1527 lines
30 KiB
C
Executable File
1527 lines
30 KiB
C
Executable File
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <fcntl.h>
|
|
#include <poll.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <zlib.h>
|
|
#include <libgen.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/processor.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/rrwlock.h>
|
|
#include <sys/utsname.h>
|
|
#include <sys/time.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <zfs_fletcher.h>
|
|
#include <sys/crypto/icp.h>
|
|
|
|
/*
|
|
* Emulation of kernel services in userland.
|
|
*/
|
|
|
|
int aok;
|
|
uint64_t physmem;
|
|
vnode_t *rootdir = (vnode_t *)0xabcd1234;
|
|
char hw_serial[HW_HOSTID_LEN];
|
|
struct utsname hw_utsname;
|
|
vmem_t *zio_arena = NULL;
|
|
|
|
/* If set, all blocks read will be copied to the specified directory. */
|
|
char *vn_dumpdir = NULL;
|
|
|
|
/* this only exists to have its address taken */
|
|
struct proc p0;
|
|
|
|
/*
|
|
* =========================================================================
|
|
* threads
|
|
* =========================================================================
|
|
*/
|
|
|
|
pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
|
|
pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
|
|
pthread_key_t kthread_key;
|
|
int kthread_nr = 0;
|
|
|
|
void
|
|
thread_init(void)
|
|
{
|
|
kthread_t *kt;
|
|
|
|
VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
|
|
|
|
/* Create entry for primary kthread */
|
|
kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
|
|
kt->t_tid = pthread_self();
|
|
kt->t_func = NULL;
|
|
|
|
VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
|
|
|
|
/* Only the main thread should be running at the moment */
|
|
ASSERT3S(kthread_nr, ==, 0);
|
|
kthread_nr = 1;
|
|
}
|
|
|
|
void
|
|
thread_fini(void)
|
|
{
|
|
kthread_t *kt = curthread;
|
|
|
|
ASSERT(pthread_equal(kt->t_tid, pthread_self()));
|
|
ASSERT3P(kt->t_func, ==, NULL);
|
|
|
|
umem_free(kt, sizeof (kthread_t));
|
|
|
|
/* Wait for all threads to exit via thread_exit() */
|
|
VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
|
|
|
|
kthread_nr--; /* Main thread is exiting */
|
|
|
|
while (kthread_nr > 0)
|
|
VERIFY0(pthread_cond_wait(&kthread_cond, &kthread_lock));
|
|
|
|
ASSERT3S(kthread_nr, ==, 0);
|
|
VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
|
|
|
|
VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
|
|
}
|
|
|
|
kthread_t *
|
|
zk_thread_current(void)
|
|
{
|
|
kthread_t *kt = pthread_getspecific(kthread_key);
|
|
|
|
ASSERT3P(kt, !=, NULL);
|
|
|
|
return (kt);
|
|
}
|
|
|
|
void *
|
|
zk_thread_helper(void *arg)
|
|
{
|
|
kthread_t *kt = (kthread_t *) arg;
|
|
|
|
VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
|
|
|
|
VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
|
|
kthread_nr++;
|
|
VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
|
|
(void) setpriority(PRIO_PROCESS, 0, kt->t_pri);
|
|
|
|
kt->t_tid = pthread_self();
|
|
((thread_func_arg_t) kt->t_func)(kt->t_arg);
|
|
|
|
/* Unreachable, thread must exit with thread_exit() */
|
|
abort();
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
kthread_t *
|
|
zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
|
|
size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
|
|
{
|
|
kthread_t *kt;
|
|
pthread_attr_t attr;
|
|
char *stkstr;
|
|
|
|
ASSERT0(state & ~TS_RUN);
|
|
|
|
kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
|
|
kt->t_func = func;
|
|
kt->t_arg = arg;
|
|
kt->t_pri = pri;
|
|
|
|
VERIFY0(pthread_attr_init(&attr));
|
|
VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
|
|
|
|
/*
|
|
* We allow the default stack size in user space to be specified by
|
|
* setting the ZFS_STACK_SIZE environment variable. This allows us
|
|
* the convenience of observing and debugging stack overruns in
|
|
* user space. Explicitly specified stack sizes will be honored.
|
|
* The usage of ZFS_STACK_SIZE is discussed further in the
|
|
* ENVIRONMENT VARIABLES sections of the ztest(1) man page.
|
|
*/
|
|
if (stksize == 0) {
|
|
stkstr = getenv("ZFS_STACK_SIZE");
|
|
|
|
if (stkstr == NULL)
|
|
stksize = TS_STACK_MAX;
|
|
else
|
|
stksize = MAX(atoi(stkstr), TS_STACK_MIN);
|
|
}
|
|
|
|
VERIFY3S(stksize, >, 0);
|
|
stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
|
|
/*
|
|
* If this ever fails, it may be because the stack size is not a
|
|
* multiple of system page size.
