/* * This file is part of the SPL: Solaris Porting Layer. * * Copyright (c) 2008 Lawrence Livermore National Security, LLC. * Produced at Lawrence Livermore National Laboratory * Written by: * Brian Behlendorf , * Herb Wartens , * Jim Garlick * UCRL-CODE-235197 * * This is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #ifndef _SPL_KMEM_H #define _SPL_KMEM_H #ifdef __cplusplus extern "C" { #endif #undef DEBUG_KMEM_UNIMPLEMENTED #undef DEBUG_KMEM_TRACKING /* Per-allocation memory tracking */ #include #include #include #include #include #include #include #include #include #include /* * Memory allocation interfaces */ #define KM_SLEEP GFP_KERNEL #define KM_NOSLEEP GFP_ATOMIC #undef KM_PANIC /* No linux analog */ #define KM_PUSHPAGE (KM_SLEEP | __GFP_HIGH) #define KM_VMFLAGS GFP_LEVEL_MASK #define KM_FLAGS __GFP_BITS_MASK /* * Used internally, the kernel does not need to support this flag */ #ifndef __GFP_ZERO #define __GFP_ZERO 0x8000 #endif #ifdef DEBUG_KMEM extern atomic64_t kmem_alloc_used; extern unsigned long kmem_alloc_max; extern atomic64_t vmem_alloc_used; extern unsigned long vmem_alloc_max; extern int kmem_warning_flag; #ifdef DEBUG_KMEM_TRACKING /* XXX - Not to surprisingly with debugging enabled the xmem_locks are very * highly contended particularly on xfree(). If we want to run with this * detailed debugging enabled for anything other than debugging we need to * minimize the contention by moving to a lock per xmem_table entry model. */ #define KMEM_HASH_BITS 10 #define KMEM_TABLE_SIZE (1 << KMEM_HASH_BITS) extern struct hlist_head kmem_table[KMEM_TABLE_SIZE]; extern struct list_head kmem_list; extern spinlock_t kmem_lock; #define VMEM_HASH_BITS 10 #define VMEM_TABLE_SIZE (1 << VMEM_HASH_BITS) extern struct hlist_head vmem_table[VMEM_TABLE_SIZE]; extern struct list_head vmem_list; extern spinlock_t vmem_lock; typedef struct kmem_debug { struct hlist_node kd_hlist; /* Hash node linkage */ struct list_head kd_list; /* List of all allocations */ void *kd_addr; /* Allocation pointer */ size_t kd_size; /* Allocation size */ const char *kd_func; /* Allocation function */ int kd_line; /* Allocation line */ } kmem_debug_t; static __inline__ kmem_debug_t * __kmem_del_init(spinlock_t *lock,struct hlist_head *table,int bits,void *addr) { struct hlist_head *head; struct hlist_node *node; struct kmem_debug *p; unsigned long flags; spin_lock_irqsave(lock, flags); head = &table[hash_ptr(addr, bits)]; hlist_for_each_entry_rcu(p, node, head, kd_hlist) { if (p->kd_addr == addr) { hlist_del_init(&p->kd_hlist); list_del_init(&p->kd_list); spin_unlock_irqrestore(lock, flags); return p; } } spin_unlock_irqrestore(lock, flags); return NULL; } #define __kmem_alloc(size, flags, allocator, args...) \ ({ void *_ptr_ = NULL; \ kmem_debug_t *_dptr_; \ unsigned long _flags_; \ \ _dptr_ = (kmem_debug_t *)kmalloc(sizeof(kmem_debug_t), (flags)); \ if (_dptr_ == NULL) { \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \ "kmem_alloc(%d, 0x%x) debug failed\n", \ sizeof(kmem_debug_t), (int)(flags)); \ } else { \ /* Marked unlikely because we should never be doing this, */ \ /* we tolerate to up 2 pages but a single page is best. */ \ if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag) \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning large " \ "kmem_alloc(%d, 0x%x) (%ld/%ld)\n", \ (int)(size), (int)(flags), \ atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ \ _ptr_ = (void *)allocator((size), (flags), ## args); \ if (_ptr_ == NULL) { \ kfree(_dptr_); \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \ "kmem_alloc(%d, 0x%x) failed (%ld/" \ "%ld)\n", (int)(size), (int)(flags), \ atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ } else { \ atomic64_add((size), &kmem_alloc_used); \ if (unlikely(atomic64_read(&kmem_alloc_used) > \ kmem_alloc_max)) \ kmem_alloc_max = \ atomic64_read(&kmem_alloc_used); \ \ INIT_HLIST_NODE(&_dptr_->kd_hlist); \ INIT_LIST_HEAD(&_dptr_->kd_list); \ _dptr_->kd_addr = _ptr_; \ _dptr_->kd_size = (size); \ _dptr_->kd_func = __FUNCTION__; \ _dptr_->kd_line = __LINE__; \ spin_lock_irqsave(&kmem_lock, _flags_); \ hlist_add_head_rcu(&_dptr_->kd_hlist, \ &kmem_table[hash_ptr(_ptr_, KMEM_HASH_BITS)]);\ list_add_tail(&_dptr_->kd_list, &kmem_list); \ spin_unlock_irqrestore(&kmem_lock, _flags_); \ \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "kmem_alloc(" \ "%d, 0x%x) = %p (%ld/%ld)\n", \ (int)(size), (int)(flags), _ptr_, \ atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ } \ } \ \ _ptr_; \ }) #define kmem_free(ptr, size) \ ({ \ kmem_debug_t *_dptr_; \ ASSERT((ptr) || (size > 0)); \ \ _dptr_ = __kmem_del_init(&kmem_lock, kmem_table, KMEM_HASH_BITS, ptr);\ ASSERT(_dptr_); /* Must exist in hash due to kmem_alloc() */ \ ASSERTF(_dptr_->kd_size == (size), "kd_size (%d) != size (%d), " \ "kd_func = %s, kd_line = %d\n", _dptr_->kd_size, (size), \ _dptr_->kd_func, _dptr_->kd_line); /* Size must match */ \ atomic64_sub((size), &kmem_alloc_used); \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "kmem_free(%p, %d) (%ld/%ld)\n", \ (ptr), (int)(size), atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ \ memset(_dptr_, 0x5a, sizeof(kmem_debug_t)); \ kfree(_dptr_); \ \ memset(ptr, 0x5a, (size)); \ kfree(ptr); \ }) #define __vmem_alloc(size, flags) \ ({ void *_ptr_ = NULL; \ kmem_debug_t *_dptr_; \ unsigned long _flags_; \ \ ASSERT((flags) & KM_SLEEP); \ \ _dptr_ = (kmem_debug_t *)kmalloc(sizeof(kmem_debug_t), (flags)); \ if (_dptr_ == NULL) { \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \ "vmem_alloc(%d, 0x%x) debug failed\n", \ sizeof(kmem_debug_t), (int)(flags)); \ } else { \ _ptr_ = (void *)__vmalloc((size), (((flags) | \ __GFP_HIGHMEM) & ~__GFP_ZERO), \ PAGE_KERNEL); \ if (_ptr_ == NULL) { \ kfree(_dptr_); \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \ "vmem_alloc(%d, 0x%x) failed (%ld/" \ "%ld)\n", (int)(size), (int)(flags), \ atomic64_read(&vmem_alloc_used), \ vmem_alloc_max); \ } else { \ if (flags & __GFP_ZERO) \ memset(_ptr_, 0, (size)); \ \ atomic64_add((size), &vmem_alloc_used); \ if (unlikely(atomic64_read(&vmem_alloc_used) > \ vmem_alloc_max)) \ vmem_alloc_max = \ atomic64_read(&vmem_alloc_used); \ \ INIT_HLIST_NODE(&_dptr_->kd_hlist); \ INIT_LIST_HEAD(&_dptr_->kd_list); \ _dptr_->kd_addr = _ptr_; \ _dptr_->kd_size = (size); \ _dptr_->kd_func = __FUNCTION__; \ _dptr_->kd_line = __LINE__; \ spin_lock_irqsave(&vmem_lock, _flags_); \ hlist_add_head_rcu(&_dptr_->kd_hlist, \ &vmem_table[hash_ptr(_ptr_, VMEM_HASH_BITS)]);\ list_add_tail(&_dptr_->kd_list, &vmem_list); \ spin_unlock_irqrestore(&vmem_lock, _flags_); \ \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "vmem_alloc(" \ "%d, 0x%x) = %p (%ld/%ld)\n", \ (int)(size), (int)(flags), _ptr_, \ atomic64_read(&vmem_alloc_used), \ vmem_alloc_max); \ } \ } \ \ _ptr_; \ }) #define vmem_free(ptr, size) \ ({ \ kmem_debug_t *_dptr_; \ ASSERT((ptr) || (size > 0)); \ \ _dptr_ = __kmem_del_init(&vmem_lock, vmem_table, VMEM_HASH_BITS, ptr);\ ASSERT(_dptr_); /* Must exist in hash due to vmem_alloc() */ \ ASSERTF(_dptr_->kd_size == (size), "kd_size (%d) != size (%d), " \ "kd_func = %s, kd_line = %d\n", _dptr_->kd_size, (size), \ _dptr_->kd_func, _dptr_->kd_line); /* Size must match */ \ atomic64_sub((size), &vmem_alloc_used); \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "vmem_free(%p, %d) (%ld/%ld)\n", \ (ptr), (int)(size), atomic64_read(&vmem_alloc_used), \ vmem_alloc_max); \ \ memset(_dptr_, 0x5a, sizeof(kmem_debug_t)); \ kfree(_dptr_); \ \ memset(ptr, 0x5a, (size)); \ vfree(ptr); \ }) #else /* DEBUG_KMEM_TRACKING */ #define __kmem_alloc(size, flags, allocator, args...) \ ({ void *_ptr_ = NULL; \ \ /* Marked unlikely because we should never be doing this, */ \ /* we tolerate to up 2 pages but a single page is best. */ \ if (unlikely((size) > (PAGE_SIZE * 2)) && kmem_warning_flag) \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning large " \ "kmem_alloc(%d, 0x%x) (%ld/%ld)\n", \ (int)(size), (int)(flags), \ atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ \ _ptr_ = (void *)allocator((size), (flags), ## args); \ if (_ptr_ == NULL) { \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \ "kmem_alloc(%d, 0x%x) failed (%ld/" \ "%ld)\n", (int)(size), (int)(flags), \ atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ } else { \ atomic64_add((size), &kmem_alloc_used); \ if (unlikely(atomic64_read(&kmem_alloc_used) > \ kmem_alloc_max)) \ kmem_alloc_max = \ atomic64_read(&kmem_alloc_used); \ \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "kmem_alloc(%d, 0x%x) = %p " \ "(%ld/%ld)\n", (int)(size), (int)(flags), \ _ptr_, atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ } \ \ _ptr_; \ }) #define kmem_free(ptr, size) \ ({ \ ASSERT((ptr) || (size > 0)); \ \ atomic64_sub((size), &kmem_alloc_used); \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "kmem_free(%p, %d) (%ld/%ld)\n", \ (ptr), (int)(size), atomic64_read(&kmem_alloc_used), \ kmem_alloc_max); \ memset(ptr, 0x5a, (size)); \ kfree(ptr); \ }) #define __vmem_alloc(size, flags) \ ({ void *_ptr_ = NULL; \ \ ASSERT((flags) & KM_SLEEP); \ \ _ptr_ = (void *)__vmalloc((size), (((flags) | \ __GFP_HIGHMEM) & ~__GFP_ZERO), PAGE_KERNEL);\ if (_ptr_ == NULL) { \ __CDEBUG_LIMIT(S_KMEM, D_WARNING, "Warning " \ "vmem_alloc(%d, 0x%x) failed (%ld/" \ "%ld)\n", (int)(size), (int)(flags), \ atomic64_read(&vmem_alloc_used), \ vmem_alloc_max); \ } else { \ if (flags & __GFP_ZERO) \ memset(_ptr_, 0, (size)); \ \ atomic64_add((size), &vmem_alloc_used); \ if (unlikely(atomic64_read(&vmem_alloc_used) > \ vmem_alloc_max)) \ vmem_alloc_max = \ atomic64_read(&vmem_alloc_used); \ \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "vmem_alloc(" \ "%d, 0x%x) = %p (%ld/%ld)\n", \ (int)(size), (int)(flags), _ptr_, \ atomic64_read(&vmem_alloc_used), \ vmem_alloc_max); \ } \ \ _ptr_; \ }) #define vmem_free(ptr, size) \ ({ \ ASSERT((ptr) || (size > 0)); \ \ atomic64_sub((size), &vmem_alloc_used); \ __CDEBUG_LIMIT(S_KMEM, D_INFO, "vmem_free(%p, %d) (%ld/%ld)\n", \ (ptr), (int)(size), atomic64_read(&vmem_alloc_used), \ vmem_alloc_max); \ memset(ptr, 0x5a, (size)); \ vfree(ptr); \ }) #endif /* DEBUG_KMEM_TRACKING */ #define kmem_alloc(size, flags) __kmem_alloc((size), (flags), kmalloc) #define kmem_zalloc(size, flags) __kmem_alloc((size), (flags), kzalloc) #ifdef HAVE_KMALLOC_NODE #define kmem_alloc_node(size, flags, node) \ __kmem_alloc((size), (flags), kmalloc_node, node) #else #define kmem_alloc_node(size, flags, node) \ __kmem_alloc((size), (flags), kmalloc) #endif #define vmem_alloc(size, flags) __vmem_alloc((size), (flags)) #define vmem_zalloc(size, flags) __vmem_alloc((size), ((flags) | __GFP_ZERO)) #else /* DEBUG_KMEM */ #define kmem_alloc(size, flags) kmalloc((size), (flags)) #define kmem_zalloc(size, flags) kzalloc((size), (flags)) #define kmem_free(ptr, size) kfree(ptr) #ifdef HAVE_KMALLOC_NODE #define kmem_alloc_node(size, flags, node) \ kmalloc_node((size), (flags), (node)) #else #define kmem_alloc_node(size, flags, node) \ kmalloc((size), (flags)) #endif #define vmem_alloc(size, flags) __vmalloc((size), ((flags) | \ __GFP_HIGHMEM), PAGE_KERNEL) #define vmem_zalloc(size, flags) \ ({ \ void *_ptr_ = __vmalloc((size),((flags)|__GFP_HIGHMEM),PAGE_KERNEL); \ if (_ptr_) \ memset(_ptr_, 0, (size)); \ _ptr_; \ }) #define vmem_free(ptr, size) vfree(ptr) #endif /* DEBUG_KMEM */ #ifdef DEBUG_KMEM_UNIMPLEMENTED static __inline__ void * kmem_alloc_tryhard(size_t size, size_t *alloc_size, int kmflags) { #error "kmem_alloc_tryhard() not implemented" } #endif /* DEBUG_KMEM_UNIMPLEMENTED */ /* * Slab allocation interfaces */ #define KMC_NOTOUCH 0x00000001 #define KMC_NODEBUG 0x00000002 /* Default behavior */ #define KMC_NOMAGAZINE 0x00000004 /* XXX: No disable support available */ #define KMC_NOHASH 0x00000008 /* XXX: No hash available */ #define KMC_QCACHE 0x00000010 /* XXX: Unsupported */ #define KMC_KMEM 0x00000100 /* Use kmem cache */ #define KMC_VMEM 0x00000200 /* Use vmem cache */ #define KMC_OFFSLAB 0x00000400 /* Objects not on slab */ #define KMC_REAP_CHUNK 256 #define KMC_DEFAULT_SEEKS DEFAULT_SEEKS #ifdef DEBUG_KMEM_UNIMPLEMENTED static __inline__ void kmem_init(void) { #error "kmem_init() not implemented" } static __inline__ void kmem_thread_init(void) { #error "kmem_thread_init() not implemented" } static __inline__ void kmem_mp_init(void) { #error "kmem_mp_init() not implemented" } static __inline__ void kmem_reap_idspace(void) { #error "kmem_reap_idspace() not implemented" } static __inline__ size_t kmem_avail(void) { #error "kmem_avail() not implemented" } static __inline__ size_t kmem_maxavail(void) { #error "kmem_maxavail() not implemented" } static __inline__ uint64_t kmem_cache_stat(spl_kmem_cache_t *cache) { #error "kmem_cache_stat() not implemented" } #endif /* DEBUG_KMEM_UNIMPLEMENTED */ /* XXX - Used by arc.c to adjust its memory footprint. We may want * to use this hook in the future to adjust behavior based on * debug levels. For now it's safe to always return 0. */ static __inline__ int kmem_debugging(void) { return 0; } extern int kmem_set_warning(int flag); extern struct list_head spl_kmem_cache_list; extern struct rw_semaphore spl_kmem_cache_sem; #define SKM_MAGIC 0x2e2e2e2e #define SKO_MAGIC 0x20202020 #define SKS_MAGIC 0x22222222 #define SKC_MAGIC 0x2c2c2c2c #define SPL_KMEM_CACHE_DELAY 5 #define SPL_KMEM_CACHE_OBJ_PER_SLAB 32 typedef int (*spl_kmem_ctor_t)(void *, void *, int); typedef void (*spl_kmem_dtor_t)(void *, void *); typedef void (*spl_kmem_reclaim_t)(void *); typedef struct spl_kmem_magazine { uint32_t skm_magic; /* Sanity magic */ uint32_t skm_avail; /* Available objects */ uint32_t skm_size; /* Magazine size */ uint32_t skm_refill; /* Batch refill size */ unsigned long skm_age; /* Last cache access */ void *skm_objs[0]; /* Object pointers */ } spl_kmem_magazine_t; typedef struct spl_kmem_obj { uint32_t sko_magic; /* Sanity magic */ void *sko_addr; /* Buffer address */ struct spl_kmem_slab *sko_slab; /* Owned by slab */ struct list_head sko_list; /* Free object list linkage */ } spl_kmem_obj_t; typedef struct spl_kmem_slab { uint32_t sks_magic; /* Sanity magic */ uint32_t sks_objs; /* Objects per slab */ struct spl_kmem_cache *sks_cache; /* Owned by cache */ struct list_head sks_list; /* Slab list linkage */ struct list_head sks_free_list; /* Free object list */ unsigned long sks_age; /* Last modify jiffie */ uint32_t sks_ref; /* Ref count used objects */ } spl_kmem_slab_t; typedef struct spl_kmem_cache { uint32_t skc_magic; /* Sanity magic */ uint32_t skc_name_size; /* Name length */ char *skc_name; /* Name string */ spl_kmem_magazine_t *skc_mag[NR_CPUS]; /* Per-CPU warm cache */ uint32_t skc_mag_size; /* Magazine size */ uint32_t skc_mag_refill; /* Magazine refill count */ spl_kmem_ctor_t skc_ctor; /* Constructor */ spl_kmem_dtor_t skc_dtor; /* Destructor */ spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */ void *skc_private; /* Private data */ void *skc_vmp; /* Unused */ uint32_t skc_flags; /* Flags */ uint32_t skc_obj_size; /* Object size */ uint32_t skc_slab_objs; /* Objects per slab */ uint32_t skc_slab_size; /* Slab size */ uint32_t skc_delay; /* slab reclaim interval */ struct list_head skc_list; /* List of caches linkage */ struct list_head skc_complete_list;/* Completely alloc'ed */ struct list_head skc_partial_list; /* Partially alloc'ed */ spinlock_t skc_lock; /* Cache lock */ uint64_t skc_slab_fail; /* Slab alloc failures */ uint64_t skc_slab_create;/* Slab creates */ uint64_t skc_slab_destroy;/* Slab destroys */ uint64_t skc_slab_total; /* Slab total current */ uint64_t skc_slab_alloc; /* Slab alloc current */ uint64_t skc_slab_max; /* Slab max historic */ uint64_t skc_obj_total; /* Obj total current */ uint64_t skc_obj_alloc; /* Obj alloc current */ uint64_t skc_obj_max; /* Obj max historic */ } spl_kmem_cache_t; #define kmem_cache_t spl_kmem_cache_t extern spl_kmem_cache_t * spl_kmem_cache_create(char *name, size_t size, size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags); extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc); extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags); extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj); extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc); extern void spl_kmem_reap(void); int spl_kmem_init(void); void spl_kmem_fini(void); #define kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) \ spl_kmem_cache_create(name,size,align,ctor,dtor,rclm,priv,vmp,flags) #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc) #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags) #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj) #define kmem_cache_reap_now(skc) spl_kmem_cache_reap_now(skc) #define kmem_reap() spl_kmem_reap() #define kmem_virt(ptr) (((ptr) >= (void *)VMALLOC_START) && \ ((ptr) < (void *)VMALLOC_END)) #ifdef __cplusplus } #endif #endif /* _SPL_KMEM_H */