/* * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . */ #ifndef _SPL_KMEM_CACHE_H #define _SPL_KMEM_CACHE_H #include /* * Slab allocation interfaces. The SPL slab differs from the standard * Linux SLAB or SLUB primarily in that each cache may be backed by slabs * allocated from the physical or virtual memory address space. The virtual * slabs allow for good behavior when allocation large objects of identical * size. This slab implementation also supports both constructors and * destructors which the Linux slab does not. */ typedef enum kmc_bit { KMC_BIT_NOTOUCH = 0, /* Don't update ages */ KMC_BIT_NODEBUG = 1, /* Default behavior */ KMC_BIT_NOMAGAZINE = 2, /* XXX: Unsupported */ KMC_BIT_NOHASH = 3, /* XXX: Unsupported */ KMC_BIT_QCACHE = 4, /* XXX: Unsupported */ KMC_BIT_KMEM = 5, /* Use kmem cache */ KMC_BIT_VMEM = 6, /* Use vmem cache */ KMC_BIT_KVMEM = 7, /* Use kvmalloc linux allocator */ KMC_BIT_SLAB = 8, /* Use Linux slab cache */ KMC_BIT_OFFSLAB = 9, /* Objects not on slab */ KMC_BIT_DEADLOCKED = 14, /* Deadlock detected */ KMC_BIT_GROWING = 15, /* Growing in progress */ KMC_BIT_REAPING = 16, /* Reaping in progress */ KMC_BIT_DESTROY = 17, /* Destroy in progress */ KMC_BIT_TOTAL = 18, /* Proc handler helper bit */ KMC_BIT_ALLOC = 19, /* Proc handler helper bit */ KMC_BIT_MAX = 20, /* Proc handler helper bit */ } kmc_bit_t; /* kmem move callback return values */ typedef enum kmem_cbrc { KMEM_CBRC_YES = 0, /* Object moved */ KMEM_CBRC_NO = 1, /* Object not moved */ KMEM_CBRC_LATER = 2, /* Object not moved, try again later */ KMEM_CBRC_DONT_NEED = 3, /* Neither object is needed */ KMEM_CBRC_DONT_KNOW = 4, /* Object unknown */ } kmem_cbrc_t; #define KMC_NOTOUCH (1 << KMC_BIT_NOTOUCH) #define KMC_NODEBUG (1 << KMC_BIT_NODEBUG) #define KMC_NOMAGAZINE (1 << KMC_BIT_NOMAGAZINE) #define KMC_NOHASH (1 << KMC_BIT_NOHASH) #define KMC_QCACHE (1 << KMC_BIT_QCACHE) #define KMC_KMEM (1 << KMC_BIT_KMEM) #define KMC_VMEM (1 << KMC_BIT_VMEM) #define KMC_KVMEM (1 << KMC_BIT_KVMEM) #define KMC_SLAB (1 << KMC_BIT_SLAB) #define KMC_OFFSLAB (1 << KMC_BIT_OFFSLAB) #define KMC_DEADLOCKED (1 << KMC_BIT_DEADLOCKED) #define KMC_GROWING (1 << KMC_BIT_GROWING) #define KMC_REAPING (1 << KMC_BIT_REAPING) #define KMC_DESTROY (1 << KMC_BIT_DESTROY) #define KMC_TOTAL (1 << KMC_BIT_TOTAL) #define KMC_ALLOC (1 << KMC_BIT_ALLOC) #define KMC_MAX (1 << KMC_BIT_MAX) #define KMC_REAP_CHUNK INT_MAX #define KMC_DEFAULT_SEEKS 1 #define KMC_EXPIRE_AGE 0x1 /* Due to age */ #define KMC_EXPIRE_MEM 0x2 /* Due to low memory */ #define KMC_RECLAIM_ONCE 0x1 /* Force a single shrinker pass */ extern unsigned int spl_kmem_cache_expire; extern struct list_head spl_kmem_cache_list; extern struct rw_semaphore spl_kmem_cache_sem; #define SKM_MAGIC 0x2e2e2e2e #define SKO_MAGIC 0x20202020 #define SKS_MAGIC 0x22222222 #define SKC_MAGIC 0x2c2c2c2c #define SPL_KMEM_CACHE_DELAY 15 /* Minimum slab