|
|
*/
|
|
VERIFY0(pthread_attr_setstacksize(&attr, stksize));
|
|
VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
|
|
|
|
VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt));
|
|
VERIFY0(pthread_attr_destroy(&attr));
|
|
|
|
return (kt);
|
|
}
|
|
|
|
void
|
|
zk_thread_exit(void)
|
|
{
|
|
kthread_t *kt = curthread;
|
|
|
|
ASSERT(pthread_equal(kt->t_tid, pthread_self()));
|
|
|
|
umem_free(kt, sizeof (kthread_t));
|
|
|
|
VERIFY0(pthread_mutex_lock(&kthread_lock));
|
|
kthread_nr--;
|
|
VERIFY0(pthread_mutex_unlock(&kthread_lock));
|
|
|
|
VERIFY0(pthread_cond_broadcast(&kthread_cond));
|
|
pthread_exit((void *)TS_MAGIC);
|
|
}
|
|
|
|
void
|
|
zk_thread_join(kt_did_t tid)
|
|
{
|
|
void *ret;
|
|
|
|
pthread_join((pthread_t)tid, &ret);
|
|
VERIFY3P(ret, ==, (void *)TS_MAGIC);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* kstats
|
|
* =========================================================================
|
|
*/
|
|
/*ARGSUSED*/
|
|
kstat_t *
|
|
kstat_create(const char *module, int instance, const char *name,
|
|
const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
|
|
{
|
|
return (NULL);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_install(kstat_t *ksp)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_delete(kstat_t *ksp)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_waitq_enter(kstat_io_t *kiop)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_waitq_exit(kstat_io_t *kiop)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_runq_enter(kstat_io_t *kiop)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_runq_exit(kstat_io_t *kiop)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_waitq_to_runq(kstat_io_t *kiop)
|
|
{}
|
|
|
|
/*ARGSUSED*/
|
|
void
|
|
kstat_runq_back_to_waitq(kstat_io_t *kiop)
|
|
{}
|
|
|
|
void
|
|
kstat_set_raw_ops(kstat_t *ksp,
|
|
int (*headers)(char *buf, size_t size),
|
|
int (*data)(char *buf, size_t size, void *data),
|
|
void *(*addr)(kstat_t *ksp, loff_t index))
|
|
{}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* mutexes
|
|
* =========================================================================
|
|
*/
|
|
|
|
void
|
|
mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
|
|
{
|
|
ASSERT3S(type, ==, MUTEX_DEFAULT);
|
|
ASSERT3P(cookie, ==, NULL);
|
|
mp->m_owner = MTX_INIT;
|
|
mp->m_magic = MTX_MAGIC;
|
|
VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
|
|
}
|
|
|
|
void
|
|
mutex_destroy(kmutex_t *mp)
|
|
{
|
|
ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
|
|
ASSERT3P(mp->m_owner, ==, MTX_INIT);
|
|
ASSERT0(pthread_mutex_destroy(&(mp)->m_lock));
|
|
mp->m_owner = MTX_DEST;
|
|
mp->m_magic = 0;
|
|
}
|
|
|
|
void
|
|
mutex_enter(kmutex_t *mp)
|
|
{
|
|
ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
|
|
ASSERT3P(mp->m_owner, !=, MTX_DEST);
|
|
ASSERT3P(mp->m_owner, !=, curthread);
|
|
VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
|
|
ASSERT3P(mp->m_owner, ==, MTX_INIT);
|
|
mp->m_owner = curthread;
|
|
}
|
|
|
|
int
|
|
mutex_tryenter(kmutex_t *mp)
|
|
{
|
|
int err;
|
|
ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
|
|
ASSERT3P(mp->m_owner, !=, MTX_DEST);
|
|
if (0 == (err = pthread_mutex_trylock(&mp->m_lock))) {
|
|
ASSERT3P(mp->m_owner, ==, MTX_INIT);
|
|
mp->m_owner = curthread;
|
|
return (1);
|
|
} else {
|
|
VERIFY3S(err, ==, EBUSY);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
void
|
|
mutex_exit(kmutex_t *mp)
|
|
{
|
|
ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
|
|
ASSERT3P(mutex_owner(mp), ==, curthread);
|
|
mp->m_owner = MTX_INIT;
|
|
VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
|
|
}
|
|
|
|
void *
|
|
mutex_owner(kmutex_t *mp)
|
|
{
|
|
ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
|
|
return (mp->m_owner);
|
|
}
|
|
|
|
int
|
|
mutex_held(kmutex_t *mp)
|
|
{
|
|
return (mp->m_owner == curthread);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* rwlocks
|
|
* =========================================================================
|
|
*/
|
|
|
|
void
|
|
rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
|
|
{
|
|
ASSERT3S(type, ==, RW_DEFAULT);
|
|
ASSERT3P(arg, ==, NULL);
|
|
VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
|
|
rwlp->rw_owner = RW_INIT;
|
|
rwlp->rw_wr_owner = RW_INIT;
|
|
rwlp->rw_readers = 0;
|
|
rwlp->rw_magic = RW_MAGIC;
|
|
}
|
|
|
|
void
|
|
rw_destroy(krwlock_t *rwlp)
|
|
{
|
|
ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
|
|
ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
|
|
VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
|
|
rwlp->rw_magic = 0;
|
|
}
|
|
|
|
void
|
|
rw_enter(krwlock_t *rwlp, krw_t rw)
|
|
{
|
|
ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
|
|
ASSERT3P(rwlp->rw_owner, !=, curthread);
|
|
ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
