/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * This file contains the core framework routines for the * kernel cryptographic framework. These routines are at the * layer, between the kernel API/ioctls and the SPI. */ #include #include #include #include #include static kcf_global_swq_t *gswq; /* Global queue */ /* Thread pool related variables */ static kcf_pool_t *kcfpool; /* Thread pool of kcfd LWPs */ static const int kcf_maxthreads = 2; static const int kcf_minthreads = 1; /* kmem caches used by the scheduler */ static kmem_cache_t *kcf_sreq_cache; static kmem_cache_t *kcf_areq_cache; static kmem_cache_t *kcf_context_cache; /* Global request ID table */ static kcf_reqid_table_t *kcf_reqid_table[REQID_TABLES]; /* KCF stats. Not protected. */ static kcf_stats_t kcf_ksdata = { { "total threads in pool", KSTAT_DATA_UINT32}, { "idle threads in pool", KSTAT_DATA_UINT32}, { "min threads in pool", KSTAT_DATA_UINT32}, { "max threads in pool", KSTAT_DATA_UINT32}, { "requests in gswq", KSTAT_DATA_UINT32}, { "max requests in gswq", KSTAT_DATA_UINT32}, { "maxalloc for gwsq", KSTAT_DATA_UINT32} }; static kstat_t *kcf_misc_kstat = NULL; ulong_t kcf_swprov_hndl = 0; static int kcf_disp_sw_request(kcf_areq_node_t *); static int kcf_enqueue(kcf_areq_node_t *); static void kcfpool_alloc(void); static void kcf_reqid_delete(kcf_areq_node_t *areq); static int kcf_misc_kstat_update(kstat_t *ksp, int rw); /* * Create a new context. */ crypto_ctx_t * kcf_new_ctx(crypto_call_req_t *crq, kcf_provider_desc_t *pd, crypto_session_id_t sid) { crypto_ctx_t *ctx; kcf_context_t *kcf_ctx; kcf_ctx = kmem_cache_alloc(kcf_context_cache, (crq == NULL) ? KM_SLEEP : KM_NOSLEEP); if (kcf_ctx == NULL) return (NULL); /* initialize the context for the consumer */ kcf_ctx->kc_refcnt = 1; kcf_ctx->kc_req_chain_first = NULL; kcf_ctx->kc_req_chain_last = NULL; kcf_ctx->kc_secondctx = NULL; KCF_PROV_REFHOLD(pd); kcf_ctx->kc_prov_desc = pd; kcf_ctx->kc_sw_prov_desc = NULL; kcf_ctx->kc_mech = NULL; ctx = &kcf_ctx->kc_glbl_ctx; ctx->cc_provider = pd->pd_prov_handle; ctx->cc_session = sid; ctx->cc_provider_private = NULL; ctx->cc_framework_private = (void *)kcf_ctx; ctx->cc_flags = 0; ctx->cc_opstate = NULL; return (ctx); } /* * Queue the request node and do one of the following: * - If there is an idle thread signal it to run. * - If there is no idle thread and max running threads is not * reached, signal the creator thread for more threads. * * If the two conditions above are not met, we don't need to do * anything. The request will be picked up by one of the * worker threads when it becomes available. */ static int kcf_disp_sw_request(kcf_areq_node_t *areq) { int err; int cnt = 0; if ((err = kcf_enqueue(areq)) != 0) return (err); if (kcfpool->kp_idlethreads > 0) { /* Signal an idle thread to run */ mutex_enter(&gswq->gs_lock); cv_signal(&gswq->gs_cv); mutex_exit(&gswq->gs_lock); return (CRYPTO_QUEUED); } /* * We keep the number of running threads to be at * kcf_minthreads to reduce gs_lock contention. */ cnt = kcf_minthreads - (kcfpool->kp_threads - kcfpool->kp_blockedthreads); if (cnt > 0) { /* * The following ensures the number of threads in pool * does