/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include /* * These tunables are for performance analysis. */ /* * zfs_vdev_max_pending is the maximum number of i/os concurrently * pending to each device. zfs_vdev_min_pending is the initial number * of i/os pending to each device (before it starts ramping up to * max_pending). */ int zfs_vdev_max_pending = 35; int zfs_vdev_min_pending = 4; /* deadline = pri + (lbolt >> time_shift) */ int zfs_vdev_time_shift = 6; /* exponential I/O issue ramp-up rate */ int zfs_vdev_ramp_rate = 2; /* * i/os will be aggregated into a single large i/o up to * zfs_vdev_aggregation_limit bytes long. */ int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; /* * Virtual device vector for disk I/O scheduling. */ int vdev_queue_deadline_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_deadline < z2->io_deadline) return (-1); if (z1->io_deadline > z2->io_deadline) return (1); if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } int vdev_queue_offset_compare(const void *x1, const void *x2) { const zio_t *z1 = x1; const zio_t *z2 = x2; if (z1->io_offset < z2->io_offset) return (-1); if (z1->io_offset > z2->io_offset) return (1); if (z1 < z2) return (-1); if (z1 > z2) return (1); return (0); } void vdev_queue_init(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare, sizeof (zio_t), offsetof(struct zio, io_deadline_node)); avl_create(&vq->vq_read_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(&vq->vq_write_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare, sizeof (zio_t), offsetof(struct zio, io_offset_node)); } void vdev_queue_fini(vdev_t *vd) { vdev_queue_t *vq = &vd->vdev_queue; avl_destroy(&vq->vq_deadline_tree); avl_destroy(&vq->vq_read_tree); avl_destroy(&vq->vq_write_tree); avl_destroy(&vq->vq_pending_tree); mutex_destroy(&vq->vq_lock); } static void vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) { avl_add(&vq->vq_deadline_tree, zio); avl_add(zio->io_vdev_tree, zio); } static void vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) { avl_remove(&vq->vq_deadline_tree, zio); avl_remove(zio->io_vdev_tree, zio); } static void vdev_queue_agg_io_done(zio_t *aio) { zio_t *dio; uint64_t offset = 0; while ((dio = aio->io_delegate_list) != NULL) { if (aio->io_type == ZIO_TYPE_READ) bcopy((char *)aio->io_data + offset, dio->io_data, dio->io_size); offset += dio->io_size; aio->io_delegate_list = dio->io_delegate_next; dio->io_delegate_next = NULL; dio->io_error = aio->io_error; zio_execute(dio); } ASSERT3U(offset, ==, aio->io_size); zio_buf_free(aio->io_data, aio->io_size); } #define IS_ADJACENT(io, nio) \ ((io)->io_offset + (io)->io_size == (nio)->io_offset) static zio_t * vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit) { zio_t *fio, *lio, *aio, *dio; avl_tree_t *tree; uint64_t size; ASSERT(MUTEX_HELD(&vq->vq_lock)); if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit || avl_numnodes(&vq->vq_deadline_tree) == 0) return (NULL); fio = lio = avl_first(&vq->vq_deadline_tree); tree = fio->io_vdev_tree; size = fio->io_size; while ((dio = AVL_PREV(tree, fio)) != NULL && IS_ADJACENT(dio, fio) && !((dio->io_flags | fio->io_flags) & ZIO_FLAG_DONT_AGGREGATE) && size + dio->io_size <= zfs_vdev_aggregation_limit) { dio->io_delegate_next = fio; fio = dio; size += dio->io_size; } while ((dio = AVL_NEXT(tree, lio)) != NULL && IS_ADJACENT(lio, dio) && !((lio->io_flags | dio->io_flags) & ZIO_FLAG_DONT_AGGREGATE) && size + dio->io_size <= zfs_vdev_aggregation_limit) { lio->io_delegate_next = dio; lio = dio; size += dio->io_size; } if (fio != lio) { char *buf = zio_buf_alloc(size); uint64_t offset = 0; ASSERT(size <= zfs_vdev_aggregation_limit); aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset, buf, size, fio->io_type, ZIO_PRIORITY_NOW, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, vdev_queue_agg_io_done, NULL); aio->io_delegate_list = fio; for (dio = fio; dio != NULL; dio = dio->io_delegate_next) { ASSERT(dio->io_type == aio->io_type); ASSERT(dio->io_vdev_tree == tree); if (dio->io_type == ZIO_TYPE_WRITE) bcopy(dio->io_data, buf + offset, dio->io_size); offset += dio->io_size; vdev_queue_io_remove(vq, dio); zio_vdev_io_bypass(dio); } ASSERT(offset == size); avl_add(&vq->vq_pending_tree, aio); return (aio); } ASSERT(fio->io_vdev_tree == tree); vdev_queue_io_remove(vq, fio); avl_add(&vq->vq_pending_tree, fio); return (fio); } zio_t * vdev_queue_io(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; zio_t *nio; ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) return (zio); zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; if (zio->io_type == ZIO_TYPE_READ) zio->io_vdev_tree = &vq->vq_read_tree; else zio->io_vdev_tree = &vq->vq_write_tree; mutex_enter(&vq->vq_lock); zio->io_deadline = (lbolt64 >> zfs_vdev_time_shift) + zio->io_priority; vdev_queue_io_add(vq, zio); nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending); mutex_exit(&vq->vq_lock); if (nio == NULL) return (NULL); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); return (NULL); } return (nio); } void vdev_queue_io_done(zio_t *zio) { vdev_queue_t *vq = &zio->io_vd->vdev_queue; int i; mutex_enter(&vq->vq_lock); avl_remove(&vq->vq_pending_tree, zio); for (i = 0; i < zfs_vdev_ramp_rate; i++) { zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending); if (nio == NULL) break; mutex_exit(&vq->vq_lock); if (nio->io_done == vdev_queue_agg_io_done) { zio_nowait(nio); } else { zio_vdev_io_reissue(nio); zio_execute(nio); } mutex_enter(&vq->vq_lock); } mutex_exit(&vq->vq_lock); } #if defined(_KERNEL) && defined(HAVE_SPL) module_param(zfs_vdev_max_pending, int, 0644); MODULE_PARM_DESC(zfs_vdev_max_pending, "Maximum pending VDEV IO"); module_param(zfs_vdev_min_pending, int, 0644); MODULE_PARM_DESC(zfs_vdev_min_pending, "Minimum pending VDEV IO"); module_param(zfs_vdev_aggregation_limit, int, 0644); MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Maximum VDEV IO aggregation"); #endif