release age */ #define SPL_KMEM_CACHE_OBJ_PER_SLAB 8 /* Target objects per slab */ #define SPL_KMEM_CACHE_OBJ_PER_SLAB_MIN 1 /* Minimum objects per slab */ #define SPL_KMEM_CACHE_ALIGN 8 /* Default object alignment */ #ifdef _LP64 #define SPL_KMEM_CACHE_MAX_SIZE 32 /* Max slab size in MB */ #else #define SPL_KMEM_CACHE_MAX_SIZE 4 /* Max slab size in MB */ #endif #define SPL_MAX_ORDER (MAX_ORDER - 3) #define SPL_MAX_ORDER_NR_PAGES (1 << (SPL_MAX_ORDER - 1)) #ifdef CONFIG_SLUB #define SPL_MAX_KMEM_CACHE_ORDER PAGE_ALLOC_COSTLY_ORDER #define SPL_MAX_KMEM_ORDER_NR_PAGES (1 << (SPL_MAX_KMEM_CACHE_ORDER - 1)) #else #define SPL_MAX_KMEM_ORDER_NR_PAGES (KMALLOC_MAX_SIZE >> PAGE_SHIFT) #endif #define POINTER_IS_VALID(p) 0 /* Unimplemented */ #define POINTER_INVALIDATE(pp) /* Unimplemented */ typedef int (*spl_kmem_ctor_t)(void *, void *, int); typedef void (*spl_kmem_dtor_t)(void *, void *); typedef void (*spl_kmem_reclaim_t)(void *); typedef struct spl_kmem_magazine { uint32_t skm_magic; /* Sanity magic */ uint32_t skm_avail; /* Available objects */ uint32_t skm_size; /* Magazine size */ uint32_t skm_refill; /* Batch refill size */ struct spl_kmem_cache *skm_cache; /* Owned by cache */ unsigned long skm_age; /* Last cache access */ unsigned int skm_cpu; /* Owned by cpu */ void *skm_objs[0]; /* Object pointers */ } spl_kmem_magazine_t; typedef struct spl_kmem_obj { uint32_t sko_magic; /* Sanity magic */ void *sko_addr; /* Buffer address */ struct spl_kmem_slab *sko_slab; /* Owned by slab */ struct list_head sko_list; /* Free object list linkage */ } spl_kmem_obj_t; typedef struct spl_kmem_slab { uint32_t sks_magic; /* Sanity magic */ uint32_t sks_objs; /* Objects per slab */ struct spl_kmem_cache *sks_cache; /* Owned by cache */ struct list_head sks_list; /* Slab list linkage */ struct list_head sks_free_list; /* Free object list */ unsigned long sks_age; /* Last modify jiffie */ uint32_t sks_ref; /* Ref count used objects */ } spl_kmem_slab_t; typedef struct spl_kmem_alloc { struct spl_kmem_cache *ska_cache; /* Owned by cache */ int ska_flags; /* Allocation flags */ taskq_ent_t ska_tqe; /* Task queue entry */ } spl_kmem_alloc_t; typedef struct spl_kmem_emergency { struct rb_node ske_node; /* Emergency tree linkage */ unsigned long ske_obj; /* Buffer address */ } spl_kmem_emergency_t; typedef struct spl_kmem_cache { uint32_t skc_magic; /* Sanity magic */ uint32_t skc_name_size; /* Name length */ char *skc_name; /* Name string */ spl_kmem_magazine_t **skc_mag; /* Per-CPU warm cache */ uint32_t skc_mag_size; /* Magazine size */ uint32_t skc_mag_refill; /* Magazine refill count */ spl_kmem_ctor_t skc_ctor; /* Constructor */ spl_kmem_dtor_t skc_dtor; /* Destructor */ spl_kmem_reclaim_t skc_reclaim; /* Reclaimator */ void *skc_private; /* Private data */ void *skc_vmp; /* Unused */ struct kmem_cache *skc_linux_cache; /* Linux slab cache if used */ unsigned long