not exceed kcf_maxthreads. */ cnt = MIN(cnt, kcf_maxthreads - (int)kcfpool->kp_threads); if (cnt > 0) { /* Signal the creator thread for more threads */ mutex_enter(&kcfpool->kp_user_lock); if (!kcfpool->kp_signal_create_thread) { kcfpool->kp_signal_create_thread = B_TRUE; kcfpool->kp_nthrs = cnt; cv_signal(&kcfpool->kp_user_cv); } mutex_exit(&kcfpool->kp_user_lock); } } return (CRYPTO_QUEUED); } /* * This routine checks if a request can be retried on another * provider. If true, mech1 is initialized to point to the mechanism * structure. fg is initialized to the correct crypto_func_group_t bit flag. * They are initialized by this routine, so that the caller can pass them to * kcf_get_mech_provider() with no further change. * * We check that the request is for a init or atomic routine and that * it is for one of the operation groups used from k-api . */ static boolean_t can_resubmit(kcf_areq_node_t *areq, crypto_mechanism_t **mech1, crypto_func_group_t *fg) { kcf_req_params_t *params; kcf_op_type_t optype; params = &areq->an_params; optype = params->rp_optype; if (!(IS_INIT_OP(optype) || IS_ATOMIC_OP(optype))) return (B_FALSE); switch (params->rp_opgrp) { case KCF_OG_DIGEST: { kcf_digest_ops_params_t *dops = ¶ms->rp_u.digest_params; dops->do_mech.cm_type = dops->do_framework_mechtype; *mech1 = &dops->do_mech; *fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DIGEST : CRYPTO_FG_DIGEST_ATOMIC; break; } case KCF_OG_MAC: { kcf_mac_ops_params_t *mops = ¶ms->rp_u.mac_params; mops->mo_mech.cm_type = mops->mo_framework_mechtype; *mech1 = &mops->mo_mech; *fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_MAC : CRYPTO_FG_MAC_ATOMIC; break; } case KCF_OG_ENCRYPT: { kcf_encrypt_ops_params_t *eops = ¶ms->rp_u.encrypt_params; eops->eo_mech.cm_type = eops->eo_framework_mechtype; *mech1 = &eops->eo_mech; *fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_ENCRYPT : CRYPTO_FG_ENCRYPT_ATOMIC; break; } case KCF_OG_DECRYPT: { kcf_decrypt_ops_params_t *dcrops = ¶ms->rp_u.decrypt_params; dcrops->dop_mech.cm_type = dcrops->dop_framework_mechtype; *mech1 = &dcrops->dop_mech; *fg = (optype == KCF_OP_INIT) ? CRYPTO_FG_DECRYPT : CRYPTO_FG_DECRYPT_ATOMIC; break; } default: return (B_FALSE); } return (B_TRUE); } /* * This routine is called when a request to a provider has failed * with a recoverable error. This routine tries to find another provider * and dispatches the request to the new provider, if one is available. * We reuse the request structure. * * A return value of NULL from kcf_get_mech_provider() indicates * we have tried the last provider. */ static int kcf_resubmit_request(kcf_areq_node_t *areq) { int error = CRYPTO_FAILED; kcf_context_t *ictx; kcf_provider_desc_t *old_pd; kcf_provider_desc_t *new_pd; crypto_mechanism_t *mech1 = NULL; crypto_func_group_t fg = 0; if (!can_resubmit(areq, &mech1, &fg)) return (error); old_pd = areq->an_provider; /* * Add old_pd to the list of providers already tried. We release * the hold on old_pd (from the earlier kcf_get_mech_provider()) in * kcf_free_triedlist(). */ if (kcf_insert_triedlist(&areq->an_tried_plist, old_pd, KM_NOSLEEP) == NULL) return (error); new_pd = kcf_get_mech_provider(mech1->cm_type, NULL, &error, areq->an_tried_plist, fg, (areq->an_reqarg.cr_flag & CRYPTO_RESTRICTED)); if (new_pd == NULL) return (error); /* * We reuse the old context by resetting provider specific * fields in it. */ if ((ictx = areq->an_context) != NULL) { crypto_ctx_t *ctx; ASSERT(old_pd == ictx->kc_prov_desc); KCF_PROV_REFRELE(ictx->kc_prov_desc); KCF_PROV_REFHOLD(new_pd); ictx->kc_prov_desc = new_pd; ctx = &ictx->kc_glbl_ctx; ctx->cc_provider = new_pd->pd_prov_handle; ctx->cc_session = new_pd->pd_sid; ctx->cc_provider_private = NULL; } /* We reuse areq. by resetting the provider and context fields. */ KCF_PROV_REFRELE(old_pd); KCF_PROV_REFHOLD(new_pd); areq->an_provider = new_pd; mutex_enter(&areq->an_lock); areq->an_state = REQ_WAITING; mutex_exit(&areq->an_lock); error = kcf_disp_sw_request(areq); return (error); } /* * We're done with this framework context, so free it. Note that freeing * framework context (kcf_context) frees the global context (crypto_ctx). * * The provider is responsible for freeing provider private context after a * final or single operation and resetting the cc_provider_private field * to NULL. It should do this before it notifies the framework of the * completion. We still need to call KCF_PROV_FREE_CONTEXT to handle cases * like crypto_cancel_ctx(9f). */ void kcf_free_context(kcf_context_t *kcf_ctx) { kcf_provider_desc_t *pd = kcf_ctx->kc_prov_desc; crypto_ctx_t *gctx = &kcf_ctx->kc_glbl_ctx; kcf_context_t *kcf_secondctx = kcf_ctx->kc_secondctx; /* Release the second context, if any */ if (kcf_secondctx != NULL) KCF_CONTEXT_REFRELE(kcf_secondctx); if (gctx->cc_provider_private != NULL) { mutex_enter(&pd->pd_lock); if (!KCF_IS_PROV_REMOVED(pd)) { /* * Increment the provider's internal refcnt so it * doesn't unregister from the framework while * we're calling the entry point. */ KCF_PROV_IREFHOLD(pd); mutex_exit(&pd->pd_lock); (void) KCF_PROV_FREE_CONTEXT(pd, gctx); KCF_PROV_IREFRELE(pd); } else { mutex_exit(&pd->pd_lock); } } /* kcf_ctx->kc_prov_desc has a hold on pd */ KCF_PROV_REFRELE(kcf_ctx->kc_prov_desc); /* check if this context is shared with a provider */ if ((gctx->cc_flags & CRYPTO_INIT_OPSTATE) && kcf_ctx->kc_sw_prov_desc != NULL) { KCF_PROV_REFRELE(kcf_ctx->kc_sw_prov_desc); } kmem_cache_free(kcf_context_cache, kcf_ctx); } /* * Free the request after releasing all the holds. */ void kcf_free_req(kcf_areq_node_t *areq) { KCF_PROV_REFRELE(areq->an_provider); if (areq->an_context != NULL) KCF_CONTEXT_REFRELE(areq->an_context); if (areq->an_tried_plist != NULL) kcf_free_triedlist(areq->an_tried_plist); kmem_cache_free(kcf_areq_cache, areq); } /* * Add the request node to the end of the global queue. * * The caller should not hold the queue lock. Returns 0 if the * request is successfully queued. Returns CRYPTO_BUSY if the limit * on the number of jobs is exceeded. */ static int kcf_enqueue(kcf_areq_node_t *node) { kcf_areq_node_t *tnode; mutex_enter(&gswq->gs_lock); if (gswq->gs_njobs >= gswq->gs_maxjobs) { mutex_exit(&gswq->gs_lock); return (CRYPTO_BUSY); } if (gswq->gs_last == NULL) { gswq->gs_first = gswq->gs_last = node; } else { ASSERT(gswq->gs_last->an_next == NULL); tnode = gswq->gs_last; tnode->an_next = node; gswq->gs_last = node; node->an_prev = tnode; } gswq->gs_njobs++; /* an_lock not needed here as we hold gs_lock */ node->an_state = REQ_WAITING; mutex_exit(&gswq->gs_lock); return (0); } /* * kmem_cache_alloc constructor for sync request structure. */ static int kcf_sreq_cache_constructor(void *buf, void *cdrarg, int kmflags) { (void) cdrarg, (void) kmflags; kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf; sreq->sn_type = CRYPTO_SYNCH; cv_init(&sreq->sn_cv, NULL, CV_DEFAULT, NULL); mutex_init(&sreq->sn_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } static void kcf_sreq_cache_destructor(void *buf, void *cdrarg) { (void) cdrarg; kcf_sreq_node_t *sreq = (kcf_sreq_node_t *)buf; mutex_destroy(&sreq->sn_lock); cv_destroy(&sreq->sn_cv); } /* * kmem_cache_alloc constructor for async request structure. */ static int kcf_areq_cache_constructor(void *buf, void *cdrarg, int kmflags) { (void) cdrarg, (void) kmflags; kcf_areq_node_t *areq = (kcf_areq_node_t *)buf; areq->an_type = CRYPTO_ASYNCH; areq->an_refcnt = 0; mutex_init(&areq->an_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&areq->an_done, NULL, CV_DEFAULT, NULL); cv_init(&areq->an_turn_cv, NULL, CV_DEFAULT, NULL); return (0); } static void kcf_areq_cache_destructor(void *buf, void *cdrarg) { (void) cdrarg; kcf_areq_node_t *areq = (kcf_areq_node_t *)buf; ASSERT(areq->an_refcnt == 0); mutex_destroy(&areq->an_lock); cv_destroy(&areq->an_done); cv_destroy(&areq->an_turn_cv); } /* * kmem_cache_alloc constructor for kcf_context structure. */ static int kcf_context_cache_constructor(void *buf, void *cdrarg, int kmflags) { (void) cdrarg, (void) kmflags; kcf_context_t *kctx = (kcf_context_t *)buf; kctx->kc_refcnt = 0; mutex_init(&kctx->kc_in_use_lock, NULL, MUTEX_DEFAULT, NULL); return (0); } static void kcf_context_cache_destructor(void *buf, void *cdrarg) { (void) cdrarg; kcf_context_t *kctx = (kcf_context_t *)buf; ASSERT(kctx->kc_refcnt == 0); mutex_destroy(&kctx->kc_in_use_lock); } void kcf_sched_destroy(void) { int i; if (kcf_misc_kstat) kstat_delete(kcf_misc_kstat); if (kcfpool) { mutex_destroy(&kcfpool->kp_thread_lock); cv_destroy(&kcfpool->kp_nothr_cv); mutex_destroy(&kcfpool->kp_user_lock); cv_destroy(&kcfpool->kp_user_cv); kmem_free(kcfpool, sizeof (kcf_pool_t)); } for (i = 0; i < REQID_TABLES; i++) { if (kcf_reqid_table[i]) { mutex_destroy(&(kcf_reqid_table[i]->rt_lock)); kmem_free(kcf_reqid_table[i], sizeof (kcf_reqid_table_t)); } } if (gswq) { mutex_destroy(&gswq->gs_lock); cv_destroy(&gswq->gs_cv); kmem_free(gswq, sizeof (kcf_global_swq_t)); } if (kcf_context_cache) kmem_cache_destroy(kcf_context_cache); if (kcf_areq_cache) kmem_cache_destroy(kcf_areq_cache); if (kcf_sreq_cache) kmem_cache_destroy(kcf_sreq_cache); mutex_destroy(&ntfy_list_lock); cv_destroy(&ntfy_list_cv); } /* * Creates and initializes all the structures needed by the framework. */ void kcf_sched_init(void) { int i; kcf_reqid_table_t *rt; /* * Create all the kmem caches needed by the framework. We set the * align argument to 64, to get a slab aligned to 64-byte as well as * have the objects (cache_chunksize) to be a 64-byte multiple. * This