zfs/include/sys/ddt.h

416 lines
14 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016 by Delphix. All rights reserved.
* Copyright (c) 2023, Klara Inc.
*/
#ifndef _SYS_DDT_H
#define _SYS_DDT_H
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
#include <sys/dmu.h>
#ifdef __cplusplus
extern "C" {
#endif
struct abd;
/*
* DDT-wide feature flags. These are set in ddt_flags by ddt_configure().
*/
#define DDT_FLAG_FLAT (1 << 0) /* single extensible phys */
#define DDT_FLAG_LOG (1 << 1) /* dedup log (journal) */
#define DDT_FLAG_MASK (DDT_FLAG_FLAT|DDT_FLAG_LOG)
/*
* DDT on-disk storage object types. Each one corresponds to specific
* implementation, see ddt_ops_t. The value itself is not stored on disk.
*
* When searching for an entry, objects types will be searched in this order.
*
* Note that DDT_TYPES is used as the "no type" for new entries that have not
* yet been written to a storage object.
*/
typedef enum {
DDT_TYPE_ZAP = 0, /* ZAP storage object, ddt_zap */
DDT_TYPES
} ddt_type_t;
_Static_assert(DDT_TYPES <= UINT8_MAX,
"ddt_type_t must fit in a uint8_t");
/* New and updated entries recieve this type, see ddt_sync_entry() */
#define DDT_TYPE_DEFAULT (DDT_TYPE_ZAP)
/*
* DDT storage classes. Each class has a separate storage object for each type.
* The value itself is not stored on disk.
*
* When search for an entry, object classes will be searched in this order.
*
* Note that DDT_CLASSES is used as the "no class" for new entries that have not
* yet been written to a storage object.
*/
typedef enum {
DDT_CLASS_DITTO = 0, /* entry has ditto blocks (obsolete) */
DDT_CLASS_DUPLICATE, /* entry has multiple references */
DDT_CLASS_UNIQUE, /* entry has a single reference */
DDT_CLASSES
} ddt_class_t;
_Static_assert(DDT_CLASSES < UINT8_MAX,
"ddt_class_t must fit in a uint8_t");
/*
* The "key" part of an on-disk entry. This is the unique "name" for a block,
* that is, that parts of the block pointer that will always be the same for
* the same data.
*/
typedef struct {
zio_cksum_t ddk_cksum; /* 256-bit block checksum */
/*
* Encoded with logical & physical size, encryption, and compression,
* as follows:
* +-------+-------+-------+-------+-------+-------+-------+-------+
* | 0 | 0 | 0 |X| comp| PSIZE | LSIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*/
uint64_t ddk_prop;
} ddt_key_t;
/*
* Macros for accessing parts of a ddt_key_t. These are similar to their BP_*
* counterparts.
*/
#define DDK_GET_LSIZE(ddk) \
BF64_GET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1)
#define DDK_SET_LSIZE(ddk, x) \
BF64_SET_SB((ddk)->ddk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
#define DDK_GET_PSIZE(ddk) \
BF64_GET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1)
#define DDK_SET_PSIZE(ddk, x) \
BF64_SET_SB((ddk)->ddk_prop, 16, 16, SPA_MINBLOCKSHIFT, 1, x)
#define DDK_GET_COMPRESS(ddk) BF64_GET((ddk)->ddk_prop, 32, 7)
#define DDK_SET_COMPRESS(ddk, x) BF64_SET((ddk)->ddk_prop, 32, 7, x)
#define DDK_GET_CRYPT(ddk) BF64_GET((ddk)->ddk_prop, 39, 1)
#define DDK_SET_CRYPT(ddk, x) BF64_SET((ddk)->ddk_prop, 39, 1, x)
/*
* The "value" part for an on-disk entry. These are the "physical"
* characteristics of the stored block, such as its location on disk (DVAs),
* birth txg and ref count.
*
* The "traditional" entry has an array of four, one for each number of DVAs
* (copies= property) and another for additional "ditto" copies. Users of the
* traditional struct will specify the variant (index) of the one they want.
*
* The newer "flat" entry has only a single form that is specified using the
* DDT_PHYS_FLAT variant.
