1457 lines
42 KiB
C
1457 lines
42 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* This file and its contents are supplied under the terms of the
|
|
* Common Development and Distribution License ("CDDL"), version 1.0.
|
|
* You may only use this file in accordance with the terms of version
|
|
* 1.0 of the CDDL.
|
|
*
|
|
* A full copy of the text of the CDDL should have accompanied this
|
|
* source. A copy of the CDDL is also available via the Internet at
|
|
* http://www.illumos.org/license/CDDL.
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2016, 2018 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* ZFS Channel Programs (ZCP)
|
|
*
|
|
* The ZCP interface allows various ZFS commands and operations ZFS
|
|
* administrative operations (e.g. creating and destroying snapshots, typically
|
|
* performed via an ioctl to /dev/zfs by the zfs(8) command and
|
|
* libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
|
|
* script is run as a dsl_sync_task and fully executed during one transaction
|
|
* group sync. This ensures that no other changes can be written concurrently
|
|
* with a running Lua script. Combining multiple calls to the exposed ZFS
|
|
* functions into one script gives a number of benefits:
|
|
*
|
|
* 1. Atomicity. For some compound or iterative operations, it's useful to be
|
|
* able to guarantee that the state of a pool has not changed between calls to
|
|
* ZFS.
|
|
*
|
|
* 2. Performance. If a large number of changes need to be made (e.g. deleting
|
|
* many filesystems), there can be a significant performance penalty as a
|
|
* result of the need to wait for a transaction group sync to pass for every
|
|
* single operation. When expressed as a single ZCP script, all these changes
|
|
* can be performed at once in one txg sync.
|
|
*
|
|
* A modified version of the Lua 5.2 interpreter is used to run channel program
|
|
* scripts. The Lua 5.2 manual can be found at:
|
|
*
|
|
* http://www.lua.org/manual/5.2/
|
|
*
|
|
* If being run by a user (via an ioctl syscall), executing a ZCP script
|
|
* requires root privileges in the global zone.
|
|
*
|
|
* Scripts are passed to zcp_eval() as a string, then run in a synctask by
|
|
* zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
|
|
* which will be converted to a Lua table. Similarly, values returned from
|
|
* a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
|
|
* for details on exact allowed types and conversion.
|
|
*
|
|
* ZFS functionality is exposed to a ZCP script as a library of function calls.
|
|
* These calls are sorted into submodules, such as zfs.list and zfs.sync, for
|
|
* iterators and synctasks, respectively. Each of these submodules resides in
|
|
* its own source file, with a zcp_*_info structure describing each library
|
|
* call in the submodule.
|
|
*
|
|
* Error handling in ZCP scripts is handled by a number of different methods
|
|
* based on severity:
|
|
*
|
|
* 1. Memory and time limits are in place to prevent a channel program from
|
|
* consuming excessive system or running forever. If one of these limits is
|
|
* hit, the channel program will be stopped immediately and return from
|
|
* zcp_eval() with an error code. No attempt will be made to roll back or undo
|
|
* any changes made by the channel program before the error occurred.
|
|
* Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
|
|
* limit of 0, disabling the time limit.
|
|
*
|
|
* 2. Internal Lua errors can occur as a result of a syntax error, calling a
|
|
* library function with incorrect arguments, invoking the error() function,
|
|
* failing an assert(), or other runtime errors. In these cases the channel
|
|
* program will stop executing and return from zcp_eval() with an error code.
|
|
* In place of a return value, an error message will also be returned in the
|
|
* 'result' nvlist containing information about the error. No attempt will be
|
|
* made to roll back or undo any changes made by the channel program before the
|
|
* error occurred.
|
|
*
|
|
* 3. If an error occurs inside a ZFS library call which returns an error code,
|
|
* the error is returned to the Lua script to be handled as desired.
|
|
*
|
|
* In the first two cases, Lua's error-throwing mechanism is used, which
|
|
* longjumps out of the script execution with luaL_error() and returns with the
|
|
* error.
|
|
*
|
|
* See zfs-program(8) for more information on high level usage.
|
|
*/
|
|
|
|
#include <sys/lua/lua.h>
|
|
#include <sys/lua/lualib.h>
|
|
#include <sys/lua/lauxlib.h>
|
|
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/zcp.h>
|
|
#include <sys/zcp_iter.h>
|
|
#include <sys/zcp_prop.h>
|
|
#include <sys/zcp_global.h>
|
|
#include <sys/zvol.h>
|
|
|
|
#ifndef KM_NORMALPRI
|
|
#define KM_NORMALPRI 0
|
|
#endif
|
|
|
|
#define ZCP_NVLIST_MAX_DEPTH 20
|
|
|
|
uint64_t zfs_lua_check_instrlimit_interval = 100;
|
|
unsigned long zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
|
|
unsigned long zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
|
|
|
|
/*
|
|
* Forward declarations for mutually recursive functions
|
|
*/
|
|
static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
|
|
static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
|
|
int);
|
|
|
|
/*
|
|
* The outer-most error callback handler for use with lua_pcall(). On
|
|
* error Lua will call this callback with a single argument that
|
|
* represents the error value. In most cases this will be a string
|
|
* containing an error message, but channel programs can use Lua's
|
|
* error() function to return arbitrary objects as errors. This callback
|
|
* returns (on the Lua stack) the original error object along with a traceback.
|
|
*
|
|
* Fatal Lua errors can occur while resources are held, so we also call any
|
|
* registered cleanup function here.
|
|
*/
|
|
static int
|
|
zcp_error_handler(lua_State *state)
|
|
{
|
|
const char *msg;
|
|
|
|
zcp_cleanup(state);
|
|
|
|
VERIFY3U(1, ==, lua_gettop(state));
|
|
msg = lua_tostring(state, 1);
|
|
luaL_traceback(state, state, msg, 1);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
zcp_argerror(lua_State *state, int narg, const char *msg, ...)
|
|
{
|
|
va_list alist;
|
|
|
|
va_start(alist, msg);
|
|
const char *buf = lua_pushvfstring(state, msg, alist);
|
|
va_end(alist);
|
|
|
|
return (luaL_argerror(state, narg, buf));
|
|
}
|
|
|
|
/*
|
|
* Install a new cleanup function, which will be invoked with the given
|
|
* opaque argument if a fatal error causes the Lua interpreter to longjump out
|
|
* of a function call.
|
|
*
|
|
* If an error occurs, the cleanup function will be invoked exactly once and
|
|
* then unregistered.
|
|
*
|
|
* Returns the registered cleanup handler so the caller can deregister it
|
|
* if no error occurs.