helps to avoid false sharing as this is the size of the * CPU cache line. */ kcf_sreq_cache = kmem_cache_create("kcf_sreq_cache", sizeof (struct kcf_sreq_node), 64, kcf_sreq_cache_constructor, kcf_sreq_cache_destructor, NULL, NULL, NULL, 0); kcf_areq_cache = kmem_cache_create("kcf_areq_cache", sizeof (struct kcf_areq_node), 64, kcf_areq_cache_constructor, kcf_areq_cache_destructor, NULL, NULL, NULL, 0); kcf_context_cache = kmem_cache_create("kcf_context_cache", sizeof (struct kcf_context), 64, kcf_context_cache_constructor, kcf_context_cache_destructor, NULL, NULL, NULL, 0); gswq = kmem_alloc(sizeof (kcf_global_swq_t), KM_SLEEP); mutex_init(&gswq->gs_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&gswq->gs_cv, NULL, CV_DEFAULT, NULL); gswq->gs_njobs = 0; gswq->gs_maxjobs = kcf_maxthreads * CRYPTO_TASKQ_MAX; gswq->gs_first = gswq->gs_last = NULL; /* Initialize the global reqid table */ for (i = 0; i < REQID_TABLES; i++) { rt = kmem_zalloc(sizeof (kcf_reqid_table_t), KM_SLEEP); kcf_reqid_table[i] = rt; mutex_init(&rt->rt_lock, NULL, MUTEX_DEFAULT, NULL); rt->rt_curid = i; } /* Allocate and initialize the thread pool */ kcfpool_alloc(); /* Initialize the event notification list variables */ mutex_init(&ntfy_list_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&ntfy_list_cv, NULL, CV_DEFAULT, NULL); /* Create the kcf kstat */ kcf_misc_kstat = kstat_create("kcf", 0, "framework_stats", "crypto", KSTAT_TYPE_NAMED, sizeof (kcf_stats_t) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); if (kcf_misc_kstat != NULL) { kcf_misc_kstat->ks_data = &kcf_ksdata; kcf_misc_kstat->ks_update = kcf_misc_kstat_update; kstat_install(kcf_misc_kstat); } } /* * Signal the waiting sync client. */ void kcf_sop_done(kcf_sreq_node_t *sreq, int error) { mutex_enter(&sreq->sn_lock); sreq->sn_state = REQ_DONE; sreq->sn_rv = error; cv_signal(&sreq->sn_cv); mutex_exit(&sreq->sn_lock); } /* * Callback the async client with the operation status. * We free the async request node and possibly the context. * We also handle any chain of requests hanging off of * the context. */ void kcf_aop_done(kcf_areq_node_t *areq, int error) { kcf_op_type_t optype; boolean_t skip_notify = B_FALSE; kcf_context_t *ictx; kcf_areq_node_t *nextreq; /* * Handle recoverable errors. This has to be done first * before doing anything else in this routine so that * we do not change the state of the request. */ if (error != CRYPTO_SUCCESS && IS_RECOVERABLE(error)) { /* * We try another provider, if one is available. Else * we continue with the failure notification to the * client. */ if (kcf_resubmit_request(areq) == CRYPTO_QUEUED) return; } mutex_enter(&areq->an_lock); areq->an_state = REQ_DONE; mutex_exit(&areq->an_lock); optype = (&areq->an_params)->rp_optype; if ((ictx = areq->an_context) != NULL) { /* * A request after it is removed from the request * queue, still stays on a chain of requests hanging * of its context structure. It needs to be removed * from this chain at this point. */ mutex_enter(&ictx->kc_in_use_lock); nextreq = areq->an_ctxchain_next; if (nextreq != NULL) { mutex_enter(&nextreq->an_lock); nextreq->an_is_my_turn = B_TRUE; cv_signal(&nextreq->an_turn_cv); mutex_exit(&nextreq->an_lock); } ictx->kc_req_chain_first = nextreq; if (nextreq == NULL) ictx->kc_req_chain_last = NULL; mutex_exit(&ictx->kc_in_use_lock); if (IS_SINGLE_OP(optype) || IS_FINAL_OP(optype)) { ASSERT(nextreq == NULL); KCF_CONTEXT_REFRELE(ictx); } else if (error != CRYPTO_SUCCESS && IS_INIT_OP(optype)) { /* * NOTE - We do not release the context in case of update * operations. We require the consumer to free it explicitly, * in case it wants to abandon an update operation. This is done * as there may be mechanisms in ECB mode that can continue * even if an operation on a block fails. */ KCF_CONTEXT_REFRELE(ictx); } } /* * If CRYPTO_NOTIFY_OPDONE flag is set, we should notify * always. If this flag is clear, we skip the notification * provided there are no errors. We check this flag for only * init or update operations. It is ignored for single, final or * atomic operations. */ skip_notify = (IS_UPDATE_OP(optype) || IS_INIT_OP(optype)) && (!(areq->an_reqarg.cr_flag & CRYPTO_NOTIFY_OPDONE)) && (error == CRYPTO_SUCCESS); if (!skip_notify) { NOTIFY_CLIENT(areq, error); } if (!(areq->an_reqarg.cr_flag & CRYPTO_SKIP_REQID)) kcf_reqid_delete(areq); KCF_AREQ_REFRELE(areq); } /* * Allocate the thread pool and initialize all the fields. */ static void kcfpool_alloc() { kcfpool = kmem_alloc(sizeof (kcf_pool_t), KM_SLEEP); kcfpool->kp_threads = kcfpool->kp_idlethreads = 0; kcfpool->kp_blockedthreads = 0; kcfpool->kp_signal_create_thread = B_FALSE; kcfpool->kp_nthrs = 0; kcfpool->kp_user_waiting = B_FALSE; mutex_init(&kcfpool->kp_thread_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&kcfpool->kp_nothr_cv, NULL, CV_DEFAULT, NULL); mutex_init(&kcfpool->kp_user_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&kcfpool->kp_user_cv, NULL, CV_DEFAULT, NULL); } /* * Delete the async request from the hash table. */ static void kcf_reqid_delete(kcf_areq_node_t *areq) { int indx; kcf_areq_node_t *nextp, *prevp; crypto_req_id_t id = GET_REQID(areq); kcf_reqid_table_t *rt; rt = kcf_reqid_table[id & REQID_TABLE_MASK]; indx = REQID_HASH(id); mutex_enter(&rt->rt_lock); nextp = areq->an_idnext; prevp = areq->an_idprev; if (nextp != NULL) nextp->an_idprev = prevp; if (prevp != NULL) prevp->an_idnext = nextp; else rt->rt_idhash[indx] = nextp; SET_REQID(areq, 0); cv_broadcast(&areq->an_done); mutex_exit(&rt->rt_lock); } /* * Update kstats. */ static int kcf_misc_kstat_update(kstat_t *ksp, int rw) { uint_t tcnt; kcf_stats_t *ks_data; if (rw == KSTAT_WRITE) return (EACCES); ks_data = ksp->ks_data; ks_data->ks_thrs_in_pool.value.ui32 = kcfpool->kp_threads; /* * The failover thread is counted in kp_idlethreads in * some corner cases. This is done to avoid doing more checks * when submitting a request. We account for those cases below. */ if ((tcnt = kcfpool->kp_idlethreads) == (kcfpool->kp_threads + 1)) tcnt--; ks_data->ks_idle_thrs.value.ui32 = tcnt; ks_data->ks_minthrs.value.ui32 = kcf_minthreads; ks_data->ks_maxthrs.value.ui32 = kcf_maxthreads; ks_data->ks_swq_njobs.value.ui32 = gswq->gs_njobs; ks_data->ks_swq_maxjobs.value.ui32 = gswq->gs_maxjobs; ks_data->ks_swq_maxalloc.value.ui32 = CRYPTO_TASKQ_MAX; return (0); }