*
* Since the value size varies, use one of the size macros when interfacing
* with the ddt zap.
*/
#define DDT_PHYS_MAX (4)
/*
* Note - this can be used in a flexible array and allocated for
* a specific size (ddp_trad or ddp_flat). So be careful not to
* copy using "=" assignment but instead use ddt_phys_copy().
*/
typedef union {
/*
* Traditional physical payload value for DDT zap (256 bytes)
*/
struct {
dva_t ddp_dva[SPA_DVAS_PER_BP];
uint64_t ddp_refcnt;
uint64_t ddp_phys_birth;
} ddp_trad[DDT_PHYS_MAX];
/*
* Flat physical payload value for DDT zap (72 bytes)
*/
struct {
dva_t ddp_dva[SPA_DVAS_PER_BP];
uint64_t ddp_refcnt;
uint64_t ddp_phys_birth; /* txg based from BP */
uint64_t ddp_class_start; /* in realtime seconds */
} ddp_flat;
} ddt_univ_phys_t;
/*
* This enum denotes which variant of a ddt_univ_phys_t to target. For
* a traditional DDT entry, it represents the indexes into the ddp_trad
* array. Any consumer of a ddt_univ_phys_t needs to know which variant
* is being targeted.
*
* Note, we no longer generate new DDT_PHYS_DITTO-type blocks. However,
* we maintain the ability to free existing dedup-ditto blocks.
*/
typedef enum {
DDT_PHYS_DITTO = 0,
DDT_PHYS_SINGLE = 1,
DDT_PHYS_DOUBLE = 2,
DDT_PHYS_TRIPLE = 3,
DDT_PHYS_FLAT = 4,
DDT_PHYS_NONE = 5
} ddt_phys_variant_t;
#define DDT_PHYS_VARIANT(ddt, p) \
(ASSERT((p) < DDT_PHYS_NONE), \
((ddt)->ddt_flags & DDT_FLAG_FLAT ? DDT_PHYS_FLAT : (p)))
#define DDT_TRAD_PHYS_SIZE sizeof (((ddt_univ_phys_t *)0)->ddp_trad)
#define DDT_FLAT_PHYS_SIZE sizeof (((ddt_univ_phys_t *)0)->ddp_flat)
#define _DDT_PHYS_SWITCH(ddt, flat, trad) \
(((ddt)->ddt_flags & DDT_FLAG_FLAT) ? (flat) : (trad))
#define DDT_PHYS_SIZE(ddt) _DDT_PHYS_SWITCH(ddt, \
DDT_FLAT_PHYS_SIZE, DDT_TRAD_PHYS_SIZE)
#define DDT_NPHYS(ddt) _DDT_PHYS_SWITCH(ddt, 1, DDT_PHYS_MAX)
#define DDT_PHYS_FOR_COPIES(ddt, p) _DDT_PHYS_SWITCH(ddt, 0, p)
#define DDT_PHYS_IS_DITTO(ddt, p) _DDT_PHYS_SWITCH(ddt, 0, (p == 0))
/*
* A "live" entry, holding changes to an entry made this txg, and other data to
* support loading, updating and repairing the entry.
*/
/* State flags for dde_flags */
#define DDE_FLAG_LOADED (1 << 0) /* entry ready for use */
#define DDE_FLAG_OVERQUOTA (1 << 1) /* entry unusable, no space */
#define DDE_FLAG_LOGGED (1 << 2) /* loaded from log */
/*
* Additional data to support entry update or repair. This is fixed size
* because its relatively rarely used.
*/
typedef struct {
/* copy of data after a repair read, to be rewritten */
abd_t *dde_repair_abd;
/* original phys contents before update, for error handling */
ddt_univ_phys_t dde_orig_phys;
/* in-flight update IOs */
zio_t *dde_lead_zio[DDT_PHYS_MAX];
} ddt_entry_io_t;
typedef struct {
/* key must be first for ddt_key_compare */
ddt_key_t dde_key; /* ddt_tree key */
avl_node_t dde_node; /* ddt_tree_node */
/* storage type and class the entry was loaded from */
ddt_type_t dde_type;
ddt_class_t dde_class;
uint8_t dde_flags; /* load state flags */
kcondvar_t dde_cv; /* signaled when load completes */
uint64_t dde_waiters; /* count of waiters on dde_cv */
ddt_entry_io_t *dde_io; /* IO support, when required */
ddt_univ_phys_t dde_phys[]; /* flexible -- allocated size varies */
} ddt_entry_t;
/*
* A lightweight entry is for short-lived or transient uses, like iterating or
* inspecting, when you don't care where it came from.