|
|
*/
|
|
zcp_cleanup_handler_t *
|
|
zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
|
|
{
|
|
zcp_run_info_t *ri = zcp_run_info(state);
|
|
|
|
zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
|
|
zch->zch_cleanup_func = cleanfunc;
|
|
zch->zch_cleanup_arg = cleanarg;
|
|
list_insert_head(&ri->zri_cleanup_handlers, zch);
|
|
|
|
return (zch);
|
|
}
|
|
|
|
void
|
|
zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
|
|
{
|
|
zcp_run_info_t *ri = zcp_run_info(state);
|
|
list_remove(&ri->zri_cleanup_handlers, zch);
|
|
kmem_free(zch, sizeof (*zch));
|
|
}
|
|
|
|
/*
|
|
* Execute the currently registered cleanup handlers then free them and
|
|
* destroy the handler list.
|
|
*/
|
|
void
|
|
zcp_cleanup(lua_State *state)
|
|
{
|
|
zcp_run_info_t *ri = zcp_run_info(state);
|
|
|
|
for (zcp_cleanup_handler_t *zch =
|
|
list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
|
|
zch = list_remove_head(&ri->zri_cleanup_handlers)) {
|
|
zch->zch_cleanup_func(zch->zch_cleanup_arg);
|
|
kmem_free(zch, sizeof (*zch));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert the lua table at the given index on the Lua stack to an nvlist
|
|
* and return it.
|
|
*
|
|
* If the table can not be converted for any reason, NULL is returned and
|
|
* an error message is pushed onto the Lua stack.
|
|
*/
|
|
static nvlist_t *
|
|
zcp_table_to_nvlist(lua_State *state, int index, int depth)
|
|
{
|
|
nvlist_t *nvl;
|
|
/*
|
|
* Converting a Lua table to an nvlist with key uniqueness checking is
|
|
* O(n^2) in the number of keys in the nvlist, which can take a long
|
|
* time when we return a large table from a channel program.
|
|
* Furthermore, Lua's table interface *almost* guarantees unique keys
|
|
* on its own (details below). Therefore, we don't use fnvlist_alloc()
|
|
* here to avoid the built-in uniqueness checking.
|
|
*
|
|
* The *almost* is because it's possible to have key collisions between
|
|
* e.g. the string "1" and the number 1, or the string "true" and the
|
|
* boolean true, so we explicitly check that when we're looking at a
|
|
* key which is an integer / boolean or a string that can be parsed as
|
|
* one of those types. In the worst case this could still devolve into
|
|
* O(n^2), so we only start doing these checks on boolean/integer keys
|
|
* once we've seen a string key which fits this weird usage pattern.
|
|
*
|
|
* Ultimately, we still want callers to know that the keys in this
|
|
* nvlist are unique, so before we return this we set the nvlist's
|
|
* flags to reflect that.
|
|
*/
|
|
VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
|
|
|
|
/*
|
|
* Push an empty stack slot where lua_next() will store each
|
|
* table key.
|
|
*/
|
|
lua_pushnil(state);
|
|
boolean_t saw_str_could_collide = B_FALSE;
|
|
while (lua_next(state, index) != 0) {
|
|
/*
|
|
* The next key-value pair from the table at index is
|
|
* now on the stack, with the key at stack slot -2 and
|
|
* the value at slot -1.
|
|
*/
|
|
int err = 0;
|
|
char buf[32];
|
|
const char *key = NULL;
|
|
boolean_t key_could_collide = B_FALSE;
|
|
|
|
switch (lua_type(state, -2)) {
|
|
case LUA_TSTRING:
|
|
key = lua_tostring(state, -2);
|
|
|
|
/* check if this could collide with a number or bool */
|
|
long long tmp;
|
|
int parselen;
|
|
if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
|
|
parselen == strlen(key)) ||
|
|
strcmp(key, "true") == 0 ||
|
|
strcmp(key, "false") == 0) {
|
|
key_could_collide = B_TRUE;
|
|
saw_str_could_collide = B_TRUE;
|
|
}
|
|
break;
|
|
case LUA_TBOOLEAN:
|
|
key = (lua_toboolean(state, -2) == B_TRUE ?
|
|
"true" : "false");
|
|
if (saw_str_could_collide) {
|
|
key_could_collide = B_TRUE;
|
|
}
|
|
break;
|
|
case LUA_TNUMBER:
|
|
VERIFY3U(sizeof (buf), >,
|
|
snprintf(buf, sizeof (buf), "%lld",
|
|
(longlong_t)lua_tonumber(state, -2)));
|
|
key = buf;
|
|
if (saw_str_could_collide) {
|
|
key_could_collide = B_TRUE;
|
|
}
|
|
break;
|
|
default:
|
|
fnvlist_free(nvl);
|
|
(void) lua_pushfstring(state, "Invalid key "
|
|
"type '%s' in table",
|
|
lua_typename(state, lua_type(state, -2)));
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* Check for type-mismatched key collisions, and throw an error.
|
|
*/
|
|
if (key_could_collide && nvlist_exists(nvl, key)) {
|
|
fnvlist_free(nvl);
|
|
(void) lua_pushfstring(state, "Collision of "
|
|
"key '%s' in table", key);
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* Recursively convert the table value and insert into
|
|
* the new nvlist with the parsed key. To prevent
|
|
* stack overflow on circular or heavily nested tables,
|
|
* we track the current nvlist depth.
|
|
*/
|
|
if (depth >= ZCP_NVLIST_MAX_DEPTH) {
|
|
fnvlist_free(nvl);
|
|
(void) lua_pushfstring(state, "Maximum table "
|
|
"depth (%d) exceeded for table",
|
|
ZCP_NVLIST_MAX_DEPTH);
|
|
return (NULL);
|
|
}
|
|
err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
|
|
depth + 1);
|
|
if (err != 0) {
|
|
fnvlist_free(nvl);
|
|
/*
|
|
* Error message has been pushed to the lua
|
|
* stack by the recursive call.
|
|
*/
|
|
return (NULL);
|
|
}
|
|
/*
|
|
* Pop the value pushed by lua_next().
|
|
*/
|
|
lua_pop(state, 1);
|
|
}
|
|
|
|
/*
|
|
* Mark the nvlist as having unique keys. This is a little ugly, but we
|
|
* ensured above that there are no duplicate keys in the nvlist.
|
|
*/
|
|
nvl->nvl_nvflag |= NV_UNIQUE_NAME;
|
|
|
|
return (nvl);
|
|
}
|
|
|
|
/*
|
|
* Convert a value from the given index into the lua stack to an nvpair, adding
|
|
* it to an nvlist with the given key.