|
|
|
|
if (rw == RW_READER) {
|
|
VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
|
|
ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
|
|
|
|
atomic_inc_uint(&rwlp->rw_readers);
|
|
} else {
|
|
VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
|
|
ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
|
|
ASSERT3U(rwlp->rw_readers, ==, 0);
|
|
|
|
rwlp->rw_wr_owner = curthread;
|
|
}
|
|
|
|
rwlp->rw_owner = curthread;
|
|
}
|
|
|
|
void
|
|
rw_exit(krwlock_t *rwlp)
|
|
{
|
|
ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
|
|
ASSERT(RW_LOCK_HELD(rwlp));
|
|
|
|
if (RW_READ_HELD(rwlp))
|
|
atomic_dec_uint(&rwlp->rw_readers);
|
|
else
|
|
rwlp->rw_wr_owner = RW_INIT;
|
|
|
|
rwlp->rw_owner = RW_INIT;
|
|
VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
|
|
}
|
|
|
|
int
|
|
rw_tryenter(krwlock_t *rwlp, krw_t rw)
|
|
{
|
|
int rv;
|
|
|
|
ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
|
|
|
|
if (rw == RW_READER)
|
|
rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
|
|
else
|
|
rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
|
|
|
|
if (rv == 0) {
|
|
ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
|
|
|
|
if (rw == RW_READER)
|
|
atomic_inc_uint(&rwlp->rw_readers);
|
|
else {
|
|
ASSERT3U(rwlp->rw_readers, ==, 0);
|
|
rwlp->rw_wr_owner = curthread;
|
|
}
|
|
|
|
rwlp->rw_owner = curthread;
|
|
return (1);
|
|
}
|
|
|
|
VERIFY3S(rv, ==, EBUSY);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rw_tryupgrade(krwlock_t *rwlp)
|
|
{
|
|
ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* condition variables
|
|
* =========================================================================
|
|
*/
|
|
|
|
void
|
|
cv_init(kcondvar_t *cv, char *name, int type, void *arg)
|
|
{
|
|
ASSERT3S(type, ==, CV_DEFAULT);
|
|
cv->cv_magic = CV_MAGIC;
|
|
VERIFY0(pthread_cond_init(&cv->cv, NULL));
|
|
}
|
|
|
|
void
|
|
cv_destroy(kcondvar_t *cv)
|
|
{
|
|
ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
|
|
VERIFY0(pthread_cond_destroy(&cv->cv));
|
|
cv->cv_magic = 0;
|
|
}
|
|
|
|
void
|
|
cv_wait(kcondvar_t *cv, kmutex_t *mp)
|
|
{
|
|
ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
|
|
ASSERT3P(mutex_owner(mp), ==, curthread);
|
|
mp->m_owner = MTX_INIT;
|
|
VERIFY0(pthread_cond_wait(&cv->cv, &mp->m_lock));
|
|
mp->m_owner = curthread;
|
|
}
|
|
|
|
clock_t
|
|
cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
|
|
{
|
|
int error;
|
|
struct timeval tv;
|
|
timestruc_t ts;
|
|
clock_t delta;
|
|
|
|
ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
|
|
|
|
delta = abstime - ddi_get_lbolt();
|
|
if (delta <= 0)
|
|
return (-1);
|
|
|
|
VERIFY(gettimeofday(&tv, NULL) == 0);
|
|
|
|
ts.tv_sec = tv.tv_sec + delta / hz;
|
|
ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
|
|
if (ts.tv_nsec >= NANOSEC) {
|
|
ts.tv_sec++;
|
|
ts.tv_nsec -= NANOSEC;
|
|
}
|
|
|
|
ASSERT3P(mutex_owner(mp), ==, curthread);
|
|
mp->m_owner = MTX_INIT;
|
|
error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
|
|
mp->m_owner = curthread;
|
|
|
|
if (error == ETIMEDOUT)
|
|
return (-1);
|
|
|
|
VERIFY0(error);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
clock_t
|
|
cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
|
|
int flag)
|
|
{
|
|
int error;
|
|
struct timeval tv;
|
|
timestruc_t ts;
|
|
hrtime_t delta;
|
|
|
|
ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
|
|
|
|
delta = tim;
|
|
if (flag & CALLOUT_FLAG_ABSOLUTE)
|
|
delta -= gethrtime();
|
|
|
|
if (delta <= 0)
|
|
return (-1);
|
|
|
|
VERIFY(gettimeofday(&tv, NULL) == 0);
|
|
|
|
ts.tv_sec = tv.tv_sec + delta / NANOSEC;
|
|
ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
|
|
if (ts.tv_nsec >= NANOSEC) {
|
|
ts.tv_sec++;
|
|
ts.tv_nsec -= NANOSEC;
|
|
}
|
|
|
|
ASSERT(mutex_owner(mp) == curthread);
|
|
mp->m_owner = MTX_INIT;
|
|
error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
|
|
mp->m_owner = curthread;
|
|
|
|
if (error == ETIMEDOUT)
|
|
return (-1);
|
|
|
|
VERIFY0(error);
|
|
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
cv_signal(kcondvar_t *cv)
|
|
{
|
|
ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
|
|
VERIFY0(pthread_cond_signal(&cv->cv));
|
|
}
|
|
|
|
void
|
|
cv_broadcast(kcondvar_t *cv)
|
|
{
|
|
ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
|
|
VERIFY0(pthread_cond_broadcast(&cv->cv));
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* vnode operations
|
|
* =========================================================================
|
|
*/
|
|
/*
|
|
* Note: for the xxxat() versions of these functions, we assume that the
|
|
* starting vp is always rootdir (which is true for spa_directory.c, the only
|
|
* ZFS consumer of these interfaces). We assert this is true, and then emulate
|
|
* them by adding '/' in front of the path.
