
|
|
zfs_range_unlock(rl);
|
|
return (error);
|
|
}
|
|
top:
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
|
dmu_tx_hold_bonus(tx, zp->z_id);
|
|
error = dmu_tx_assign(tx, TXG_NOWAIT);
|
|
if (error) {
|
|
if (error == ERESTART) {
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto top;
|
|
}
|
|
dmu_tx_abort(tx);
|
|
zfs_range_unlock(rl);
|
|
return (error);
|
|
}
|
|
dmu_buf_will_dirty(zp->z_dbuf, tx);
|
|
|
|
zp->z_phys->zp_size = end;
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
/*
|
|
* Clear any mapped pages in the truncated region. This has to
|
|
* happen outside of the transaction to avoid the possibility of
|
|
* a deadlock with someone trying to push a page that we are
|
|
* about to invalidate.
|
|
*/
|
|
if (vn_has_cached_data(vp)) {
|
|
page_t *pp;
|
|
uint64_t start = end & PAGEMASK;
|
|
int poff = end & PAGEOFFSET;
|
|
|
|
if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
|
|
/*
|
|
* We need to zero a partial page.
|
|
*/
|
|
pagezero(pp, poff, PAGESIZE - poff);
|
|
start += PAGESIZE;
|
|
page_unlock(pp);
|
|
}
|
|
error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
|
|
B_INVAL | B_TRUNC, NULL);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
zfs_range_unlock(rl);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free space in a file
|
|
*
|
|
* IN: zp - znode of file to free data in.
|
|
* off - start of range
|
|
* len - end of range (0 => EOF)
|
|
* flag - current file open mode flags.
|
|
* log - TRUE if this action should be logged
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*/
|
|
int
|
|
zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
|
|
{
|
|
vnode_t *vp = ZTOV(zp);
|
|
dmu_tx_t *tx;
|
|
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
|
|
zilog_t *zilog = zfsvfs->z_log;
|
|
int error;
|
|
|
|
if (off > zp->z_phys->zp_size) {
|
|
error = zfs_extend(zp, off+len);
|
|
if (error == 0 && log)
|
|
goto log;
|
|
else
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Check for any locks in the region to be freed.
|
|
*/
|
|
if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
|
|
uint64_t length = (len ? len : zp->z_phys->zp_size - off);
|
|
if (error = chklock(vp, FWRITE, off, length, flag, NULL))
|
|
return (error);
|
|
}
|
|
|
|
if (len == 0) {
|
|
error = zfs_trunc(zp, off);
|
|
} else {
|
|
if ((error = zfs_free_range(zp, off, len)) == 0 &&
|
|
off + len > zp->z_phys->zp_size)
|
|
error = zfs_extend(zp, off+len);
|
|
}
|
|
if (error || !log)
|
|
return (error);
|
|
log:
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
|
dmu_tx_hold_bonus(tx, zp->z_id);
|
|
error = dmu_tx_assign(tx, TXG_NOWAIT);
|
|
if (error) {
|
|
if (error == ERESTART) {
|
|
dmu_tx_wait(tx);
|
|
dmu_tx_abort(tx);
|
|
goto log;
|
|
}
|
|
dmu_tx_abort(tx);
|
|
return (error);
|
|
}
|
|
|
|
zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
|
|
zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
|
|
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
#endif /* HAVE_ZPL */
|
|
|
|
void
|
|
zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
|
|
{
|
|
uint64_t moid, obj, version;
|
|
uint64_t sense = ZFS_CASE_SENSITIVE;
|
|
uint64_t norm = 0;
|
|
nvpair_t *elem;
|
|
int error;
|
|
#ifdef HAVE_ZPL
|
|
zfsvfs_t zfsvfs;
|
|
znode_t *rootzp = NULL;
|
|
vnode_t *vp;
|
|
vattr_t vattr;
|
|
znode_t *zp;
|
|
zfs_acl_ids_t acl_ids;
|
|
#else
|
|
timestruc_t now;
|
|
dmu_buf_t *db;
|
|
znode_phys_t *pzp;
|
|
#endif /* HAVE_ZPL */
|
|
|
|
/*
|
|
* First attempt to create master node.
|
|
*/
|
|
/*
|
|
* In an empty objset, there are no blocks to read and thus
|
|
* there can be no i/o errors (which we assert below).
|
|
*/
|
|
moid = MASTER_NODE_OBJ;
|
|
error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
/*
|
|
* Set starting attributes.
|
|
*/
|
|
if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_USERSPACE)
|
|
version = ZPL_VERSION;
|
|
else if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
|
|
version = ZPL_VERSION_USERSPACE - 1;
|
|
else
|
|
version = ZPL_VERSION_FUID - 1;
|
|
elem = NULL;
|
|
while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
|
|
/* For the moment we expect all zpl props to be uint64_ts */
|
|
uint64_t val;
|
|
char *name;
|
|
|
|
ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
|
|
VERIFY(nvpair_value_uint64(elem, &val) == 0);
|
|
name = nvpair_name(elem);
|
|
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
|
|
if (val < version)
|
|
version = val;
|
|
} else {
|
|
error = zap_update(os, moid, name, 8, 1, &val, tx);
|
|
}
|
|
ASSERT(error == 0);
|
|
if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
|
|
norm = val;
|
|
else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
|
|
sense = val;
|
|
}
|
|
ASSERT(version != 0);
|
|
error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
|
|
|
|
/*
|
|
* Create a delete queue.
|
|
*/
|
|
obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
|
|
|
|
error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
|
|
ASSERT(error == 0);
|
|
|
|
#ifdef HAVE_ZPL
|
|
/*
|
|
* Create root znode. Create minimal znode/vnode/zfsvfs
|
|
* to allow zfs_mknode to work.