|
|
*
|
|
* Values are converted as follows:
|
|
*
|
|
* string -> string
|
|
* number -> int64
|
|
* boolean -> boolean
|
|
* nil -> boolean (no value)
|
|
*
|
|
* Lua tables are converted to nvlists and then inserted. The table's keys
|
|
* are converted to strings then used as keys in the nvlist to store each table
|
|
* element. Keys are converted as follows:
|
|
*
|
|
* string -> no change
|
|
* number -> "%lld"
|
|
* boolean -> "true" | "false"
|
|
* nil -> error
|
|
*
|
|
* In the case of a key collision, an error is thrown.
|
|
*
|
|
* If an error is encountered, a nonzero error code is returned, and an error
|
|
* string will be pushed onto the Lua stack.
|
|
*/
|
|
static int
|
|
zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
|
|
const char *key, int depth)
|
|
{
|
|
/*
|
|
* Verify that we have enough remaining space in the lua stack to parse
|
|
* a key-value pair and push an error.
|
|
*/
|
|
if (!lua_checkstack(state, 3)) {
|
|
(void) lua_pushstring(state, "Lua stack overflow");
|
|
return (1);
|
|
}
|
|
|
|
index = lua_absindex(state, index);
|
|
|
|
switch (lua_type(state, index)) {
|
|
case LUA_TNIL:
|
|
fnvlist_add_boolean(nvl, key);
|
|
break;
|
|
case LUA_TBOOLEAN:
|
|
fnvlist_add_boolean_value(nvl, key,
|
|
lua_toboolean(state, index));
|
|
break;
|
|
case LUA_TNUMBER:
|
|
fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
|
|
break;
|
|
case LUA_TSTRING:
|
|
fnvlist_add_string(nvl, key, lua_tostring(state, index));
|
|
break;
|
|
case LUA_TTABLE: {
|
|
nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
|
|
if (value_nvl == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
fnvlist_add_nvlist(nvl, key, value_nvl);
|
|
fnvlist_free(value_nvl);
|
|
break;
|
|
}
|
|
default:
|
|
(void) lua_pushfstring(state,
|
|
"Invalid value type '%s' for key '%s'",
|
|
lua_typename(state, lua_type(state, index)), key);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Convert a lua value to an nvpair, adding it to an nvlist with the given key.
|
|
*/
|
|
static void
|
|
zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
|
|
{
|
|
/*
|
|
* On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
|
|
* stack before returning with a nonzero error code. If an error is
|
|
* returned, throw a fatal lua error with the given string.
|
|
*/
|
|
if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
|
|
(void) lua_error(state);
|
|
}
|
|
|
|
static int
|
|
zcp_lua_to_nvlist_helper(lua_State *state)
|
|
{
|
|
nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
|
|
const char *key = (const char *)lua_touserdata(state, 1);
|
|
zcp_lua_to_nvlist(state, 3, nv, key);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
|
|
const char *key, int *result)
|
|
{
|
|
int err;
|
|
VERIFY3U(1, ==, lua_gettop(state));
|
|
lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
|
|
lua_pushlightuserdata(state, (char *)key);
|
|
lua_pushlightuserdata(state, nvl);
|
|
lua_pushvalue(state, 1);
|
|
lua_remove(state, 1);
|
|
err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
|
|
if (err != 0) {
|
|
zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
|
|
*result = SET_ERROR(ECHRNG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Push a Lua table representing nvl onto the stack. If it can't be
|
|
* converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
|
|
* be specified as NULL, in which case no error string will be output.
|
|
*
|
|
* Most nvlists are converted as simple key->value Lua tables, but we make
|
|
* an exception for the case where all nvlist entries are BOOLEANs (a string
|
|
* key without a value). In Lua, a table key pointing to a value of Nil
|
|
* (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
|
|
* entry can't be directly converted to a Lua table entry. Nvlists of entirely
|
|
* BOOLEAN entries are frequently used to pass around lists of datasets, so for
|
|
* convenience we check for this case, and convert it to a simple Lua array of
|
|
* strings.
|
|
*/
|
|
int
|
|
zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
|
|
char *errbuf, int errbuf_len)
|
|
{
|
|
nvpair_t *pair;
|
|
lua_newtable(state);
|
|
boolean_t has_values = B_FALSE;
|
|
/*
|
|
* If the list doesn't have any values, just convert it to a string
|
|
* array.
|
|
*/
|
|
for (pair = nvlist_next_nvpair(nvl, NULL);
|
|
pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
|
|
if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
|
|
has_values = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
if (!has_values) {
|
|
int i = 1;
|
|
for (pair = nvlist_next_nvpair(nvl, NULL);
|
|
pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
|
|
(void) lua_pushinteger(state, i);
|
|
(void) lua_pushstring(state, nvpair_name(pair));
|
|
(void) lua_settable(state, -3);
|
|
i++;
|
|
}
|
|
} else {
|
|
for (pair = nvlist_next_nvpair(nvl, NULL);
|
|
pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
|
|
int err = zcp_nvpair_value_to_lua(state, pair,
|
|
errbuf, errbuf_len);
|
|
if (err != 0) {
|
|
lua_pop(state, 1);
|
|
return (err);
|
|
}
|
|
(void) lua_setfield(state, -2, nvpair_name(pair));
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Push a Lua object representing the value of "pair" onto the stack.
|
|
*
|
|
* Only understands boolean_value, string, int64, nvlist,
|
|
* string_array, and int64_array type values. For other
|
|
* types, returns EINVAL, fills in errbuf, and pushes nothing.