|
|
*/
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
|
|
{
|
|
int fd;
|
|
int dump_fd;
|
|
vnode_t *vp;
|
|
int old_umask = 0;
|
|
char *realpath;
|
|
struct stat64 st;
|
|
int err;
|
|
|
|
realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
|
|
/*
|
|
* If we're accessing a real disk from userland, we need to use
|
|
* the character interface to avoid caching. This is particularly
|
|
* important if we're trying to look at a real in-kernel storage
|
|
* pool from userland, e.g. via zdb, because otherwise we won't
|
|
* see the changes occurring under the segmap cache.
|
|
* On the other hand, the stupid character device returns zero
|
|
* for its size. So -- gag -- we open the block device to get
|
|
* its size, and remember it for subsequent VOP_GETATTR().
|
|
*/
|
|
#if defined(__sun__) || defined(__sun)
|
|
if (strncmp(path, "/dev/", 5) == 0) {
|
|
#else
|
|
if (0) {
|
|
#endif
|
|
char *dsk;
|
|
fd = open64(path, O_RDONLY);
|
|
if (fd == -1) {
|
|
err = errno;
|
|
free(realpath);
|
|
return (err);
|
|
}
|
|
if (fstat64(fd, &st) == -1) {
|
|
err = errno;
|
|
close(fd);
|
|
free(realpath);
|
|
return (err);
|
|
}
|
|
close(fd);
|
|
(void) sprintf(realpath, "%s", path);
|
|
dsk = strstr(path, "/dsk/");
|
|
if (dsk != NULL)
|
|
(void) sprintf(realpath + (dsk - path) + 1, "r%s",
|
|
dsk + 1);
|
|
} else {
|
|
(void) sprintf(realpath, "%s", path);
|
|
if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
|
|
err = errno;
|
|
free(realpath);
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
|
|
#ifdef __linux__
|
|
flags |= O_DIRECT;
|
|
#endif
|
|
/* We shouldn't be writing to block devices in userspace */
|
|
VERIFY(!(flags & FWRITE));
|
|
}
|
|
|
|
if (flags & FCREAT)
|
|
old_umask = umask(0);
|
|
|
|
/*
|
|
* The construct 'flags - FREAD' conveniently maps combinations of
|
|
* FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
|
|
*/
|
|
fd = open64(realpath, flags - FREAD, mode);
|
|
if (fd == -1) {
|
|
err = errno;
|
|
free(realpath);
|
|
return (err);
|
|
}
|
|
|
|
if (flags & FCREAT)
|
|
(void) umask(old_umask);
|
|
|
|
if (vn_dumpdir != NULL) {
|
|
char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
|
|
(void) snprintf(dumppath, MAXPATHLEN,
|
|
"%s/%s", vn_dumpdir, basename(realpath));
|
|
dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
|
|
umem_free(dumppath, MAXPATHLEN);
|
|
if (dump_fd == -1) {
|
|
err = errno;
|
|
free(realpath);
|
|
close(fd);
|
|
return (err);
|
|
}
|
|
} else {
|
|
dump_fd = -1;
|
|
}
|
|
|
|
free(realpath);
|
|
|
|
if (fstat64_blk(fd, &st) == -1) {
|
|
err = errno;
|
|
close(fd);
|
|
return (err);
|
|
}
|
|
|
|
(void) fcntl(fd, F_SETFD, FD_CLOEXEC);
|
|
|
|
*vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
|
|
|
|
vp->v_fd = fd;
|
|
vp->v_size = st.st_size;
|
|
vp->v_path = spa_strdup(path);
|
|
vp->v_dump_fd = dump_fd;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
|
|
int x3, vnode_t *startvp, int fd)
|
|
{
|
|
char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
|
|
int ret;
|
|
|
|
ASSERT(startvp == rootdir);
|
|
(void) sprintf(realpath, "/%s", path);
|
|
|
|
/* fd ignored for now, need if want to simulate nbmand support */
|
|
ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
|
|
|
|
umem_free(realpath, strlen(path) + 2);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
|
|
int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
|
|
{
|
|
ssize_t rc, done = 0, split;
|
|
|
|
if (uio == UIO_READ) {
|
|
rc = pread64(vp->v_fd, addr, len, offset);
|
|
if (vp->v_dump_fd != -1 && rc != -1) {
|
|
int status;
|
|
status = pwrite64(vp->v_dump_fd, addr, rc, offset);
|
|
ASSERT(status != -1);
|
|
}
|
|
} else {
|
|
/*
|
|
* To simulate partial disk writes, we split writes into two
|
|
* system calls so that the process can be killed in between.
