/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright 2015 RackTop Systems. * Copyright (c) 2016, Intel Corporation. */ /* * Pool import support functions. * * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since * these commands are expected to run in the global zone, we can assume * that the devices are all readable when called. * * To import a pool, we rely on reading the configuration information from the * ZFS label of each device. If we successfully read the label, then we * organize the configuration information in the following hierarchy: * * pool guid -> toplevel vdev guid -> label txg * * Duplicate entries matching this same tuple will be discarded. Once we have * examined every device, we pick the best label txg config for each toplevel * vdev. We then arrange these toplevel vdevs into a complete pool config, and * update any paths that have changed. Finally, we attempt to import the pool * using our derived config, and record the results. */ #include #include #include #include #include #ifdef HAVE_LIBUDEV #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define IMPORT_ORDER_PREFERRED_1 1 #define IMPORT_ORDER_PREFERRED_2 2 #define IMPORT_ORDER_SCAN_OFFSET 10 #define IMPORT_ORDER_DEFAULT 100 #define DEFAULT_IMPORT_PATH_SIZE 9 #define EZFS_BADCACHE "invalid or missing cache file" #define EZFS_BADPATH "must be an absolute path" #define EZFS_NOMEM "out of memory" #define EZFS_EACESS "some devices require root privileges" typedef struct libpc_handle { boolean_t lpc_printerr; boolean_t lpc_open_access_error; boolean_t lpc_desc_active; char lpc_desc[1024]; const pool_config_ops_t *lpc_ops; void *lpc_lib_handle; } libpc_handle_t; /*PRINTFLIKE2*/ static void zfs_error_aux(libpc_handle_t *hdl, const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); hdl->lpc_desc_active = B_TRUE; va_end(ap); } static void zfs_verror(libpc_handle_t *hdl, const char *error, const char *fmt, va_list ap) { char action[1024]; (void) vsnprintf(action, sizeof (action), fmt, ap); if (hdl->lpc_desc_active) hdl->lpc_desc_active = B_FALSE; else hdl->lpc_desc[0] = '\0'; if (hdl->lpc_printerr) { if (hdl->lpc_desc[0] != '\0') error = hdl->lpc_desc; (void) fprintf(stderr, "%s: %s\n", action, error); } } /*PRINTFLIKE3*/ static int zfs_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) { va_list ap; va_start(ap, fmt); zfs_verror(hdl, error, fmt, ap); va_end(ap); return (-1); } static int zfs_error(libpc_handle_t *hdl, const char *error, const char *msg) { return (zfs_error_fmt(hdl, error, "%s", msg)); } static int no_memory(libpc_handle_t *hdl) { zfs_error(hdl, EZFS_NOMEM, "internal error"); exit(1); } static void * zfs_alloc(libpc_handle_t *hdl, size_t size) { void *data; if ((data = calloc(1, size)) == NULL) (void) no_memory(hdl); return (data); } static char * zfs_strdup(libpc_handle_t *hdl, const char *str) { char *ret; if ((ret = strdup(str)) == NULL) (void) no_memory(hdl); return (ret); } /* * Intermediate structures used to gather configuration information. */ typedef struct config_entry { uint64_t ce_txg; nvlist_t *ce_config; struct config_entry *ce_next; } config_entry_t; typedef struct vdev_entry { uint64_t ve_guid; config_entry_t *ve_configs; struct vdev_entry *ve_next; } vdev_entry_t; typedef struct pool_entry { uint64_t pe_guid; vdev_entry_t *pe_vdevs; struct pool_entry *pe_next; } pool_entry_t; typedef struct name_entry { char *ne_name; uint64_t ne_guid; uint64_t ne_order; uint64_t ne_num_labels; struct name_entry *ne_next; } name_entry_t; typedef struct pool_list { pool_entry_t *pools; name_entry_t *names; } pool_list_t; #define ZVOL_ROOT "/dev/zvol" #define DEV_BYID_PATH "/dev/disk/by-id/" /* * Linux persistent device strings for vdev labels * * based on libudev for consistency with libudev disk add/remove events */ typedef struct vdev_dev_strs { char vds_devid[128]; char vds_devphys[128]; } vdev_dev_strs_t; #ifdef HAVE_LIBUDEV /* * Obtain the persistent device id string (describes what) * * used by ZED vdev matching for auto-{online,expand,replace} */ int zfs_device_get_devid(struct udev_device *dev, char *bufptr, size_t buflen) { struct udev_list_entry *entry; const char *bus; char devbyid[MAXPATHLEN]; /* The bus based by-id path is preferred */ bus = udev_device_get_property_value(dev, "ID_BUS"); if (bus == NULL) { const char *dm_uuid; /* * For multipath nodes use the persistent uuid based identifier * * Example: /dev/disk/by-id/dm-uuid-mpath-35000c5006304de3f */ dm_uuid = udev_device_get_property_value(dev, "DM_UUID"); if (dm_uuid != NULL) { (void) snprintf(bufptr, buflen, "dm-uuid-%s", dm_uuid); return (0); } /* * For volumes use the persistent /dev/zvol/dataset identifier */ entry = udev_device_get_devlinks_list_entry(dev); while (entry != NULL) { const char *name; name = udev_list_entry_get_name(entry); if (strncmp(name, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0) { (void) strlcpy(bufptr, name, buflen); return (0); } entry = udev_list_entry_get_next(entry); } /* * NVME 'by-id' symlinks are similar to bus case */ struct udev_device *parent; parent = udev_device_get_parent_with_subsystem_devtype(dev, "nvme", NULL); if (parent != NULL) bus = "nvme"; /* continue with bus symlink search */ else return (ENODATA); } /* * locate the bus specific by-id link */ (void) snprintf(devbyid, sizeof (devbyid), "%s%s-", DEV_BYID_PATH, bus); entry = udev_device_get_devlinks_list_entry(dev); while (entry != NULL) { const char *name; name = udev_list_entry_get_name(entry); if (strncmp(name, devbyid, strlen(devbyid)) == 0) { name += strlen(DEV_BYID_PATH); (void) strlcpy(bufptr, name, buflen); return (0); } entry = udev_list_entry_get_next(entry); } return (ENODATA); } /* * Obtain the persistent physical location string (describes where) * * used by ZED vdev matching for auto-{online,expand,replace} */ int zfs_device_get_physical(struct udev_device *dev, char *bufptr, size_t buflen) { const char *physpath = NULL; struct udev_list_entry *entry; /* * Normal disks use ID_PATH for their physical path. */ physpath = udev_device_get_property_value(dev, "ID_PATH"); if (physpath != NULL && strlen(physpath) > 0) { (void) strlcpy(bufptr, physpath, buflen); return (0); } /* * Device mapper