|
|
*/
|
|
static int
|
|
zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
|
|
char *errbuf, int errbuf_len)
|
|
{
|
|
int err = 0;
|
|
|
|
if (pair == NULL) {
|
|
lua_pushnil(state);
|
|
return (0);
|
|
}
|
|
|
|
switch (nvpair_type(pair)) {
|
|
case DATA_TYPE_BOOLEAN_VALUE:
|
|
(void) lua_pushboolean(state,
|
|
fnvpair_value_boolean_value(pair));
|
|
break;
|
|
case DATA_TYPE_STRING:
|
|
(void) lua_pushstring(state, fnvpair_value_string(pair));
|
|
break;
|
|
case DATA_TYPE_INT64:
|
|
(void) lua_pushinteger(state, fnvpair_value_int64(pair));
|
|
break;
|
|
case DATA_TYPE_NVLIST:
|
|
err = zcp_nvlist_to_lua(state,
|
|
fnvpair_value_nvlist(pair), errbuf, errbuf_len);
|
|
break;
|
|
case DATA_TYPE_STRING_ARRAY: {
|
|
char **strarr;
|
|
uint_t nelem;
|
|
(void) nvpair_value_string_array(pair, &strarr, &nelem);
|
|
lua_newtable(state);
|
|
for (int i = 0; i < nelem; i++) {
|
|
(void) lua_pushinteger(state, i + 1);
|
|
(void) lua_pushstring(state, strarr[i]);
|
|
(void) lua_settable(state, -3);
|
|
}
|
|
break;
|
|
}
|
|
case DATA_TYPE_UINT64_ARRAY: {
|
|
uint64_t *intarr;
|
|
uint_t nelem;
|
|
(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
|
|
lua_newtable(state);
|
|
for (int i = 0; i < nelem; i++) {
|
|
(void) lua_pushinteger(state, i + 1);
|
|
(void) lua_pushinteger(state, intarr[i]);
|
|
(void) lua_settable(state, -3);
|
|
}
|
|
break;
|
|
}
|
|
case DATA_TYPE_INT64_ARRAY: {
|
|
int64_t *intarr;
|
|
uint_t nelem;
|
|
(void) nvpair_value_int64_array(pair, &intarr, &nelem);
|
|
lua_newtable(state);
|
|
for (int i = 0; i < nelem; i++) {
|
|
(void) lua_pushinteger(state, i + 1);
|
|
(void) lua_pushinteger(state, intarr[i]);
|
|
(void) lua_settable(state, -3);
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
if (errbuf != NULL) {
|
|
(void) snprintf(errbuf, errbuf_len,
|
|
"Unhandled nvpair type %d for key '%s'",
|
|
nvpair_type(pair), nvpair_name(pair));
|
|
}
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
int
|
|
zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
|
|
int error)
|
|
{
|
|
if (error == ENOENT) {
|
|
(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
|
|
return (0); /* not reached; zcp_argerror will longjmp */
|
|
} else if (error == EXDEV) {
|
|
(void) zcp_argerror(state, 1,
|
|
"dataset '%s' is not in the target pool '%s'",
|
|
dsname, spa_name(dp->dp_spa));
|
|
return (0); /* not reached; zcp_argerror will longjmp */
|
|
} else if (error == EIO) {
|
|
(void) luaL_error(state,
|
|
"I/O error while accessing dataset '%s'", dsname);
|
|
return (0); /* not reached; luaL_error will longjmp */
|
|
} else if (error != 0) {
|
|
(void) luaL_error(state,
|
|
"unexpected error %d while accessing dataset '%s'",
|
|
error, dsname);
|
|
return (0); /* not reached; luaL_error will longjmp */
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Note: will longjmp (via lua_error()) on error.
|
|
* Assumes that the dsname is argument #1 (for error reporting purposes).
|
|
*/
|
|
dsl_dataset_t *
|
|
zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
|
|
void *tag)
|
|
{
|
|
dsl_dataset_t *ds;
|
|
int error = dsl_dataset_hold(dp, dsname, tag, &ds);
|
|
(void) zcp_dataset_hold_error(state, dp, dsname, error);
|
|
return (ds);
|
|
}
|
|
|
|
static int zcp_debug(lua_State *);
|
|
static zcp_lib_info_t zcp_debug_info = {
|
|
.name = "debug",
|
|
.func = zcp_debug,
|
|
.pargs = {
|
|
{ .za_name = "debug string", .za_lua_type = LUA_TSTRING},
|
|
{NULL, 0}
|
|
},
|
|
.kwargs = {
|
|
{NULL, 0}
|
|
}
|
|
};
|
|
|
|
static int
|
|
zcp_debug(lua_State *state)
|
|
{
|
|
const char *dbgstring;
|
|
zcp_run_info_t *ri = zcp_run_info(state);
|
|
zcp_lib_info_t *libinfo = &zcp_debug_info;
|
|
|
|
zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
|
|
|
|
dbgstring = lua_tostring(state, 1);
|
|
|
|
zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int zcp_exists(lua_State *);
|
|
static zcp_lib_info_t zcp_exists_info = {
|
|
.name = "exists",
|
|
.func = zcp_exists,
|
|
.pargs = {
|
|
{ .za_name = "dataset", .za_lua_type = LUA_TSTRING},
|
|
{NULL, 0}
|
|
},
|
|
.kwargs = {
|
|
{NULL, 0}
|
|
}
|
|
};
|
|
|
|
static int
|
|
zcp_exists(lua_State *state)
|
|
{
|
|
zcp_run_info_t *ri = zcp_run_info(state);
|
|
dsl_pool_t *dp = ri->zri_pool;
|
|
zcp_lib_info_t *libinfo = &zcp_exists_info;
|
|
|
|
zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
|
|
|
|
const char *dsname = lua_tostring(state, 1);
|
|
|
|
dsl_dataset_t *ds;
|
|
int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
lua_pushboolean(state, B_TRUE);
|
|
} else if (error == ENOENT) {
|
|
lua_pushboolean(state, B_FALSE);
|
|
} else if (error == EXDEV) {
|
|
return (luaL_error(state, "dataset '%s' is not in the "
|
|
"target pool", dsname));
|
|
} else if (error == EIO) {
|
|
return (luaL_error(state, "I/O error opening dataset '%s'",
|
|
dsname));
|
|
} else if (error != 0) {
|
|
return (luaL_error(state, "unexpected error %d", error));
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Allocate/realloc/free a buffer for the lua interpreter.
|
|
*
|
|
* When nsize is 0, behaves as free() and returns NULL.
|
|
*
|
|
* If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
|
|
* at least nsize.
|
|
*
|
|
* Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
|
|
* Shrinking the buffer size never fails.
|
|
*
|
|
* The original allocated buffer size is stored as a uint64 at the beginning of
|
|
* the buffer to avoid actually reallocating when shrinking a buffer, since lua
|
|
* requires that this operation never fail.
|
|
*/
|
|
static void *
|
|
zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
|
|
{
|
|
zcp_alloc_arg_t *allocargs = ud;
|
|
int flags = (allocargs->aa_must_succeed) ?
|
|
KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
|
|
|
|
if (nsize == 0) {
|
|
if (ptr != NULL) {
|
|
int64_t *allocbuf = (int64_t *)ptr - 1;
|
|
int64_t allocsize = *allocbuf;
|
|
ASSERT3S(allocsize, >, 0);
|
|
ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
|
|
allocargs->aa_alloc_limit);
|
|
allocargs->aa_alloc_remaining += allocsize;
|
|
vmem_free(allocbuf, allocsize);
|
|
}
|
|
return (NULL);
|
|
} else if (ptr == NULL) {
|
|
int64_t *allocbuf;
|
|
int64_t allocsize = nsize + sizeof (int64_t);
|
|
|
|
if (!allocargs->aa_must_succeed &&
|
|
(allocsize <= 0 ||
|
|
allocsize > allocargs->aa_alloc_remaining)) {
|
|
return (NULL);
|
|
}
|
|
|
|
allocbuf = vmem_alloc(allocsize, flags);
|
|
if (allocbuf == NULL) {
|
|
return (NULL);
|
|
}
|
|
allocargs->aa_alloc_remaining -= allocsize;
|
|
|
|
*allocbuf = allocsize;
|
|
return (allocbuf + 1);
|
|
} else if (nsize <= osize) {
|
|
/*
|
|
* If shrinking the buffer, lua requires that the reallocation
|
|
* never fail.