|
|
*/
|
|
int sectors = len >> SPA_MINBLOCKSHIFT;
|
|
split = (sectors > 0 ? rand() % sectors : 0) <<
|
|
SPA_MINBLOCKSHIFT;
|
|
rc = pwrite64(vp->v_fd, addr, split, offset);
|
|
if (rc != -1) {
|
|
done = rc;
|
|
rc = pwrite64(vp->v_fd, (char *)addr + split,
|
|
len - split, offset + split);
|
|
}
|
|
}
|
|
|
|
#ifdef __linux__
|
|
if (rc == -1 && errno == EINVAL) {
|
|
/*
|
|
* Under Linux, this most likely means an alignment issue
|
|
* (memory or disk) due to O_DIRECT, so we abort() in order to
|
|
* catch the offender.
|
|
*/
|
|
abort();
|
|
}
|
|
#endif
|
|
if (rc == -1)
|
|
return (errno);
|
|
|
|
done += rc;
|
|
|
|
if (residp)
|
|
*residp = len - done;
|
|
else if (done != len)
|
|
return (EIO);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vn_close(vnode_t *vp)
|
|
{
|
|
close(vp->v_fd);
|
|
if (vp->v_dump_fd != -1)
|
|
close(vp->v_dump_fd);
|
|
spa_strfree(vp->v_path);
|
|
umem_free(vp, sizeof (vnode_t));
|
|
}
|
|
|
|
/*
|
|
* At a minimum we need to update the size since vdev_reopen()
|
|
* will no longer call vn_openat().
|
|
*/
|
|
int
|
|
fop_getattr(vnode_t *vp, vattr_t *vap)
|
|
{
|
|
struct stat64 st;
|
|
int err;
|
|
|
|
if (fstat64_blk(vp->v_fd, &st) == -1) {
|
|
err = errno;
|
|
close(vp->v_fd);
|
|
return (err);
|
|
}
|
|
|
|
vap->va_size = st.st_size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* Figure out which debugging statements to print
|
|
* =========================================================================
|
|
*/
|
|
|
|
static char *dprintf_string;
|
|
static int dprintf_print_all;
|
|
|
|
int
|
|
dprintf_find_string(const char *string)
|
|
{
|
|
char *tmp_str = dprintf_string;
|
|
int len = strlen(string);
|
|
|
|
/*
|
|
* Find out if this is a string we want to print.
|
|
* String format: file1.c,function_name1,file2.c,file3.c
|
|
*/
|
|
|
|
while (tmp_str != NULL) {
|
|
if (strncmp(tmp_str, string, len) == 0 &&
|
|
(tmp_str[len] == ',' || tmp_str[len] == '\0'))
|
|
return (1);
|
|
tmp_str = strchr(tmp_str, ',');
|
|
if (tmp_str != NULL)
|
|
tmp_str++; /* Get rid of , */
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
dprintf_setup(int *argc, char **argv)
|
|
{
|
|
int i, j;
|
|
|
|
/*
|
|
* Debugging can be specified two ways: by setting the
|
|
* environment variable ZFS_DEBUG, or by including a
|
|
* "debug=..." argument on the command line. The command
|
|
* line setting overrides the environment variable.
|
|
*/
|
|
|
|
for (i = 1; i < *argc; i++) {
|
|
int len = strlen("debug=");
|
|
/* First look for a command line argument */
|
|
if (strncmp("debug=", argv[i], len) == 0) {
|
|
dprintf_string = argv[i] + len;
|
|
/* Remove from args */
|
|
for (j = i; j < *argc; j++)
|
|
argv[j] = argv[j+1];
|
|
argv[j] = NULL;
|
|
(*argc)--;
|
|
}
|
|
}
|
|
|
|
if (dprintf_string == NULL) {
|
|
/* Look for ZFS_DEBUG environment variable */
|
|
dprintf_string = getenv("ZFS_DEBUG");
|
|
}
|
|
|
|
/*
|
|
* Are we just turning on all debugging?
|
|
*/
|
|
if (dprintf_find_string("on"))
|
|
dprintf_print_all = 1;
|
|
|
|
if (dprintf_string != NULL)
|
|
zfs_flags |= ZFS_DEBUG_DPRINTF;
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* debug printfs
|
|
* =========================================================================
|
|
*/
|
|
void
|
|
__dprintf(const char *file, const char *func, int line, const char *fmt, ...)
|
|
{
|
|
const char *newfile;
|
|
va_list adx;
|
|
|
|
/*
|
|
* Get rid of annoying "../common/" prefix to filename.