devices are virtual and don't have a physical * path. For them we use ID_VDEV instead, which is setup via the * /etc/vdev_id.conf file. ID_VDEV provides a persistent path * to a virtual device. If you don't have vdev_id.conf setup, * you cannot use multipath autoreplace with device mapper. */ physpath = udev_device_get_property_value(dev, "ID_VDEV"); if (physpath != NULL && strlen(physpath) > 0) { (void) strlcpy(bufptr, physpath, buflen); return (0); } /* * For ZFS volumes use the persistent /dev/zvol/dataset identifier */ entry = udev_device_get_devlinks_list_entry(dev); while (entry != NULL) { physpath = udev_list_entry_get_name(entry); if (strncmp(physpath, ZVOL_ROOT, strlen(ZVOL_ROOT)) == 0) { (void) strlcpy(bufptr, physpath, buflen); return (0); } entry = udev_list_entry_get_next(entry); } /* * For all other devices fallback to using the by-uuid name. */ entry = udev_device_get_devlinks_list_entry(dev); while (entry != NULL) { physpath = udev_list_entry_get_name(entry); if (strncmp(physpath, "/dev/disk/by-uuid", 17) == 0) { (void) strlcpy(bufptr, physpath, buflen); return (0); } entry = udev_list_entry_get_next(entry); } return (ENODATA); } /* * A disk is considered a multipath whole disk when: * DEVNAME key value has "dm-" * DM_NAME key value has "mpath" prefix * DM_UUID key exists * ID_PART_TABLE_TYPE key does not exist or is not gpt */ static boolean_t udev_mpath_whole_disk(struct udev_device *dev) { const char *devname, *type, *uuid; devname = udev_device_get_property_value(dev, "DEVNAME"); type = udev_device_get_property_value(dev, "ID_PART_TABLE_TYPE"); uuid = udev_device_get_property_value(dev, "DM_UUID"); if ((devname != NULL && strncmp(devname, "/dev/dm-", 8) == 0) && ((type == NULL) || (strcmp(type, "gpt") != 0)) && (uuid != NULL)) { return (B_TRUE); } return (B_FALSE); } static int udev_device_is_ready(struct udev_device *dev) { #ifdef HAVE_LIBUDEV_UDEV_DEVICE_GET_IS_INITIALIZED return (udev_device_get_is_initialized(dev)); #else /* wait for DEVLINKS property to be initialized */ return (udev_device_get_property_value(dev, "DEVLINKS") != NULL); #endif } #endif /* HAVE_LIBUDEV */ /* * Wait up to timeout_ms for udev to set up the device node. The device is * considered ready when libudev determines it has been initialized, all of * the device links have been verified to exist, and it has been allowed to * settle. At this point the device the device can be accessed reliably. * Depending on the complexity of the udev rules this process could take * several seconds. */ int zpool_label_disk_wait(const char *path, int timeout_ms) { #ifdef HAVE_LIBUDEV struct udev *udev; struct udev_device *dev = NULL; char nodepath[MAXPATHLEN]; char *sysname = NULL; int ret = ENODEV; int settle_ms = 50; long sleep_ms = 10; hrtime_t start, settle; if ((udev = udev_new()) == NULL) return (ENXIO); start = gethrtime(); settle = 0; do { if (sysname == NULL) { if (realpath(path, nodepath) != NULL) { sysname = strrchr(nodepath, '/') + 1; } else { (void) usleep(sleep_ms * MILLISEC); continue; } } dev = udev_device_new_from_subsystem_sysname(udev, "block", sysname); if ((dev != NULL) && udev_device_is_ready(dev)) { struct udev_list_entry *links, *link = NULL; ret = 0; links = udev_device_get_devlinks_list_entry(dev); udev_list_entry_foreach(link, links) { struct stat64 statbuf; const char *name; name = udev_list_entry_get_name(link); errno = 0; if (stat64(name, &statbuf) == 0 && errno == 0) continue; settle = 0; ret = ENODEV; break; } if (ret == 0) { if (settle == 0) { settle = gethrtime(); } else if (NSEC2MSEC(gethrtime() - settle) >= settle_ms) { udev_device_unref(dev); break; } } } udev_device_unref(dev); (void) usleep(sleep_ms * MILLISEC); } while (NSEC2MSEC(gethrtime() - start) < timeout_ms); udev_unref(udev); return (ret); #else int settle_ms = 50; long sleep_ms = 10; hrtime_t start, settle; struct stat64 statbuf; start = gethrtime(); settle = 0; do { errno = 0; if ((stat64(path, &statbuf) == 0) && (errno == 0)) { if (settle == 0) settle = gethrtime(); else if (NSEC2MSEC(gethrtime() - settle) >= settle_ms) return (0); } else if (errno != ENOENT) { return (errno); } usleep(sleep_ms * MILLISEC); } while (NSEC2MSEC(gethrtime() - start) < timeout_ms); return (ENODEV); #endif /* HAVE_LIBUDEV */ } /* * Encode the persistent devices strings * used for the vdev disk label */ static int encode_device_strings(const char *path, vdev_dev_strs_t *ds, boolean_t wholedisk) { #ifdef HAVE_LIBUDEV struct udev *udev; struct udev_device *dev = NULL; char nodepath[MAXPATHLEN]; char *sysname; int ret = ENODEV; hrtime_t start; if ((udev = udev_new()) == NULL) return (ENXIO); /* resolve path to a runtime device node instance */ if (realpath(path, nodepath) == NULL) goto no_dev; sysname = strrchr(nodepath, '/') + 1; /* * Wait up to 3 seconds for udev to set up the device node context */ start = gethrtime(); do { dev = udev_device_new_from_subsystem_sysname(udev, "block", sysname); if (dev == NULL) goto no_dev; if (udev_device_is_ready(dev)) break; /* udev ready */ udev_device_unref(dev); dev = NULL; if (NSEC2MSEC(gethrtime() - start) < 10) (void) sched_yield(); /* yield/busy wait up to 10ms */ else (void) usleep(10 * MILLISEC); } while (NSEC2MSEC(gethrtime() - start) < (3 * MILLISEC)); if (dev == NULL) goto no_dev; /* * Only whole disks require extra device strings */ if (!wholedisk && !udev_mpath_whole_disk(dev)) goto no_dev; ret = zfs_device_get_devid(dev, ds->vds_devid, sizeof (ds->vds_devid)); if (ret != 0) goto no_dev_ref; /* physical location string (optional) */ if (zfs_device_get_physical(dev, ds->vds_devphys, sizeof (ds->vds_devphys)) != 0) { ds->vds_devphys[0] = '\0'; /* empty string --> not available */ } no_dev_ref: udev_device_unref(dev); no_dev: udev_unref(udev); return (ret); #else return (ENOENT); #endif } /* * Update a leaf vdev's persistent device strings (Linux only) * * - only applies for a dedicated leaf vdev (aka whole disk) * - updated during pool create|add|attach|import * - used for matching device matching during auto-{online,expand,replace} * - stored in a leaf disk config label (i.e. alongside 'path' NVP) * - these strings are currently not used in kernel (i.e. for vdev_disk_open) * * single