|
|
*/
|
|
return (ptr);
|
|
} else {
|
|
ASSERT3U(nsize, >, osize);
|
|
|
|
uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
|
|
if (luabuf == NULL) {
|
|
return (NULL);
|
|
}
|
|
(void) memcpy(luabuf, ptr, osize);
|
|
VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
|
|
return (luabuf);
|
|
}
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
zcp_lua_counthook(lua_State *state, lua_Debug *ar)
|
|
{
|
|
lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
|
|
zcp_run_info_t *ri = lua_touserdata(state, -1);
|
|
|
|
/*
|
|
* Check if we were canceled while waiting for the
|
|
* txg to sync or from our open context thread
|
|
*/
|
|
if (ri->zri_canceled ||
|
|
(!ri->zri_sync && issig(JUSTLOOKING) && issig(FORREAL))) {
|
|
ri->zri_canceled = B_TRUE;
|
|
(void) lua_pushstring(state, "Channel program was canceled.");
|
|
(void) lua_error(state);
|
|
/* Unreachable */
|
|
}
|
|
|
|
/*
|
|
* Check how many instructions the channel program has
|
|
* executed so far, and compare against the limit.
|
|
*/
|
|
ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
|
|
if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
|
|
ri->zri_timed_out = B_TRUE;
|
|
(void) lua_pushstring(state,
|
|
"Channel program timed out.");
|
|
(void) lua_error(state);
|
|
/* Unreachable */
|
|
}
|
|
}
|
|
|
|
static int
|
|
zcp_panic_cb(lua_State *state)
|
|
{
|
|
panic("unprotected error in call to Lua API (%s)\n",
|
|
lua_tostring(state, -1));
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zcp_eval_impl(dmu_tx_t *tx, zcp_run_info_t *ri)
|
|
{
|
|
int err;
|
|
lua_State *state = ri->zri_state;
|
|
|
|
VERIFY3U(3, ==, lua_gettop(state));
|
|
|
|
/* finish initializing our runtime state */
|
|
ri->zri_pool = dmu_tx_pool(tx);
|
|
ri->zri_tx = tx;
|
|
list_create(&ri->zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
|
|
offsetof(zcp_cleanup_handler_t, zch_node));
|
|
|
|
/*
|
|
* Store the zcp_run_info_t struct for this run in the Lua registry.
|
|
* Registry entries are not directly accessible by the Lua scripts but
|
|
* can be accessed by our callbacks.
|
|
*/
|
|
lua_pushlightuserdata(state, ri);
|
|
lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
|
|
VERIFY3U(3, ==, lua_gettop(state));
|
|
|
|
/*
|
|
* Tell the Lua interpreter to call our handler every count
|
|
* instructions. Channel programs that execute too many instructions
|
|
* should die with ETIME.
|
|
*/
|
|
(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
|
|
zfs_lua_check_instrlimit_interval);
|
|
|
|
/*
|
|
* Tell the Lua memory allocator to stop using KM_SLEEP before handing
|
|
* off control to the channel program. Channel programs that use too
|
|
* much memory should die with ENOSPC.
|
|
*/
|
|
ri->zri_allocargs->aa_must_succeed = B_FALSE;
|
|
|
|
/*
|
|
* Call the Lua function that open-context passed us. This pops the
|
|
* function and its input from the stack and pushes any return
|
|
* or error values.
|
|
*/
|
|
err = lua_pcall(state, 1, LUA_MULTRET, 1);
|
|
|
|
/*
|
|
* Let Lua use KM_SLEEP while we interpret the return values.
|
|
*/
|
|
ri->zri_allocargs->aa_must_succeed = B_TRUE;
|
|
|
|
/*
|
|
* Remove the error handler callback from the stack. At this point,
|
|
* there shouldn't be any cleanup handler registered in the handler
|
|
* list (zri_cleanup_handlers), regardless of whether it ran or not.
|
|
*/
|
|
list_destroy(&ri->zri_cleanup_handlers);
|
|
lua_remove(state, 1);
|
|
|
|
switch (err) {
|
|
case LUA_OK: {
|
|
/*
|
|
* Lua supports returning multiple values in a single return
|
|
* statement. Return values will have been pushed onto the
|
|
* stack:
|
|
* 1: Return value 1
|
|
* 2: Return value 2
|
|
* 3: etc...
|
|
* To simplify the process of retrieving a return value from a
|
|
* channel program, we disallow returning more than one value
|
|
* to ZFS from the Lua script, yielding a singleton return
|
|
* nvlist of the form { "return": Return value 1 }.
|
|
*/
|
|
int return_count = lua_gettop(state);
|
|
|
|
if (return_count == 1) {
|
|
ri->zri_result = 0;
|
|
zcp_convert_return_values(state, ri->zri_outnvl,
|
|
ZCP_RET_RETURN, &ri->zri_result);
|
|
} else if (return_count > 1) {
|
|
ri->zri_result = SET_ERROR(ECHRNG);
|
|
lua_settop(state, 0);
|
|
(void) lua_pushfstring(state, "Multiple return "
|
|
"values not supported");
|
|
zcp_convert_return_values(state, ri->zri_outnvl,
|
|
ZCP_RET_ERROR, &ri->zri_result);
|
|
}
|
|
break;
|
|
}
|
|
case LUA_ERRRUN:
|
|
case LUA_ERRGCMM: {
|
|
/*
|
|
* The channel program encountered a fatal error within the
|
|
* script, such as failing an assertion, or calling a function
|
|
* with incompatible arguments. The error value and the
|
|
* traceback generated by zcp_error_handler() should be on the
|
|
* stack.
|
|
*/
|
|
VERIFY3U(1, ==, lua_gettop(state));
|
|
if (ri->zri_timed_out) {
|
|
ri->zri_result = SET_ERROR(ETIME);
|
|
} else if (ri->zri_canceled) {
|
|
ri->zri_result = SET_ERROR(EINTR);
|
|
} else {
|
|
ri->zri_result = SET_ERROR(ECHRNG);
|
|
}
|
|
|
|
zcp_convert_return_values(state, ri->zri_outnvl,
|
|
ZCP_RET_ERROR, &ri->zri_result);
|
|
|
|
if (ri->zri_result == ETIME && ri->zri_outnvl != NULL) {
|
|
(void) nvlist_add_uint64(ri->zri_outnvl,
|
|
ZCP_ARG_INSTRLIMIT, ri->zri_curinstrs);
|
|
}
|
|
break;
|
|
}
|
|
case LUA_ERRERR: {
|
|
/*
|
|
* The channel program encountered a fatal error within the
|
|
* script, and we encountered another error while trying to
|
|
* compute the traceback in zcp_error_handler(). We can only
|
|
* return the error message.