*/
typedef struct {
ddt_key_t ddlwe_key;
ddt_type_t ddlwe_type;
ddt_class_t ddlwe_class;
ddt_univ_phys_t ddlwe_phys;
} ddt_lightweight_entry_t;
/*
* In-core DDT log. A separate struct to make it easier to switch between the
* appending and flushing logs.
*/
typedef struct {
avl_tree_t ddl_tree; /* logged entries */
uint32_t ddl_flags; /* flags for this log */
uint64_t ddl_object; /* log object id */
uint64_t ddl_length; /* on-disk log size */
uint64_t ddl_first_txg; /* txg log became active */
ddt_key_t ddl_checkpoint; /* last checkpoint */
} ddt_log_t;
/*
* In-core DDT object. This covers all entries and stats for a the whole pool
* for a given checksum type.
*/
typedef struct {
kmutex_t ddt_lock; /* protects changes to all fields */
avl_tree_t ddt_tree; /* "live" (changed) entries this txg */
avl_tree_t ddt_log_tree; /* logged entries */
avl_tree_t ddt_repair_tree; /* entries being repaired */
ddt_log_t ddt_log[2]; /* active/flushing logs */
ddt_log_t *ddt_log_active; /* pointers into ddt_log */
ddt_log_t *ddt_log_flushing; /* swapped when flush starts */
hrtime_t ddt_flush_start; /* log flush start this txg */
uint32_t ddt_flush_pass; /* log flush pass this txg */
int32_t ddt_flush_count; /* entries flushed this txg */
int32_t ddt_flush_min; /* min rem entries to flush */
int32_t ddt_log_ingest_rate; /* rolling log ingest rate */
int32_t ddt_log_flush_rate; /* rolling log flush rate */
int32_t ddt_log_flush_time_rate; /* avg time spent flushing */
uint64_t ddt_flush_force_txg; /* flush hard before this txg */
kstat_t *ddt_ksp; /* kstats context */
enum zio_checksum ddt_checksum; /* checksum algorithm in use */
spa_t *ddt_spa; /* pool this ddt is on */
objset_t *ddt_os; /* ddt objset (always MOS) */
uint64_t ddt_dir_object; /* MOS dir holding ddt objects */
uint64_t ddt_version; /* DDT version */
uint64_t ddt_flags; /* FDT option flags */
/* per-type/per-class entry store objects */
uint64_t ddt_object[DDT_TYPES][DDT_CLASSES];
/* object ids for stored, logged and per-type/per-class stats */
uint64_t ddt_stat_object;
ddt_object_t ddt_log_stats;
ddt_object_t ddt_object_stats[DDT_TYPES][DDT_CLASSES];
/* type/class stats by power-2-sized referenced blocks */
ddt_histogram_t ddt_histogram[DDT_TYPES][DDT_CLASSES];
ddt_histogram_t ddt_histogram_cache[DDT_TYPES][DDT_CLASSES];
/* log stats power-2-sized referenced blocks */
ddt_histogram_t ddt_log_histogram;
} ddt_t;
/*
* In-core and on-disk bookmark for DDT walks. This is a cursor for ddt_walk(),
* and is stable across calls, even if the DDT is updated, the pool is
* restarted or loaded on another system, or OpenZFS is upgraded.