|
|
*/
|
|
newfile = strrchr(file, '/');
|
|
if (newfile != NULL) {
|
|
newfile = newfile + 1; /* Get rid of leading / */
|
|
} else {
|
|
newfile = file;
|
|
}
|
|
|
|
if (dprintf_print_all ||
|
|
dprintf_find_string(newfile) ||
|
|
dprintf_find_string(func)) {
|
|
/* Print out just the function name if requested */
|
|
flockfile(stdout);
|
|
if (dprintf_find_string("pid"))
|
|
(void) printf("%d ", getpid());
|
|
if (dprintf_find_string("tid"))
|
|
(void) printf("%u ", (uint_t) pthread_self());
|
|
if (dprintf_find_string("cpu"))
|
|
(void) printf("%u ", getcpuid());
|
|
if (dprintf_find_string("time"))
|
|
(void) printf("%llu ", gethrtime());
|
|
if (dprintf_find_string("long"))
|
|
(void) printf("%s, line %d: ", newfile, line);
|
|
(void) printf("%s: ", func);
|
|
va_start(adx, fmt);
|
|
(void) vprintf(fmt, adx);
|
|
va_end(adx);
|
|
funlockfile(stdout);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* cmn_err() and panic()
|
|
* =========================================================================
|
|
*/
|
|
static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
|
|
static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
|
|
|
|
void
|
|
vpanic(const char *fmt, va_list adx)
|
|
{
|
|
(void) fprintf(stderr, "error: ");
|
|
(void) vfprintf(stderr, fmt, adx);
|
|
(void) fprintf(stderr, "\n");
|
|
|
|
abort(); /* think of it as a "user-level crash dump" */
|
|
}
|
|
|
|
void
|
|
panic(const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
|
|
va_start(adx, fmt);
|
|
vpanic(fmt, adx);
|
|
va_end(adx);
|
|
}
|
|
|
|
void
|
|
vcmn_err(int ce, const char *fmt, va_list adx)
|
|
{
|
|
if (ce == CE_PANIC)
|
|
vpanic(fmt, adx);
|
|
if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
|
|
(void) fprintf(stderr, "%s", ce_prefix[ce]);
|
|
(void) vfprintf(stderr, fmt, adx);
|
|
(void) fprintf(stderr, "%s", ce_suffix[ce]);
|
|
}
|
|
}
|
|
|
|
/*PRINTFLIKE2*/
|
|
void
|
|
cmn_err(int ce, const char *fmt, ...)
|
|
{
|
|
va_list adx;
|
|
|
|
va_start(adx, fmt);
|
|
vcmn_err(ce, fmt, adx);
|
|
va_end(adx);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* kobj interfaces
|
|
* =========================================================================
|
|
*/
|
|
struct _buf *
|
|
kobj_open_file(char *name)
|
|
{
|
|
struct _buf *file;
|
|
vnode_t *vp;
|
|
|
|
/* set vp as the _fd field of the file */
|
|
if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
|
|
-1) != 0)
|
|
return ((void *)-1UL);
|
|
|
|
file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
|
|
file->_fd = (intptr_t)vp;
|
|
return (file);
|
|
}
|
|
|
|
int
|
|
kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
|
|
{
|
|
ssize_t resid = 0;
|
|
|
|
if (vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
|
|
UIO_SYSSPACE, 0, 0, 0, &resid) != 0)
|
|
return (-1);
|
|
|
|
return (size - resid);
|
|
}
|
|
|
|
void
|
|
kobj_close_file(struct _buf *file)
|
|
{
|
|
vn_close((vnode_t *)file->_fd);
|
|
umem_free(file, sizeof (struct _buf));
|
|
}
|
|
|
|
int
|
|
kobj_get_filesize(struct _buf *file, uint64_t *size)
|
|
{
|
|
struct stat64 st;
|
|
vnode_t *vp = (vnode_t *)file->_fd;
|
|
|
|
if (fstat64(vp->v_fd, &st) == -1) {
|
|
vn_close(vp);
|
|
return (errno);
|
|
}
|
|
*size = st.st_size;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* misc routines
|
|
* =========================================================================
|
|
*/
|
|
|
|
void
|
|
delay(clock_t ticks)
|
|
{
|
|
poll(0, 0, ticks * (1000 / hz));
|
|
}
|
|
|
|
/*
|
|
* Find highest one bit set.
|
|
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
|
|
* High order bit is 31 (or 63 in _LP64 kernel).