|
|
*/
|
|
VERIFY3U(1, ==, lua_gettop(state));
|
|
if (ri->zri_timed_out) {
|
|
ri->zri_result = SET_ERROR(ETIME);
|
|
} else if (ri->zri_canceled) {
|
|
ri->zri_result = SET_ERROR(EINTR);
|
|
} else {
|
|
ri->zri_result = SET_ERROR(ECHRNG);
|
|
}
|
|
|
|
zcp_convert_return_values(state, ri->zri_outnvl,
|
|
ZCP_RET_ERROR, &ri->zri_result);
|
|
break;
|
|
}
|
|
case LUA_ERRMEM:
|
|
/*
|
|
* Lua ran out of memory while running the channel program.
|
|
* There's not much we can do.
|
|
*/
|
|
ri->zri_result = SET_ERROR(ENOSPC);
|
|
break;
|
|
default:
|
|
VERIFY0(err);
|
|
}
|
|
}
|
|
|
|
static void
|
|
zcp_pool_error(zcp_run_info_t *ri, const char *poolname)
|
|
{
|
|
ri->zri_result = SET_ERROR(ECHRNG);
|
|
lua_settop(ri->zri_state, 0);
|
|
(void) lua_pushfstring(ri->zri_state, "Could not open pool: %s",
|
|
poolname);
|
|
zcp_convert_return_values(ri->zri_state, ri->zri_outnvl,
|
|
ZCP_RET_ERROR, &ri->zri_result);
|
|
|
|
}
|
|
|
|
/*
|
|
* This callback is called when txg_wait_synced_sig encountered a signal.
|
|
* The txg_wait_synced_sig will continue to wait for the txg to complete
|
|
* after calling this callback.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
zcp_eval_sig(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zcp_run_info_t *ri = arg;
|
|
|
|
ri->zri_canceled = B_TRUE;
|
|
}
|
|
|
|
static void
|
|
zcp_eval_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zcp_run_info_t *ri = arg;
|
|
|
|
/*
|
|
* Open context should have setup the stack to contain:
|
|
* 1: Error handler callback
|
|
* 2: Script to run (converted to a Lua function)
|
|
* 3: nvlist input to function (converted to Lua table or nil)
|
|
*/
|
|
VERIFY3U(3, ==, lua_gettop(ri->zri_state));
|
|
|
|
zcp_eval_impl(tx, ri);
|
|
}
|
|
|
|
static void
|
|
zcp_eval_open(zcp_run_info_t *ri, const char *poolname)
|
|
{
|
|
int error;
|
|
dsl_pool_t *dp;
|
|
dmu_tx_t *tx;
|
|
|
|
/*
|
|
* See comment from the same assertion in zcp_eval_sync().
|
|
*/
|
|
VERIFY3U(3, ==, lua_gettop(ri->zri_state));
|
|
|
|
error = dsl_pool_hold(poolname, FTAG, &dp);
|
|
if (error != 0) {
|
|
zcp_pool_error(ri, poolname);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* As we are running in open-context, we have no transaction associated
|
|
* with the channel program. At the same time, functions from the
|
|
* zfs.check submodule need to be associated with a transaction as
|
|
* they are basically dry-runs of their counterparts in the zfs.sync
|
|
* submodule. These functions should be able to run in open-context.
|
|
* Therefore we create a new transaction that we later abort once
|
|
* the channel program has been evaluated.
|
|
*/
|
|
tx = dmu_tx_create_dd(dp->dp_mos_dir);
|
|
|
|
zcp_eval_impl(tx, ri);
|
|
|
|
dmu_tx_abort(tx);
|
|
|
|
dsl_pool_rele(dp, FTAG);
|
|
}
|
|
|
|
int
|
|
zcp_eval(const char *poolname, const char *program, boolean_t sync,
|
|
uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
|
|
{
|
|
int err;
|
|
lua_State *state;
|
|
zcp_run_info_t runinfo;
|
|
|
|
if (instrlimit > zfs_lua_max_instrlimit)
|
|
return (SET_ERROR(EINVAL));
|
|
if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
zcp_alloc_arg_t allocargs = {
|
|
.aa_must_succeed = B_TRUE,
|
|
.aa_alloc_remaining = (int64_t)memlimit,
|
|
.aa_alloc_limit = (int64_t)memlimit,
|
|
};
|
|
|
|
/*
|
|
* Creates a Lua state with a memory allocator that uses KM_SLEEP.
|
|
* This should never fail.
|
|
*/
|
|
state = lua_newstate(zcp_lua_alloc, &allocargs);
|
|
VERIFY(state != NULL);
|
|
(void) lua_atpanic(state, zcp_panic_cb);
|
|
|
|
/*
|
|
* Load core Lua libraries we want access to.
|
|
*/
|
|
VERIFY3U(1, ==, luaopen_base(state));
|
|
lua_pop(state, 1);
|
|
VERIFY3U(1, ==, luaopen_coroutine(state));
|
|
lua_setglobal(state, LUA_COLIBNAME);
|
|
VERIFY0(lua_gettop(state));
|
|
VERIFY3U(1, ==, luaopen_string(state));
|
|
lua_setglobal(state, LUA_STRLIBNAME);
|
|
VERIFY0(lua_gettop(state));
|
|
VERIFY3U(1, ==, luaopen_table(state));
|
|
lua_setglobal(state, LUA_TABLIBNAME);
|
|
VERIFY0(lua_gettop(state));
|
|
|
|
/*
|
|
* Load globally visible variables such as errno aliases.
|
|
*/
|
|
zcp_load_globals(state);
|
|
VERIFY0(lua_gettop(state));
|
|
|
|
/*
|
|
* Load ZFS-specific modules.
|
|
*/
|
|
lua_newtable(state);
|
|
VERIFY3U(1, ==, zcp_load_list_lib(state));
|
|
lua_setfield(state, -2, "list");
|
|
VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
|
|
lua_setfield(state, -2, "check");
|
|
VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
|
|
lua_setfield(state, -2, "sync");
|
|
VERIFY3U(1, ==, zcp_load_get_lib(state));
|
|
lua_pushcclosure(state, zcp_debug_info.func, 0);
|
|
lua_setfield(state, -2, zcp_debug_info.name);
|
|
lua_pushcclosure(state, zcp_exists_info.func, 0);
|
|
lua_setfield(state, -2, zcp_exists_info.name);
|
|
lua_setglobal(state, "zfs");
|
|
VERIFY0(lua_gettop(state));
|
|
|
|
/*
|
|
* Push the error-callback that calculates Lua stack traces on
|
|
* unexpected failures.
