/* * Implement fast Fletcher4 using superscalar pipelines. * * Use regular C code to compute * Fletcher4 in two incremental 64-bit parallel accumulator streams, * and then combine the streams to form the final four checksum words. * This implementation is a derivative of the AVX SIMD implementation by * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). * * Copyright (C) 2016 Romain Dolbeau. * * Authors: * Romain Dolbeau * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include ZFS_NO_SANITIZE_UNDEFINED static void fletcher_4_superscalar_init(fletcher_4_ctx_t *ctx) { memset(ctx->superscalar, 0, 4 * sizeof (zfs_fletcher_superscalar_t)); } ZFS_NO_SANITIZE_UNDEFINED static void fletcher_4_superscalar_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) { uint64_t A, B, C, D; A = ctx->superscalar[0].v[0] + ctx->superscalar[0].v[1]; B = 2 * ctx->superscalar[1].v[0] + 2 * ctx->superscalar[1].v[1] - ctx->superscalar[0].v[1]; C = 4 * ctx->superscalar[2].v[0] - ctx->superscalar[1].v[0] + 4 * ctx->superscalar[2].v[1] - 3 * ctx->superscalar[1].v[1]; D = 8 * ctx->superscalar[3].v[0] - 4 * ctx->superscalar[2].v[0] + 8 * ctx->superscalar[3].v[1] - 8 * ctx->superscalar[2].v[1] + ctx->superscalar[1].v[1]; ZIO_SET_CHECKSUM(zcp, A, B, C, D); } ZFS_NO_SANITIZE_UNDEFINED static void fletcher_4_superscalar_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint32_t *ip = buf; const uint32_t *ipend = ip + (size / sizeof (uint32_t)); uint64_t a, b, c, d; uint64_t a2, b2, c2, d2; a = ctx->superscalar[0].v[0]; b = ctx->superscalar[1].v[0]; c = ctx->superscalar[2].v[0]; d = ctx->superscalar[3].v[0]; a2 = ctx->superscalar[0].v[1]; b2 = ctx->superscalar[1].v[1]; c2 = ctx->superscalar[2].v[1]; d2 = ctx->superscalar[3].v[1]; do { a += ip[0]; a2 += ip[1]; b += a; b2 += a2; c += b; c2 += b2; d += c; d2 += c2; } while ((ip += 2) < ipend); ctx->superscalar[0].v[0] = a; ctx->superscalar[1].v[0] = b; ctx->superscalar[2].v[0] = c; ctx->superscalar[3].v[0] = d; ctx->superscalar[0].v[1] = a2; ctx->superscalar[1].v[1] = b2; ctx->superscalar[2].v[1] = c2; ctx->superscalar[3].v[1] = d2; } ZFS_NO_SANITIZE_UNDEFINED static void fletcher_4_superscalar_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint32_t *ip = buf; const uint32_t *ipend = ip + (size / sizeof (uint32_t)); uint64_t a, b, c, d; uint64_t a2, b2, c2, d2; a = ctx->superscalar[0].v[0]; b = ctx->superscalar[1].v[0]; c = ctx->superscalar[2].v[0]; d = ctx->superscalar[3].v[0]; a2 = ctx->superscalar[0].v[1]; b2 = ctx->superscalar[1].v[1]; c2 = ctx->superscalar[2].v[1]; d2 = ctx->superscalar[3].v[1]; do { a += BSWAP_32(ip[0]); a2 += BSWAP_32(ip[1]); b += a; b2 += a2; c += b; c2 += b2; d += c; d2 += c2; } while ((ip += 2) < ipend); ctx->superscalar[0].v[0] = a; ctx->superscalar[1].v[0] = b; ctx->superscalar[2].v[0] = c; ctx->superscalar[3].v[0] = d; ctx->superscalar[0].v[1] = a2; ctx->superscalar[1].v[1] = b2; ctx->superscalar[2].v[1] = c2; ctx->superscalar[3].v[1] = d2; } static boolean_t fletcher_4_superscalar_valid(void) { return (B_TRUE); } const fletcher_4_ops_t fletcher_4_superscalar_ops = { .init_native = fletcher_4_superscalar_init, .compute_native = fletcher_4_superscalar_native, .fini_native = fletcher_4_superscalar_fini, .init_byteswap = fletcher_4_superscalar_init, .compute_byteswap = fletcher_4_superscalar_byteswap, .fini_byteswap = fletcher_4_superscalar_fini, .valid = fletcher_4_superscalar_valid, .uses_fpu = B_FALSE, .name = "superscalar" };