*/
typedef struct {
uint64_t ddb_class;
uint64_t ddb_type;
uint64_t ddb_checksum;
uint64_t ddb_cursor;
} ddt_bookmark_t;
extern void ddt_bp_fill(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
blkptr_t *bp, uint64_t txg);
extern void ddt_bp_create(enum zio_checksum checksum, const ddt_key_t *ddk,
const ddt_univ_phys_t *ddp, ddt_phys_variant_t v, blkptr_t *bp);
extern void ddt_phys_extend(ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
const blkptr_t *bp);
extern void ddt_phys_copy(ddt_univ_phys_t *dst, const ddt_univ_phys_t *src,
ddt_phys_variant_t v);
extern void ddt_phys_clear(ddt_univ_phys_t *ddp, ddt_phys_variant_t v);
extern void ddt_phys_addref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v);
extern uint64_t ddt_phys_decref(ddt_univ_phys_t *ddp, ddt_phys_variant_t v);
extern uint64_t ddt_phys_refcnt(const ddt_univ_phys_t *ddp,
ddt_phys_variant_t v);
extern ddt_phys_variant_t ddt_phys_select(const ddt_t *ddt,
const ddt_entry_t *dde, const blkptr_t *bp);
extern uint64_t ddt_phys_birth(const ddt_univ_phys_t *ddp,
ddt_phys_variant_t v);
extern int ddt_phys_dva_count(const ddt_univ_phys_t *ddp, ddt_phys_variant_t v,
boolean_t encrypted);
extern void ddt_histogram_add_entry(ddt_t *ddt, ddt_histogram_t *ddh,
const ddt_lightweight_entry_t *ddlwe);
extern void ddt_histogram_sub_entry(ddt_t *ddt, ddt_histogram_t *ddh,
const ddt_lightweight_entry_t *ddlwe);
extern void ddt_histogram_add(ddt_histogram_t *dst, const ddt_histogram_t *src);
extern void ddt_histogram_total(ddt_stat_t *dds, const ddt_histogram_t *ddh);
extern boolean_t ddt_histogram_empty(const ddt_histogram_t *ddh);
extern void ddt_get_dedup_object_stats(spa_t *spa, ddt_object_t *ddo);
extern uint64_t ddt_get_ddt_dsize(spa_t *spa);
extern void ddt_get_dedup_histogram(spa_t *spa, ddt_histogram_t *ddh);
extern void ddt_get_dedup_stats(spa_t *spa, ddt_stat_t *dds_total);
extern uint64_t ddt_get_dedup_dspace(spa_t *spa);
extern uint64_t ddt_get_pool_dedup_ratio(spa_t *spa);
extern int ddt_get_pool_dedup_cached(spa_t *spa, uint64_t *psize);
extern ddt_t *ddt_select(spa_t *spa, const blkptr_t *bp);
extern void ddt_enter(ddt_t *ddt);
extern void ddt_exit(ddt_t *ddt);
extern void ddt_init(void);
extern void ddt_fini(void);
extern ddt_entry_t *ddt_lookup(ddt_t *ddt, const blkptr_t *bp);
extern void ddt_remove(ddt_t *ddt, ddt_entry_t *dde);
extern void ddt_prefetch(spa_t *spa, const blkptr_t *bp);
extern void ddt_prefetch_all(spa_t *spa);
extern boolean_t ddt_class_contains(spa_t *spa, ddt_class_t max_class,
const blkptr_t *bp);
extern void ddt_alloc_entry_io(ddt_entry_t *dde);
extern ddt_entry_t *ddt_repair_start(ddt_t *ddt, const blkptr_t *bp);
extern void ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde);
extern int ddt_key_compare(const void *x1, const void *x2);
extern void ddt_create(spa_t *spa);
extern int ddt_load(spa_t *spa);
extern void ddt_unload(spa_t *spa);
extern void ddt_sync(spa_t *spa, uint64_t txg);
extern void ddt_walk_init(spa_t *spa, uint64_t txg);
extern boolean_t ddt_walk_ready(spa_t *spa);
extern int ddt_walk(spa_t *spa, ddt_bookmark_t *ddb,
ddt_lightweight_entry_t *ddlwe);
extern boolean_t ddt_addref(spa_t *spa, const blkptr_t *bp);
extern int ddt_prune_unique_entries(spa_t *spa, zpool_ddt_prune_unit_t unit,
uint64_t amount);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_DDT_H */