|
|
*/
|
|
lua_pushcfunction(state, zcp_error_handler);
|
|
VERIFY3U(1, ==, lua_gettop(state));
|
|
|
|
/*
|
|
* Load the actual script as a function onto the stack as text ("t").
|
|
* The only valid error condition is a syntax error in the script.
|
|
* ERRMEM should not be possible because our allocator is using
|
|
* KM_SLEEP. ERRGCMM should not be possible because we have not added
|
|
* any objects with __gc metamethods to the interpreter that could
|
|
* fail.
|
|
*/
|
|
err = luaL_loadbufferx(state, program, strlen(program),
|
|
"channel program", "t");
|
|
if (err == LUA_ERRSYNTAX) {
|
|
fnvlist_add_string(outnvl, ZCP_RET_ERROR,
|
|
lua_tostring(state, -1));
|
|
lua_close(state);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
VERIFY0(err);
|
|
VERIFY3U(2, ==, lua_gettop(state));
|
|
|
|
/*
|
|
* Convert the input nvlist to a Lua object and put it on top of the
|
|
* stack.
|
|
*/
|
|
char errmsg[128];
|
|
err = zcp_nvpair_value_to_lua(state, nvarg,
|
|
errmsg, sizeof (errmsg));
|
|
if (err != 0) {
|
|
fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
|
|
lua_close(state);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
VERIFY3U(3, ==, lua_gettop(state));
|
|
|
|
runinfo.zri_state = state;
|
|
runinfo.zri_allocargs = &allocargs;
|
|
runinfo.zri_outnvl = outnvl;
|
|
runinfo.zri_result = 0;
|
|
runinfo.zri_cred = CRED();
|
|
runinfo.zri_proc = curproc;
|
|
runinfo.zri_timed_out = B_FALSE;
|
|
runinfo.zri_canceled = B_FALSE;
|
|
runinfo.zri_sync = sync;
|
|
runinfo.zri_space_used = 0;
|
|
runinfo.zri_curinstrs = 0;
|
|
runinfo.zri_maxinstrs = instrlimit;
|
|
runinfo.zri_new_zvols = fnvlist_alloc();
|
|
|
|
if (sync) {
|
|
err = dsl_sync_task_sig(poolname, NULL, zcp_eval_sync,
|
|
zcp_eval_sig, &runinfo, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
|
|
if (err != 0)
|
|
zcp_pool_error(&runinfo, poolname);
|
|
} else {
|
|
zcp_eval_open(&runinfo, poolname);
|
|
}
|
|
lua_close(state);
|
|
|
|
/*
|
|
* Create device minor nodes for any new zvols.
|
|
*/
|
|
for (nvpair_t *pair = nvlist_next_nvpair(runinfo.zri_new_zvols, NULL);
|
|
pair != NULL;
|
|
pair = nvlist_next_nvpair(runinfo.zri_new_zvols, pair)) {
|
|
zvol_create_minor(nvpair_name(pair));
|
|
}
|
|
fnvlist_free(runinfo.zri_new_zvols);
|
|
|
|
return (runinfo.zri_result);
|
|
}
|
|
|
|
/*
|
|
* Retrieve metadata about the currently running channel program.
|
|
*/
|
|
zcp_run_info_t *
|
|
zcp_run_info(lua_State *state)
|
|
{
|
|
zcp_run_info_t *ri;
|
|
|
|
lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
|
|
ri = lua_touserdata(state, -1);
|
|
lua_pop(state, 1);
|
|
return (ri);
|
|
}
|
|
|
|
/*
|
|
* Argument Parsing
|
|
* ================
|
|
*
|
|
* The Lua language allows methods to be called with any number
|
|
* of arguments of any type. When calling back into ZFS we need to sanitize
|
|
* arguments from channel programs to make sure unexpected arguments or
|
|
* arguments of the wrong type result in clear error messages. To do this
|
|
* in a uniform way all callbacks from channel programs should use the
|
|
* zcp_parse_args() function to interpret inputs.
|
|
*
|
|
* Positional vs Keyword Arguments
|
|
* ===============================
|
|
*
|
|
* Every callback function takes a fixed set of required positional arguments
|
|
* and optional keyword arguments. For example, the destroy function takes
|
|
* a single positional string argument (the name of the dataset to destroy)
|
|
* and an optional "defer" keyword boolean argument. When calling lua functions
|
|
* with parentheses, only positional arguments can be used:
|
|
*
|
|
* zfs.sync.snapshot("rpool@snap")
|
|
*
|
|
* To use keyword arguments functions should be called with a single argument
|
|
* that is a lua table containing mappings of integer -> positional arguments
|
|
* and string -> keyword arguments:
|
|
*
|
|
* zfs.sync.snapshot({1="rpool@snap", defer=true})
|
|
*
|
|
* The lua language allows curly braces to be used in place of parenthesis as
|
|
* syntactic sugar for this calling convention:
|
|
*
|
|
* zfs.sync.snapshot{"rpool@snap", defer=true}
|
|
*/
|
|
|
|
/*
|
|
* Throw an error and print the given arguments. If there are too many
|
|
* arguments to fit in the output buffer, only the error format string is
|
|
* output.
|
|
*/
|
|
static void
|
|
zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
|
|
const zcp_arg_t *kwargs, const char *fmt, ...)
|
|
{
|
|
int i;
|
|
char errmsg[512];
|
|
size_t len = sizeof (errmsg);
|
|
size_t msglen = 0;
|
|
va_list argp;
|
|
|
|
va_start(argp, fmt);
|
|
VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
|
|
va_end(argp);
|
|
|
|
/*
|
|
* Calculate the total length of the final string, including extra
|
|
* formatting characters. If the argument dump would be too large,
|
|
* only print the error string.