|
|
*/
|
|
int
|
|
highbit64(uint64_t i)
|
|
{
|
|
register int h = 1;
|
|
|
|
if (i == 0)
|
|
return (0);
|
|
if (i & 0xffffffff00000000ULL) {
|
|
h += 32; i >>= 32;
|
|
}
|
|
if (i & 0xffff0000) {
|
|
h += 16; i >>= 16;
|
|
}
|
|
if (i & 0xff00) {
|
|
h += 8; i >>= 8;
|
|
}
|
|
if (i & 0xf0) {
|
|
h += 4; i >>= 4;
|
|
}
|
|
if (i & 0xc) {
|
|
h += 2; i >>= 2;
|
|
}
|
|
if (i & 0x2) {
|
|
h += 1;
|
|
}
|
|
return (h);
|
|
}
|
|
|
|
/*
|
|
* Find lowest one bit set.
|
|
* Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
|
|
* This is basically a reimplementation of ffsll(), which is GNU specific.
|
|
*/
|
|
int
|
|
lowbit64(uint64_t i)
|
|
{
|
|
register int h = 64;
|
|
if (i == 0)
|
|
return (0);
|
|
|
|
if (i & 0x00000000ffffffffULL)
|
|
h -= 32;
|
|
else
|
|
i >>= 32;
|
|
|
|
if (i & 0x0000ffff)
|
|
h -= 16;
|
|
else
|
|
i >>= 16;
|
|
|
|
if (i & 0x00ff)
|
|
h -= 8;
|
|
else
|
|
i >>= 8;
|
|
|
|
if (i & 0x0f)
|
|
h -= 4;
|
|
else
|
|
i >>= 4;
|
|
|
|
if (i & 0x3)
|
|
h -= 2;
|
|
else
|
|
i >>= 2;
|
|
|
|
if (i & 0x1)
|
|
h -= 1;
|
|
|
|
return (h);
|
|
}
|
|
|
|
/*
|
|
* Find highest one bit set.
|
|
* Returns bit number + 1 of highest bit that is set, otherwise returns 0.
|
|
* High order bit is 31 (or 63 in _LP64 kernel).
|
|
*/
|
|
int
|
|
highbit(ulong_t i)
|
|
{
|
|
register int h = 1;
|
|
|
|
if (i == 0)
|
|
return (0);
|
|
#ifdef _LP64
|
|
if (i & 0xffffffff00000000ul) {
|
|
h += 32; i >>= 32;
|
|
}
|
|
#endif
|
|
if (i & 0xffff0000) {
|
|
h += 16; i >>= 16;
|
|
}
|
|
if (i & 0xff00) {
|
|
h += 8; i >>= 8;
|
|
}
|
|
if (i & 0xf0) {
|
|
h += 4; i >>= 4;
|
|
}
|
|
if (i & 0xc) {
|
|
h += 2; i >>= 2;
|
|
}
|
|
if (i & 0x2) {
|
|
h += 1;
|
|
}
|
|
return (h);
|
|
}
|
|
|
|
/*
|
|
* Find lowest one bit set.
|
|
* Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
|
|
* Low order bit is 0.
|
|
*/
|
|
int
|
|
lowbit(ulong_t i)
|
|
{
|
|
register int h = 1;
|
|
|
|
if (i == 0)
|
|
return (0);
|
|
|
|
#ifdef _LP64
|
|
if (!(i & 0xffffffff)) {
|
|
h += 32; i >>= 32;
|
|
}
|
|
#endif
|
|
if (!(i & 0xffff)) {
|
|
h += 16; i >>= 16;
|
|
}
|
|
if (!(i & 0xff)) {
|
|
h += 8; i >>= 8;
|
|
}
|
|
if (!(i & 0xf)) {
|
|
h += 4; i >>= 4;
|
|
}
|
|
if (!(i & 0x3)) {
|
|
h += 2; i >>= 2;
|
|
}
|
|
if (!(i & 0x1)) {
|
|
h += 1;
|
|
}
|
|
return (h);
|
|
}
|
|
|
|
static int random_fd = -1, urandom_fd = -1;
|
|
|
|
void
|
|
random_init(void)
|
|
{
|
|
VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
|
|
VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
|
|
}
|
|
|
|
void
|
|
random_fini(void)
|
|
{
|
|
close(random_fd);
|
|
close(urandom_fd);
|
|
|
|
random_fd = -1;
|
|
urandom_fd = -1;
|
|
}
|
|
|
|
static int
|
|
random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
|
|
{
|
|
size_t resid = len;
|
|
ssize_t bytes;
|
|
|
|
ASSERT(fd != -1);
|
|
|
|
while (resid != 0) {
|
|
bytes = read(fd, ptr, resid);
|
|
ASSERT3S(bytes, >=, 0);
|
|
ptr += bytes;
|
|
resid -= bytes;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
random_get_bytes(uint8_t *ptr, size_t len)
|
|
{
|
|
return (random_get_bytes_common(ptr, len, random_fd));
|
|
}
|
|
|
|
int
|
|
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
|
|
{
|
|
return (random_get_bytes_common(ptr, len, urandom_fd));
|
|
}
|
|
|
|
int
|
|
ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
|
|
{
|
|
char *end;
|
|
|
|
*result = strtoul(hw_serial, &end, base);
|
|
if (*result == 0)
|
|
return (errno);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
|
|
{
|
|
char *end;
|
|
|
|
*result = strtoull(str, &end, base);
|
|
if (*result == 0)
|
|
return (errno);
|
|
return (0);
|
|
}
|
|
|
|
utsname_t *
|
|
utsname(void)
|
|
{
|
|
return (&hw_utsname);
|
|
}
|
|
|
|
/*
|
|
* =========================================================================
|
|
* kernel emulation setup & teardown
|
|
* =========================================================================