device node example: * devid: 'scsi-MG03SCA300_350000494a8cb3d67-part1' * phys_path: 'pci-0000:04:00.0-sas-0x50000394a8cb3d67-lun-0' * * multipath device node example: * devid: 'dm-uuid-mpath-35000c5006304de3f' * * We also store the enclosure sysfs path for turning on enclosure LEDs * (if applicable): * vdev_enc_sysfs_path: '/sys/class/enclosure/11:0:1:0/SLOT 4' */ void update_vdev_config_dev_strs(nvlist_t *nv) { vdev_dev_strs_t vds; char *env, *type, *path; uint64_t wholedisk = 0; char *upath, *spath; /* * For the benefit of legacy ZFS implementations, allow * for opting out of devid strings in the vdev label. * * example use: * env ZFS_VDEV_DEVID_OPT_OUT=YES zpool import dozer * * explanation: * Older ZFS on Linux implementations had issues when attempting to * display pool config VDEV names if a "devid" NVP value is present * in the pool's config. * * For example, a pool that originated on illumos platform would * have a devid value in the config and "zpool status" would fail * when listing the config. * * A pool can be stripped of any "devid" values on import or * prevented from adding them on zpool create|add by setting * ZFS_VDEV_DEVID_OPT_OUT. */ env = getenv("ZFS_VDEV_DEVID_OPT_OUT"); if (env && (strtoul(env, NULL, 0) > 0 || !strncasecmp(env, "YES", 3) || !strncasecmp(env, "ON", 2))) { (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); (void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH); return; } if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0 || strcmp(type, VDEV_TYPE_DISK) != 0) { return; } if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) return; (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); /* * Update device string values in config nvlist */ if (encode_device_strings(path, &vds, (boolean_t)wholedisk) == 0) { (void) nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vds.vds_devid); if (vds.vds_devphys[0] != '\0') { (void) nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, vds.vds_devphys); } /* Add enclosure sysfs path (if disk is in an enclosure) */ upath = zfs_get_underlying_path(path); spath = zfs_get_enclosure_sysfs_path(upath); if (spath) nvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, spath); else nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH); free(upath); free(spath); } else { /* clear out any stale entries */ (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); (void) nvlist_remove_all(nv, ZPOOL_CONFIG_PHYS_PATH); (void) nvlist_remove_all(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH); } } /* * Go through and fix up any path and/or devid information for the given vdev * configuration. */ static int fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) { nvlist_t **child; uint_t c, children; uint64_t guid; name_entry_t *ne, *best; char *path; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (fix_paths(hdl, child[c], names) != 0) return (-1); return (0); } /* * This is a leaf (file or disk) vdev. In either case, go through * the name list and see if we find a matching guid. If so, replace * the path and see if we can calculate a new devid. * * There may be multiple names associated with a particular guid, in * which case we have overlapping partitions or multiple paths to the * same disk. In this case we prefer to use the path name which * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we * use the lowest order device which corresponds to the first match * while traversing the ZPOOL_IMPORT_PATH search path. */ verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) path = NULL; best = NULL; for (ne = names; ne != NULL; ne = ne->ne_next) { if (ne->ne_guid == guid) { if (path == NULL) { best = ne; break; } if ((strlen(path) == strlen(ne->ne_name)) && strncmp(path, ne->ne_name, strlen(path)) == 0) { best = ne; break; } if (best == NULL) { best = ne; continue; } /* Prefer paths with move vdev labels. */ if (ne->ne_num_labels > best->ne_num_labels) { best = ne; continue; } /* Prefer paths earlier in the search order. */ if (ne->ne_num_labels == best->ne_num_labels && ne->ne_order < best->ne_order) { best = ne; continue; } } } if (best == NULL) return (0); if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) return (-1); /* Linux only - update ZPOOL_CONFIG_DEVID and ZPOOL_CONFIG_PHYS_PATH */ update_vdev_config_dev_strs(nv); return (0); } /* * Add the given configuration to the list of known devices. */ static int add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, int order, int num_labels, nvlist_t *config) { uint64_t pool_guid, vdev_guid, top_guid, txg, state; pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; name_entry_t *ne; /* * If this is a hot spare not currently in use or level 2 cache * device, add it to the list of names to translate, but don't do * anything else. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0 && (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_order = order; ne->ne_num_labels = num_labels; ne->ne_next = pl->names; pl->names = ne; return (0); } /* * If we have a valid config but cannot read any of these fields, then * it means we have a half-initialized label. In vdev_label_init() * we write a label with txg == 0 so that we can identify the device * in case the user refers to the same disk later on. If we fail to * create the pool, we'll be left with a label in this state * which should not be considered part of a valid pool. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0) { return (0); } /* * First, see if we know about this pool. If not, then add it to the * list of known pools. */ for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { if (pe->pe_guid == pool_guid) break; } if (pe == NULL) { if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { return (-1); } pe->pe_guid = pool_guid; pe->pe_next = pl->pools; pl->pools = pe; } /* * Second, see if we know about this toplevel vdev. Add it if its * missing. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { if (ve->ve_guid == top_guid) break; } if (ve == NULL) { if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { return (-1); } ve->ve_guid = top_guid; ve->ve_next = pe->pe_vdevs; pe->pe_vdevs = ve; } /* * Third, see if we have a config with a matching transaction group. If * so, then we do nothing. Otherwise, add it to the list of known * configs. */ for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg == txg) break; } if (ce == NULL) { if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { return (-1); } ce->ce_txg = txg; ce->ce_config = fnvlist_dup(config); ce->ce_next = ve->ve_configs; ve->ve_configs = ce; } /* * At this point we've successfully added our config to the list of * known configs. The last thing to do is add the vdev guid -> path * mappings so that we can fix up the configuration as necessary before * doing the import. */ if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_order = order; ne->ne_num_labels = num_labels; ne->ne_next = pl->names; pl->names = ne; return (0); } static int pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, boolean_t *isactive) { ASSERT(hdl->lpc_ops->pco_pool_active != NULL); int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, guid, isactive); return (error); } static nvlist_t * refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) { ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, tryconfig)); } /* * Determine if the vdev id is a hole in the namespace. */ static boolean_t vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) { int c; for (c = 0; c < holes; c++) { /* Top-level is a hole */ if (hole_array[c] == id) return (B_TRUE); } return (B_FALSE); } /* * Convert our list of pools into the definitive set of configurations. We * start by picking the best config for each toplevel vdev. Once that's done, * we assemble the toplevel vdevs into a full config for the pool. We make a * pass to fix up any incorrect paths, and then add it to the main list to * return to the user. */ static nvlist_t * get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, nvlist_t *policy) { pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; nvlist_t **spares, **l2cache; uint_t i, nspares, nl2cache; boolean_t config_seen; uint64_t best_txg; char *name, *hostname = NULL; uint64_t guid; uint_t children = 0; nvlist_t **child = NULL; uint_t holes; uint64_t *hole_array, max_id; uint_t c; boolean_t isactive; uint64_t hostid; nvlist_t *nvl; boolean_t valid_top_config = B_FALSE; if (nvlist_alloc(&ret, 0, 0) != 0) goto nomem; for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { uint64_t id, max_txg = 0; if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) goto nomem; config_seen = B_FALSE; /* * Iterate over all toplevel vdevs. Grab the pool configuration * from the first one we find, and then go through the rest and * add them as necessary to the 'vdevs' member of the config. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { /* * Determine the best configuration for this vdev by * selecting the config with the latest transaction * group. */ best_txg = 0; for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg > best_txg) { tmp = ce->ce_config; best_txg = ce->ce_txg; } } /* * We rely on the fact that the max txg for the * pool will contain the most up-to-date information * about the valid top-levels in the vdev namespace. */ if (best_txg > max_txg) { (void) nvlist_remove(config, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOLE_ARRAY, DATA_TYPE_UINT64_ARRAY); max_txg = best_txg; hole_array = NULL; holes = 0; max_id = 0; valid_top_config = B_FALSE; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, max_id) == 0); valid_top_config = B_TRUE; } if (nvlist_lookup_uint64_array(tmp, ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, &holes) == 0) { verify(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, hole_array, holes) == 0); } } if (!config_seen) { /* * Copy the relevant pieces of data to the pool * configuration: * * version * pool guid * name * comment (if available) * pool state * hostid (if available) * hostname (if available) */ uint64_t state, version; char *comment = NULL; version = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VERSION); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, version); guid = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_GUID); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, guid); name = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_POOL_NAME); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, name); if (nvlist_lookup_string(tmp, ZPOOL_CONFIG_COMMENT, &comment) == 0) fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, comment); state = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_STATE); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); hostid = 0; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); hostname = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname); } config_seen = B_TRUE; } /* * Add this top-level vdev to the child array. */ verify(nvlist_lookup_nvlist(tmp, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, &id) == 0); if (id >= children) { nvlist_t **newchild; newchild = zfs_alloc(hdl, (id + 1) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = id + 1; } if (nvlist_dup(nvtop, &child[id], 0) != 0) goto nomem; } /* * If we have information about all the top-levels then * clean up the nvlist which we've constructed. This * means removing any extraneous devices that are * beyond the valid range or adding devices to the end * of our array which appear to be missing. */ if (valid_top_config) { if (max_id < children) { for (c = max_id; c < children; c++) nvlist_free(child[c]); children = max_id; } else if (max_id > children) { nvlist_t **newchild; newchild = zfs_alloc(hdl, (max_id) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = max_id; } } verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); /* * The vdev namespace may contain holes as a result of * device removal. We must add them back into the vdev * tree before we process any missing devices. */ if (holes > 0) { ASSERT(valid_top_config); for (c = 0; c < children; c++) { nvlist_t *holey; if (child[c] != NULL || !vdev_is_hole(hole_array, holes, c)) continue; if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 0) != 0) goto nomem; /* * Holes in the namespace are treated as * "hole" top-level vdevs and have a * special flag set on them. */ if (nvlist_add_string(holey, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(holey); goto nomem; } child[c] = holey; } } /* * Look for any missing top-level vdevs. If this is the case, * create a faked up 'missing' vdev as a placeholder. We cannot * simply compress the child array, because the kernel performs * certain checks to make sure the vdev IDs match their location * in the configuration. */ for (c = 0; c < children; c++) { if (child[c] == NULL) { nvlist_t *missing; if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(missing, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MISSING) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(missing); goto nomem; } child[c] = missing; } } /* * Put all of this pool's top-level vdevs into a root vdev. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, child, children) != 0) { nvlist_free(nvroot); goto nomem; } for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); children = 0; child = NULL; /* * Go through and fix up any paths and/or devids based on our * known list of vdev GUID -> path mappings. */ if (fix_paths(hdl, nvroot, pl->names) != 0) { nvlist_free(nvroot); goto nomem; } /* * Add the root vdev to this pool's configuration. */ if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) != 0) { nvlist_free(nvroot); goto nomem; } nvlist_free(nvroot); /* * zdb uses this path to report on active pools that were * imported or created using -R. */ if (active_ok) goto add_pool; /* * Determine if this pool is currently active, in which case we * can't actually import it. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); if (pool_active(hdl, name, guid, &isactive) != 0) goto error; if (isactive) { nvlist_free(config); config = NULL; continue; } if (policy != NULL) { if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, policy) != 0) goto nomem; } if ((nvl = refresh_config(hdl, config)) == NULL) { nvlist_free(config); config = NULL; continue; } nvlist_free(config); config = nvl; /* * Go through and update the paths for spares, now that we have * them. */ verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { for (i = 0; i < nspares; i++) { if (fix_paths(hdl, spares[i], pl->names) != 0) goto nomem; } } /* * Update the paths for l2cache devices. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { for (i = 0; i < nl2cache; i++) { if (fix_paths(hdl, l2cache[i], pl->names) != 0) goto nomem; } } /* * Restore the original information read from the actual label. */ (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, DATA_TYPE_STRING); if (hostid != 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname) == 0); } add_pool: /* * Add this pool to the list of configs. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); if (nvlist_add_nvlist(ret, name, config) != 0) goto nomem; nvlist_free(config); config = NULL; } return (ret); nomem: (void) no_memory(hdl); error: nvlist_free(config); nvlist_free(ret); for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); return (NULL); } /* * Return the offset of the given label. */ static uint64_t label_offset(uint64_t size, int l) { ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); } /* * Given a file descriptor, read the label information and return an nvlist * describing the configuration, if there is one. The number of valid * labels found will be returned in num_labels when non-NULL. */ int zpool_read_label(int fd, nvlist_t **config, int *num_labels) { struct stat64 statbuf; int l, count = 0; vdev_label_t *label; nvlist_t *expected_config = NULL; uint64_t expected_guid = 0, size; int error; *config = NULL; if (fstat64_blk(fd, &statbuf) == -1) return (0); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); error = posix_memalign((void **)&label, PAGESIZE, sizeof (*label)); if (error) return (-1); for (l = 0; l < VDEV_LABELS; l++) { uint64_t state, guid, txg; if (pread64(fd, label, sizeof (vdev_label_t), label_offset(size, l)) != sizeof (vdev_label_t)) continue; if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) continue; if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, &guid) != 0 || guid == 0) { nvlist_free(*config); continue; } if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || state > POOL_STATE_L2CACHE) { nvlist_free(*config); continue; } if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0)) { nvlist_free(*config); continue; } if (expected_guid) { if (expected_guid == guid) count++; nvlist_free(*config); } else { expected_config = *config; expected_guid = guid; count++; } } if (num_labels != NULL) *num_labels = count; free(label); *config = expected_config; return (0); } typedef struct rdsk_node { char *rn_name; /* Full path to device */ int rn_order; /* Preferred order (low to high) */ int rn_num_labels; /* Number of valid labels */ uint64_t rn_vdev_guid; /* Expected vdev guid when set */ libpc_handle_t *rn_hdl; nvlist_t *rn_config; /* Label config */ avl_tree_t *rn_avl; avl_node_t rn_node; pthread_mutex_t *rn_lock; boolean_t rn_labelpaths; } rdsk_node_t; /* * Sorted by full path and then vdev guid to allow for multiple entries with * the same full path name. This is required because it's possible to * have multiple block devices with labels that refer to the same * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both * entries need to be added to the cache. Scenarios where this can occur * include overwritten pool labels, devices which are visible from multiple * hosts and multipath devices. */ static int slice_cache_compare(const void *arg1, const void *arg2) { const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; int rv; rv = AVL_ISIGN(strcmp(nm1, nm2)); if (rv) return (rv); return (AVL_CMP(guid1, guid2)); } static boolean_t is_watchdog_dev(char *dev) { /* For 'watchdog' dev */ if (strcmp(dev, "watchdog") == 0) return (B_TRUE); /* For 'watchdog */ if (strstr(dev, "watchdog") == dev && isdigit(dev[8])) return (B_TRUE); return (B_FALSE); } static int label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, uint64_t vdev_guid, char **path, char **devid) { nvlist_t **child; uint_t c, children; uint64_t guid; char *val; int error; if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) { error = label_paths_impl(hdl, child[c], pool_guid, vdev_guid, path, devid); if (error) return (error); } return (0); } if (nvroot == NULL) return (0); error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); if ((error != 0) || (guid != vdev_guid)) return (0); error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); if (error == 0) *path = val; error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); if (error == 0) *devid = val; return (0); } /* * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID * and store these strings as config_path and devid_path respectively. * The returned pointers are only valid as long as label remains valid. */ static int label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) { nvlist_t *nvroot; uint64_t pool_guid; uint64_t vdev_guid; *path = NULL; *devid = NULL; if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) return (ENOENT); return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, devid)); } static void zpool_open_func(void *arg) { rdsk_node_t *rn = arg; libpc_handle_t *hdl = rn->rn_hdl; struct stat64 statbuf; nvlist_t *config; char *bname, *dupname; uint64_t vdev_guid = 0; int error; int num_labels = 0; int fd; /* * Skip devices with well known prefixes there can be side effects * when opening devices which need to be avoided. * * hpet - High Precision Event Timer * watchdog - Watchdog must be closed in a special way. */ dupname = zfs_strdup(hdl, rn->rn_name); bname = basename(dupname); error = ((strcmp(bname, "hpet") == 0) || is_watchdog_dev(bname)); free(dupname); if (error) return; /* * Ignore failed stats. We only want regular files and block devices. */ if (stat64(rn->rn_name, &statbuf) != 0 || (!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode))) return; /* * Preferentially open using O_DIRECT to bypass the block device * cache which may be stale for multipath devices. An EINVAL errno * indicates O_DIRECT is unsupported so fallback to just O_RDONLY. */ fd = open(rn->rn_name, O_RDONLY | O_DIRECT); if ((fd < 0) && (errno == EINVAL)) fd = open(rn->rn_name, O_RDONLY); if ((fd < 0) && (errno == EACCES)) hdl->lpc_open_access_error = B_TRUE; if (fd < 0) return; /* * This file is too small to hold a zpool */ if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) { (void) close(fd); return; } error = zpool_read_label(fd, &config, &num_labels); if (error != 0) { (void) close(fd); return; } if (num_labels == 0) { (void) close(fd); nvlist_free(config); return; } /* * Check that the vdev is for the expected guid. Additional entries * are speculatively added based on the paths stored in the labels. * Entries with valid paths but incorrect guids must be removed. */ error = nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid); if (error || (rn->rn_vdev_guid && rn->rn_vdev_guid != vdev_guid)) { (void) close(fd); nvlist_free(config); return; } (void) close(fd); rn->rn_config = config; rn->rn_num_labels = num_labels; /* * Add additional entries for paths described by this label. */ if (rn->rn_labelpaths) { char *path = NULL; char *devid = NULL; rdsk_node_t *slice; avl_index_t where; int error; if (label_paths(rn->rn_hdl, rn->rn_config, &path, &devid)) return; /* * Allow devlinks to stabilize so all paths are available. */ zpool_label_disk_wait(rn->rn_name, DISK_LABEL_WAIT); if (path != NULL) { slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); slice->rn_name = zfs_strdup(hdl, path); slice->rn_vdev_guid = vdev_guid; slice->rn_avl = rn->rn_avl; slice->rn_hdl = hdl; slice->rn_order = IMPORT_ORDER_PREFERRED_1; slice->rn_labelpaths = B_FALSE; pthread_mutex_lock(rn->rn_lock); if (avl_find(rn->rn_avl, slice, &where)) { pthread_mutex_unlock(rn->rn_lock); free(slice->rn_name); free(slice); } else { avl_insert(rn->rn_avl, slice, where); pthread_mutex_unlock(rn->rn_lock); zpool_open_func(slice); } } if (devid != NULL) { slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); error = asprintf(&slice->rn_name, "%s%s", DEV_BYID_PATH, devid); if (error == -1) { free(slice); return; } slice->rn_vdev_guid = vdev_guid; slice->rn_avl = rn->rn_avl; slice->rn_hdl = hdl; slice->rn_order = IMPORT_ORDER_PREFERRED_2; slice->rn_labelpaths = B_FALSE; pthread_mutex_lock(rn->rn_lock); if (avl_find(rn->rn_avl, slice, &where)) { pthread_mutex_unlock(rn->rn_lock); free(slice->rn_name); free(slice); } else { avl_insert(rn->rn_avl, slice, where); pthread_mutex_unlock(rn->rn_lock); zpool_open_func(slice); } } } } static void zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, avl_tree_t *cache, const char *path, const char *name, int order) { avl_index_t where; rdsk_node_t *slice; slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { free(slice); return; } slice->rn_vdev_guid = 0; slice->rn_lock = lock; slice->rn_avl = cache; slice->rn_hdl = hdl; slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; slice->rn_labelpaths = B_FALSE; pthread_mutex_lock(lock); if (avl_find(cache, slice, &where)) { free(slice->rn_name); free(slice); } else { avl_insert(cache, slice, where); } pthread_mutex_unlock(lock); } static int zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, avl_tree_t *cache, const char *dir, int order) { int error; char path[MAXPATHLEN]; struct dirent64 *dp; DIR *dirp; if (realpath(dir, path) == NULL) { error = errno; if (error == ENOENT) return (0); zfs_error_aux(hdl, strerror(error)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext( TEXT_DOMAIN, "cannot resolve path '%s'"), dir); return (error); } dirp = opendir(path); if (dirp == NULL) { error = errno; zfs_error_aux(hdl, strerror(error)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); return (error); } while ((dp = readdir64(dirp)) != NULL) { const char *name = dp->d_name; if (name[0] == '.' && (name[1] == 0 || (name[1] == '.' && name[2] == 0))) continue; zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); } (void) closedir(dirp); return (0); } static int zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, avl_tree_t *cache, const char *dir, int order) { int error = 0; char path[MAXPATHLEN]; char *d, *b; char *dpath, *name; /* * Separate the directory part and last part of the * path. We do this so that we can get the realpath of * the directory. We don't get the realpath on the * whole path because if it's a