|
|
*/
|
|
msglen = strlen(errmsg);
|
|
msglen += strlen(fname) + 4; /* : + {} + null terminator */
|
|
for (i = 0; pargs[i].za_name != NULL; i++) {
|
|
msglen += strlen(pargs[i].za_name);
|
|
msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
|
|
if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
|
|
msglen += 5; /* < + ( + )> + , */
|
|
else
|
|
msglen += 4; /* < + ( + )> */
|
|
}
|
|
for (i = 0; kwargs[i].za_name != NULL; i++) {
|
|
msglen += strlen(kwargs[i].za_name);
|
|
msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
|
|
if (kwargs[i + 1].za_name != NULL)
|
|
msglen += 4; /* =( + ) + , */
|
|
else
|
|
msglen += 3; /* =( + ) */
|
|
}
|
|
|
|
if (msglen >= len)
|
|
(void) luaL_error(state, errmsg);
|
|
|
|
VERIFY3U(len, >, strlcat(errmsg, ": ", len));
|
|
VERIFY3U(len, >, strlcat(errmsg, fname, len));
|
|
VERIFY3U(len, >, strlcat(errmsg, "{", len));
|
|
for (i = 0; pargs[i].za_name != NULL; i++) {
|
|
VERIFY3U(len, >, strlcat(errmsg, "<", len));
|
|
VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
|
|
VERIFY3U(len, >, strlcat(errmsg, "(", len));
|
|
VERIFY3U(len, >, strlcat(errmsg,
|
|
lua_typename(state, pargs[i].za_lua_type), len));
|
|
VERIFY3U(len, >, strlcat(errmsg, ")>", len));
|
|
if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
|
|
VERIFY3U(len, >, strlcat(errmsg, ", ", len));
|
|
}
|
|
}
|
|
for (i = 0; kwargs[i].za_name != NULL; i++) {
|
|
VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
|
|
VERIFY3U(len, >, strlcat(errmsg, "=(", len));
|
|
VERIFY3U(len, >, strlcat(errmsg,
|
|
lua_typename(state, kwargs[i].za_lua_type), len));
|
|
VERIFY3U(len, >, strlcat(errmsg, ")", len));
|
|
if (kwargs[i + 1].za_name != NULL) {
|
|
VERIFY3U(len, >, strlcat(errmsg, ", ", len));
|
|
}
|
|
}
|
|
VERIFY3U(len, >, strlcat(errmsg, "}", len));
|
|
|
|
(void) luaL_error(state, errmsg);
|
|
panic("unreachable code");
|
|
}
|
|
|
|
static void
|
|
zcp_parse_table_args(lua_State *state, const char *fname,
|
|
const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
|
|
{
|
|
int i;
|
|
int type;
|
|
|
|
for (i = 0; pargs[i].za_name != NULL; i++) {
|
|
/*
|
|
* Check the table for this positional argument, leaving it
|
|
* on the top of the stack once we finish validating it.
|
|
*/
|
|
lua_pushinteger(state, i + 1);
|
|
lua_gettable(state, 1);
|
|
|
|
type = lua_type(state, -1);
|
|
if (type == LUA_TNIL) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"too few arguments");
|
|
panic("unreachable code");
|
|
} else if (type != pargs[i].za_lua_type) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"arg %d wrong type (is '%s', expected '%s')",
|
|
i + 1, lua_typename(state, type),
|
|
lua_typename(state, pargs[i].za_lua_type));
|
|
panic("unreachable code");
|
|
}
|
|
|
|
/*
|
|
* Remove the positional argument from the table.
|
|
*/
|
|
lua_pushinteger(state, i + 1);
|
|
lua_pushnil(state);
|
|
lua_settable(state, 1);
|
|
}
|
|
|
|
for (i = 0; kwargs[i].za_name != NULL; i++) {
|
|
/*
|
|
* Check the table for this keyword argument, which may be
|
|
* nil if it was omitted. Leave the value on the top of
|
|
* the stack after validating it.
|
|
*/
|
|
lua_getfield(state, 1, kwargs[i].za_name);
|
|
|
|
type = lua_type(state, -1);
|
|
if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"kwarg '%s' wrong type (is '%s', expected '%s')",
|
|
kwargs[i].za_name, lua_typename(state, type),
|
|
lua_typename(state, kwargs[i].za_lua_type));
|
|
panic("unreachable code");
|
|
}
|
|
|
|
/*
|
|
* Remove the keyword argument from the table.
|
|
*/
|
|
lua_pushnil(state);
|
|
lua_setfield(state, 1, kwargs[i].za_name);
|
|
}
|
|
|
|
/*
|
|
* Any entries remaining in the table are invalid inputs, print
|
|
* an error message based on what the entry is.
|
|
*/
|
|
lua_pushnil(state);
|
|
if (lua_next(state, 1)) {
|
|
if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"too many positional arguments");
|
|
} else if (lua_isstring(state, -2)) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"invalid kwarg '%s'", lua_tostring(state, -2));
|
|
} else {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"kwarg keys must be strings");
|
|
}
|
|
panic("unreachable code");
|
|
}
|
|
|
|
lua_remove(state, 1);
|
|
}
|
|
|
|
static void
|
|
zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
|
|
const zcp_arg_t *kwargs)
|
|
{
|
|
int i;
|
|
int type;
|
|
|
|
for (i = 0; pargs[i].za_name != NULL; i++) {
|
|
type = lua_type(state, i + 1);
|
|
if (type == LUA_TNONE) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"too few arguments");
|
|
panic("unreachable code");
|
|
} else if (type != pargs[i].za_lua_type) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"arg %d wrong type (is '%s', expected '%s')",
|
|
i + 1, lua_typename(state, type),
|
|
lua_typename(state, pargs[i].za_lua_type));
|
|
panic("unreachable code");
|
|
}
|
|
}
|
|
if (lua_gettop(state) != i) {
|
|
zcp_args_error(state, fname, pargs, kwargs,
|
|
"too many positional arguments");
|
|
panic("unreachable code");
|
|
}
|
|
|
|
for (i = 0; kwargs[i].za_name != NULL; i++) {
|
|
lua_pushnil(state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Checks the current Lua stack against an expected set of positional and
|
|
* keyword arguments. If the stack does not match the expected arguments
|
|
* aborts the current channel program with a useful error message, otherwise
|
|
* it re-arranges the stack so that it contains the positional arguments
|
|
* followed by the keyword argument values in declaration order. Any missing
|
|
* keyword argument will be represented by a nil value on the stack.
|
|
*
|
|
* If the stack contains exactly one argument of type LUA_TTABLE the curly
|
|
* braces calling convention is assumed, otherwise the stack is parsed for
|
|
* positional arguments only.
|
|
*
|
|
* This function should be used by every function callback. It should be called
|
|
* before the callback manipulates the Lua stack as it assumes the stack
|
|
* represents the function arguments.
|
|
*/
|
|
void
|
|
zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
|
|
const zcp_arg_t *kwargs)
|
|
{
|
|
if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
|
|
zcp_parse_table_args(state, fname, pargs, kwargs);
|
|
} else {
|
|
zcp_parse_pos_args(state, fname, pargs, kwargs);
|
|
}
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_instrlimit, ULONG, ZMOD_RW,
|
|
"Max instruction limit that can be specified for a channel program");
|
|
|
|
ZFS_MODULE_PARAM(zfs_lua, zfs_lua_, max_memlimit, ULONG, ZMOD_RW,
|
|
"Max memory limit that can be specified for a channel program");
|
|
/* END CSTYLED */
|