|
|
*/
|
|
vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
|
|
vattr.va_type = VDIR;
|
|
vattr.va_mode = S_IFDIR|0755;
|
|
vattr.va_uid = crgetuid(cr);
|
|
vattr.va_gid = crgetgid(cr);
|
|
|
|
rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
|
|
rootzp->z_unlinked = 0;
|
|
rootzp->z_atime_dirty = 0;
|
|
|
|
vp = ZTOV(rootzp);
|
|
vn_reinit(vp);
|
|
vp->v_type = VDIR;
|
|
|
|
bzero(&zfsvfs, sizeof (zfsvfs_t));
|
|
|
|
zfsvfs.z_os = os;
|
|
zfsvfs.z_parent = &zfsvfs;
|
|
zfsvfs.z_version = version;
|
|
zfsvfs.z_use_fuids = USE_FUIDS(version, os);
|
|
zfsvfs.z_norm = norm;
|
|
/*
|
|
* Fold case on file systems that are always or sometimes case
|
|
* insensitive.
|
|
*/
|
|
if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
|
|
zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
|
|
|
|
/* XXX - This must be destroyed but I'm not quite sure yet so
|
|
* I'm just annotating that fact when it's an issue. -Brian */
|
|
mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
|
|
offsetof(znode_t, z_link_node));
|
|
|
|
ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
|
|
rootzp->z_zfsvfs = &zfsvfs;
|
|
VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
|
|
cr, NULL, &acl_ids));
|
|
zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, &acl_ids);
|
|
ASSERT3P(zp, ==, rootzp);
|
|
ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
|
|
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
|
|
ASSERT(error == 0);
|
|
zfs_acl_ids_free(&acl_ids);
|
|
POINTER_INVALIDATE(&rootzp->z_zfsvfs);
|
|
|
|
ZTOV(rootzp)->v_count = 0;
|
|
dmu_buf_rele(rootzp->z_dbuf, NULL);
|
|
rootzp->z_dbuf = NULL;
|
|
kmem_cache_free(znode_cache, rootzp);
|
|
error = zfs_create_share_dir(&zfsvfs, tx);
|
|
#else
|
|
/*
|
|
* Create root znode with code free of VFS dependencies
|
|
*/
|
|
obj = zap_create_norm(os, norm, DMU_OT_DIRECTORY_CONTENTS,
|
|
DMU_OT_ZNODE, sizeof (znode_phys_t), tx);
|
|
|
|
VERIFY(0 == dmu_bonus_hold(os, obj, FTAG, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
/*
|
|
* Initialize the znode physical data to zero.
|
|
*/
|
|
ASSERT(db->db_size >= sizeof (znode_phys_t));
|
|
bzero(db->db_data, db->db_size);
|
|
pzp = db->db_data;
|
|
|
|
if (USE_FUIDS(version, os))
|
|
pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
|
|
|
|
pzp->zp_size = 2; /* "." and ".." */
|
|
pzp->zp_links = 2;
|
|
pzp->zp_parent = obj;
|
|
pzp->zp_gen = dmu_tx_get_txg(tx);
|
|
pzp->zp_mode = S_IFDIR | 0755;
|
|
pzp->zp_flags = ZFS_ACL_TRIVIAL;
|
|
|
|
gethrestime(&now);
|
|
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_atime);
|
|
ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
|
|
|
|
error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &obj, tx);
|
|
ASSERT(error == 0);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
#endif /* HAVE_ZPL */
|
|
}
|
|
|
|
#endif /* _KERNEL */
|
|
/*
|
|
* Given an object number, return its parent object number and whether
|
|
* or not the object is an extended attribute directory.
|
|
*/
|
|
static int
|
|
zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
|
|
{
|
|
dmu_buf_t *db;
|
|
dmu_object_info_t doi;
|
|
znode_phys_t *zp;
|
|
int error;
|
|
|
|
if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
|
|
return (error);
|
|
|
|
dmu_object_info_from_db(db, &doi);
|
|
if (doi.doi_bonus_type != DMU_OT_ZNODE ||
|
|
doi.doi_bonus_size < sizeof (znode_phys_t)) {
|
|
dmu_buf_rele(db, FTAG);
|
|
return (EINVAL);
|
|
}
|
|
|
|
zp = db->db_data;
|
|
*pobjp = zp->zp_parent;
|
|
*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
|
|
S_ISDIR(zp->zp_mode);
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
|
|
{
|
|
char *path = buf + len - 1;
|
|
int error;
|
|
|
|
*path = '\0';
|
|
|
|
for (;;) {
|
|
uint64_t pobj;
|
|
char component[MAXNAMELEN + 2];
|
|
size_t complen;
|
|
int is_xattrdir;
|
|
|
|
if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
|
|
&is_xattrdir)) != 0)
|
|
break;
|
|
|
|
if (pobj == obj) {
|
|
if (path[0] != '/')
|
|
*--path = '/';
|
|
break;
|
|
}
|
|
|
|
component[0] = '/';
|
|
if (is_xattrdir) {
|
|
(void) sprintf(component + 1, "<xattrdir>");
|
|
} else {
|
|
error = zap_value_search(osp, pobj, obj,
|
|
ZFS_DIRENT_OBJ(-1ULL), component + 1);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
complen = strlen(component);
|
|
path -= complen;
|
|
ASSERT(path >= buf);
|
|
bcopy(component, path, complen);
|
|
obj = pobj;
|
|
}
|
|
|
|
if (error == 0)
|
|
(void) memmove(buf, path, buf + len - path);
|
|
return (error);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(zfs_create_fs);
|
|
EXPORT_SYMBOL(zfs_obj_to_path);
|
|
#endif
|