symlink, we want the * path of the symlink not where it points to. */ d = zfs_strdup(hdl, dir); b = zfs_strdup(hdl, dir); dpath = dirname(d); name = basename(b); if (realpath(dpath, path) == NULL) { error = errno; if (error == ENOENT) { error = 0; goto out; } zfs_error_aux(hdl, strerror(error)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext( TEXT_DOMAIN, "cannot resolve path '%s'"), dir); goto out; } zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); out: free(b); free(d); return (error); } /* * Scan a list of directories for zfs devices. */ static int zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, avl_tree_t **slice_cache, char **dir, int dirs) { avl_tree_t *cache; rdsk_node_t *slice; void *cookie; int i, error; *slice_cache = NULL; cache = zfs_alloc(hdl, sizeof (avl_tree_t)); avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); for (i = 0; i < dirs; i++) { struct stat sbuf; if (stat(dir[i], &sbuf) != 0) { error = errno; if (error == ENOENT) continue; zfs_error_aux(hdl, strerror(error)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext( TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); goto error; } /* * If dir[i] is a directory, we walk through it and add all * the entry to the cache. If it's not a directory, we just * add it to the cache. */ if (S_ISDIR(sbuf.st_mode)) { if ((error = zpool_find_import_scan_dir(hdl, lock, cache, dir[i], i)) != 0) goto error; } else { if ((error = zpool_find_import_scan_path(hdl, lock, cache, dir[i], i)) != 0) goto error; } } *slice_cache = cache; return (0); error: cookie = NULL; while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { free(slice->rn_name); free(slice); } free(cache); return (error); } static char * zpool_default_import_path[DEFAULT_IMPORT_PATH_SIZE] = { "/dev/disk/by-vdev", /* Custom rules, use first if they exist */ "/dev/mapper", /* Use multipath devices before components */ "/dev/disk/by-partlabel", /* Single unique entry set by user */ "/dev/disk/by-partuuid", /* Generated partition uuid */ "/dev/disk/by-label", /* Custom persistent labels */ "/dev/disk/by-uuid", /* Single unique entry and persistent */ "/dev/disk/by-id", /* May be multiple entries and persistent */ "/dev/disk/by-path", /* Encodes physical location and persistent */ "/dev" /* UNSAFE device names will change */ }; const char * const * zpool_default_search_paths(size_t *count) { *count = DEFAULT_IMPORT_PATH_SIZE; return ((const char * const *)zpool_default_import_path); } /* * Given a full path to a device determine if that device appears in the * import search path. If it does return the first match and store the * index in the passed 'order' variable, otherwise return an error. */ static int zfs_path_order(char *name, int *order) { int i = 0, error = ENOENT; char *dir, *env, *envdup; env = getenv("ZPOOL_IMPORT_PATH"); if (env) { envdup = strdup(env); dir = strtok(envdup, ":"); while (dir) { if (strncmp(name, dir, strlen(dir)) == 0) { *order = i; error = 0; break; } dir = strtok(NULL, ":"); i++; } free(envdup); } else { for (i = 0; i < DEFAULT_IMPORT_PATH_SIZE; i++) { if (strncmp(name, zpool_default_import_path[i], strlen(zpool_default_import_path[i])) == 0) { *order = i; error = 0; break; } } } return (error); } /* * Use libblkid to quickly enumerate all known zfs devices. */ static int zpool_find_import_blkid(libpc_handle_t *hdl, pthread_mutex_t *lock, avl_tree_t **slice_cache) { rdsk_node_t *slice; blkid_cache cache; blkid_dev_iterate iter; blkid_dev dev; avl_index_t where; int error; *slice_cache = NULL; error = blkid_get_cache(&cache, NULL); if (error != 0) return (error); error = blkid_probe_all_new(cache); if (error != 0) { blkid_put_cache(cache); return (error); } iter = blkid_dev_iterate_begin(cache); if (iter == NULL) { blkid_put_cache(cache); return (EINVAL); } error = blkid_dev_set_search(iter, "TYPE", "zfs_member"); if (error != 0) { blkid_dev_iterate_end(iter); blkid_put_cache(cache); return (error); } *slice_cache = zfs_alloc(hdl, sizeof (avl_tree_t)); avl_create(*slice_cache, slice_cache_compare, sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); while (blkid_dev_next(iter, &dev) == 0) { slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); slice->rn_name = zfs_strdup(hdl, blkid_dev_devname(dev)); slice->rn_vdev_guid = 0; slice->rn_lock = lock; slice->rn_avl = *slice_cache; slice->rn_hdl = hdl; slice->rn_labelpaths = B_TRUE; error = zfs_path_order(slice->rn_name, &slice->rn_order); if (error == 0) slice->rn_order += IMPORT_ORDER_SCAN_OFFSET; else slice->rn_order = IMPORT_ORDER_DEFAULT; pthread_mutex_lock(lock); if (avl_find(*slice_cache, slice, &where)) { free(slice->rn_name); free(slice); } else { avl_insert(*slice_cache, slice, where); } pthread_mutex_unlock(lock); } blkid_dev_iterate_end(iter); blkid_put_cache(cache); return (0); } /* * Given a list of directories to search, find all pools stored on disk. This * includes partial pools which are not available to import. If no args are * given (argc is 0), then the default directory (/dev/dsk) is searched. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ static nvlist_t * zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg) { nvlist_t *ret = NULL; pool_list_t pools = { 0 }; pool_entry_t *pe, *penext; vdev_entry_t *ve, *venext; config_entry_t *ce, *cenext; name_entry_t *ne, *nenext; pthread_mutex_t lock; avl_tree_t *cache; rdsk_node_t *slice; void *cookie; tpool_t *t; verify(iarg->poolname == NULL || iarg->guid == 0); pthread_mutex_init(&lock, NULL); /* * Locate pool member vdevs using libblkid or by directory scanning. * On success a newly allocated AVL tree which is populated with an * entry for each discovered vdev will be returned as the cache. * It's the callers responsibility to consume and destroy this tree. */ if (iarg->scan || iarg->paths != 0) { int dirs = iarg->paths; char **dir = iarg->path; if (dirs == 0) { dir = zpool_default_import_path; dirs = DEFAULT_IMPORT_PATH_SIZE; } if (zpool_find_import_scan(hdl, &lock, &cache, dir, dirs) != 0) return (NULL); } else { if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) return (NULL); } /* * Create a thread pool to parallelize the process of reading and * validating labels, a large