|
|
*/
|
|
static int
|
|
umem_out_of_memory(void)
|
|
{
|
|
char errmsg[] = "out of memory -- generating core dump\n";
|
|
|
|
(void) fprintf(stderr, "%s", errmsg);
|
|
abort();
|
|
return (0);
|
|
}
|
|
|
|
static unsigned long
|
|
get_spl_hostid(void)
|
|
{
|
|
FILE *f;
|
|
unsigned long hostid;
|
|
|
|
f = fopen("/sys/module/spl/parameters/spl_hostid", "r");
|
|
if (!f)
|
|
return (0);
|
|
if (fscanf(f, "%lu", &hostid) != 1)
|
|
hostid = 0;
|
|
fclose(f);
|
|
return (hostid & 0xffffffff);
|
|
}
|
|
|
|
unsigned long
|
|
get_system_hostid(void)
|
|
{
|
|
unsigned long system_hostid = get_spl_hostid();
|
|
if (system_hostid == 0)
|
|
system_hostid = gethostid() & 0xffffffff;
|
|
return (system_hostid);
|
|
}
|
|
|
|
void
|
|
kernel_init(int mode)
|
|
{
|
|
extern uint_t rrw_tsd_key;
|
|
|
|
umem_nofail_callback(umem_out_of_memory);
|
|
|
|
physmem = sysconf(_SC_PHYS_PAGES);
|
|
|
|
dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
|
|
(double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
|
|
|
|
(void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
|
|
(mode & FWRITE) ? get_system_hostid() : 0);
|
|
|
|
random_init();
|
|
|
|
VERIFY0(uname(&hw_utsname));
|
|
|
|
thread_init();
|
|
system_taskq_init();
|
|
icp_init();
|
|
|
|
spa_init(mode);
|
|
|
|
fletcher_4_init();
|
|
|
|
tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
|
|
}
|
|
|
|
void
|
|
kernel_fini(void)
|
|
{
|
|
fletcher_4_fini();
|
|
spa_fini();
|
|
|
|
icp_fini();
|
|
system_taskq_fini();
|
|
thread_fini();
|
|
|
|
random_fini();
|
|
}
|
|
|
|
uid_t
|
|
crgetuid(cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
uid_t
|
|
crgetruid(cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
gid_t
|
|
crgetgid(cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
crgetngroups(cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
gid_t *
|
|
crgetgroups(cred_t *cr)
|
|
{
|
|
return (NULL);
|
|
}
|
|
|
|
int
|
|
zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
secpolicy_zfs(const cred_t *cr)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
ksiddomain_t *
|
|
ksid_lookupdomain(const char *dom)
|
|
{
|
|
ksiddomain_t *kd;
|
|
|
|
kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
|
|
kd->kd_name = spa_strdup(dom);
|
|
return (kd);
|
|
}
|
|
|
|
void
|
|
ksiddomain_rele(ksiddomain_t *ksid)
|
|
{
|
|
spa_strfree(ksid->kd_name);
|
|
umem_free(ksid, sizeof (ksiddomain_t));
|
|
}
|
|
|
|
char *
|
|
kmem_vasprintf(const char *fmt, va_list adx)
|
|
{
|
|
char *buf = NULL;
|
|
va_list adx_copy;
|
|
|
|
va_copy(adx_copy, adx);
|
|
VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
|
|
va_end(adx_copy);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
char *
|
|
kmem_asprintf(const char *fmt, ...)
|
|
{
|
|
char *buf = NULL;
|
|
va_list adx;
|
|
|
|
va_start(adx, fmt);
|
|
VERIFY(vasprintf(&buf, fmt, adx) != -1);
|
|
va_end(adx);
|
|
|
|
return (buf);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_onexit_fd_hold(int fd, minor_t *minorp)
|
|
{
|
|
*minorp = 0;
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
void
|
|
zfs_onexit_fd_rele(int fd)
|
|
{
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
|
|
uint64_t *action_handle)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
fstrans_cookie_t
|
|
spl_fstrans_mark(void)
|
|
{
|
|
return ((fstrans_cookie_t) 0);
|
|
}
|
|
|
|
void
|
|
spl_fstrans_unmark(fstrans_cookie_t cookie)
|
|
{
|
|
}
|
|
|
|
int
|
|
spl_fstrans_check(void)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
void *zvol_tag = "zvol_tag";
|
|
|
|
void
|
|
zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
}
|
|
|
|
void
|
|
zvol_remove_minor(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
}
|
|
|
|
void
|
|
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
}
|
|
|
|
void
|
|
zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
|
|
boolean_t async)
|
|
{
|
|
}
|