skc_flags; /* Flags */ uint32_t skc_obj_size; /* Object size */ uint32_t skc_obj_align; /* Object alignment */ uint32_t skc_slab_objs; /* Objects per slab */ uint32_t skc_slab_size; /* Slab size */ uint32_t skc_delay; /* Slab reclaim interval */ atomic_t skc_ref; /* Ref count callers */ taskqid_t skc_taskqid; /* Slab reclaim task */ struct list_head skc_list; /* List of caches linkage */ struct list_head skc_complete_list; /* Completely alloc'ed */ struct list_head skc_partial_list; /* Partially alloc'ed */ struct rb_root skc_emergency_tree; /* Min sized objects */ spinlock_t skc_lock; /* Cache lock */ spl_wait_queue_head_t skc_waitq; /* Allocation waiters */ uint64_t skc_slab_fail; /* Slab alloc failures */ uint64_t skc_slab_create; /* Slab creates */ uint64_t skc_slab_destroy; /* Slab destroys */ uint64_t skc_slab_total; /* Slab total current */ uint64_t skc_slab_alloc; /* Slab alloc current */ uint64_t skc_slab_max; /* Slab max historic */ uint64_t skc_obj_total; /* Obj total current */ uint64_t skc_obj_alloc; /* Obj alloc current */ struct percpu_counter skc_linux_alloc; /* Linux-backed Obj alloc */ uint64_t skc_obj_max; /* Obj max historic */ uint64_t skc_obj_deadlock; /* Obj emergency deadlocks */ uint64_t skc_obj_emergency; /* Obj emergency current */ uint64_t skc_obj_emergency_max; /* Obj emergency max */ } spl_kmem_cache_t; #define kmem_cache_t spl_kmem_cache_t extern spl_kmem_cache_t *spl_kmem_cache_create(char *name, size_t size, size_t align, spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, spl_kmem_reclaim_t reclaim, void *priv, void *vmp, int flags); extern void spl_kmem_cache_set_move(spl_kmem_cache_t *, kmem_cbrc_t (*)(void *, void *, size_t, void *)); extern void spl_kmem_cache_destroy(spl_kmem_cache_t *skc); extern void *spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags); extern void spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj); extern void spl_kmem_cache_set_allocflags(spl_kmem_cache_t *skc, gfp_t flags); extern void spl_kmem_cache_reap_now(spl_kmem_cache_t *skc); extern void spl_kmem_reap(void); extern uint64_t spl_kmem_cache_inuse(kmem_cache_t *cache); extern uint64_t spl_kmem_cache_entry_size(kmem_cache_t *cache); #define kmem_cache_create(name, size, align, ctor, dtor, rclm, priv, vmp, fl) \ spl_kmem_cache_create(name, size, align, ctor, dtor, rclm, priv, vmp, fl) #define kmem_cache_set_move(skc, move) spl_kmem_cache_set_move(skc, move) #define kmem_cache_destroy(skc) spl_kmem_cache_destroy(skc) #define kmem_cache_alloc(skc, flags) spl_kmem_cache_alloc(skc, flags) #define kmem_cache_free(skc, obj) spl_kmem_cache_free(skc, obj) #define kmem_cache_reap_now(skc) spl_kmem_cache_reap_now(skc) #define kmem_reap() spl_kmem_reap() /* * The following functions are only available for internal use. */ extern int spl_kmem_cache_init(void); extern void spl_kmem_cache_fini(void); #endif /* _SPL_KMEM_CACHE_H */