number of threads can be used due to * minimal contention. */ t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); for (slice = avl_first(cache); slice; (slice = avl_walk(cache, slice, AVL_AFTER))) (void) tpool_dispatch(t, zpool_open_func, slice); tpool_wait(t); tpool_destroy(t); /* * Process the cache, filtering out any entries which are not * for the specified pool then adding matching label configs. */ cookie = NULL; while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { if (slice->rn_config != NULL) { nvlist_t *config = slice->rn_config; boolean_t matched = B_TRUE; boolean_t aux = B_FALSE; int fd; /* * Check if it's a spare or l2cache device. If it is, * we need to skip the name and guid check since they * don't exist on aux device label. */ if (iarg->poolname != NULL || iarg->guid != 0) { uint64_t state; aux = nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0 && (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE); } if (iarg->poolname != NULL && !aux) { char *pname; matched = nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && strcmp(iarg->poolname, pname) == 0; } else if (iarg->guid != 0 && !aux) { uint64_t this_guid; matched = nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && iarg->guid == this_guid; } if (matched) { /* * Verify all remaining entries can be opened * exclusively. This will prune all underlying * multipath devices which otherwise could * result in the vdev appearing as UNAVAIL. * * Under zdb, this step isn't required and * would prevent a zdb -e of active pools with * no cachefile. */ fd = open(slice->rn_name, O_RDONLY | O_EXCL); if (fd >= 0 || iarg->can_be_active) { if (fd >= 0) close(fd); add_config(hdl, &pools, slice->rn_name, slice->rn_order, slice->rn_num_labels, config); } } nvlist_free(config); } free(slice->rn_name); free(slice); } avl_destroy(cache); free(cache); pthread_mutex_destroy(&lock); ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); for (pe = pools.pools; pe != NULL; pe = penext) { penext = pe->pe_next; for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { venext = ve->ve_next; for (ce = ve->ve_configs; ce != NULL; ce = cenext) { cenext = ce->ce_next; nvlist_free(ce->ce_config); free(ce); } free(ve); } free(pe); } for (ne = pools.names; ne != NULL; ne = nenext) { nenext = ne->ne_next; free(ne->ne_name); free(ne); } return (ret); } /* * Given a cache file, return the contents as a list of importable pools. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ static nvlist_t * zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile, const char *poolname, uint64_t guid) { char *buf; int fd; struct stat64 statbuf; nvlist_t *raw, *src, *dst; nvlist_t *pools; nvpair_t *elem; char *name; uint64_t this_guid; boolean_t active; verify(poolname == NULL || guid == 0); if ((fd = open(cachefile, O_RDONLY)) < 0) { zfs_error_aux(hdl, "%s", strerror(errno)); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to open cache file")); return (NULL); } if (fstat64(fd, &statbuf) != 0) { zfs_error_aux(hdl, "%s", strerror(errno)); (void) close(fd); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to get size of cache file")); return (NULL); } if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { (void) close(fd); return (NULL); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) close(fd); free(buf); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to read cache file contents")); return (NULL); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { free(buf); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "invalid or corrupt cache file contents")); return (NULL); } free(buf); /* * Go through and get the current state of the pools and refresh their * state. */ if (nvlist_alloc(&pools, 0, 0) != 0) { (void) no_memory(hdl); nvlist_free(raw); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { src = fnvpair_value_nvlist(elem); name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); if (poolname != NULL && strcmp(poolname, name) != 0) continue; this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); if (guid != 0 && guid != this_guid) continue; if (pool_active(hdl, name, this_guid, &active) != 0) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (active) continue; if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, cachefile) != 0) { (void) no_memory(hdl); nvlist_free(raw); nvlist_free(pools); return (NULL); } if ((dst = refresh_config(hdl, src)) == NULL) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { (void) no_memory(hdl); nvlist_free(dst); nvlist_free(raw); nvlist_free(pools); return (NULL); } nvlist_free(dst); } nvlist_free(raw); return (pools); } nvlist_t * zpool_search_import(void *hdl, importargs_t *import, const pool_config_ops_t *pco) { libpc_handle_t handle = { 0 }; nvlist_t *pools = NULL; handle.lpc_lib_handle = hdl; handle.lpc_ops = pco; handle.lpc_printerr = B_TRUE; verify(import->poolname == NULL || import->guid == 0); if (import->cachefile != NULL) pools = zpool_find_import_cached(&handle, import->cachefile, import->poolname, import->guid); else pools = zpool_find_import_impl(&handle, import); if ((pools == NULL || nvlist_empty(pools)) && handle.lpc_open_access_error && geteuid() != 0) { (void) zfs_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, "no pools found")); } return (pools); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } int zpool_find_config(void *hdl, const char *target, nvlist_t **configp, importargs_t *args, const pool_config_ops_t *pco) { nvlist_t *pools; nvlist_t *match = NULL; nvlist_t *config = NULL; char *name = NULL, *sepp = NULL; char sep = '\0'; int count = 0; char *targetdup = strdup(target); *configp = NULL; if ((sepp = strpbrk(targetdup, "/@")) != NULL) { sep = *sepp; *sepp = '\0'; } pools = zpool_search_import(hdl, args, pco); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { VERIFY0(nvpair_value_nvlist(elem, &config)); if (pool_match(config, targetdup)) { count++; if (match != NULL) { /* multiple matches found */ continue; } else { match = config; name = nvpair_name(elem); } } } } if (count == 0) { free(targetdup); return (ENOENT); } if (count > 1) { free(targetdup); return (EINVAL); } *configp = match; free(targetdup); return (0); }