/* * --------------------------------------------------------------------------- * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. * * LICENSE TERMS * * The free distribution and use of this software is allowed (with or without * changes) provided that: * * 1. source code distributions include the above copyright notice, this * list of conditions and the following disclaimer; * * 2. binary distributions include the above copyright notice, this list * of conditions and the following disclaimer in their documentation; * * 3. the name of the copyright holder is not used to endorse products * built using this software without specific written permission. * * DISCLAIMER * * This software is provided 'as is' with no explicit or implied warranties * in respect of its properties, including, but not limited to, correctness * and/or fitness for purpose. * --------------------------------------------------------------------------- * Issue Date: 20/12/2007 */ #include <aes/aes_impl.h> #include "aesopt.h" #include "aestab.h" #include "aestab2.h" /* * Initialise the key schedule from the user supplied key. The key * length can be specified in bytes, with legal values of 16, 24 * and 32, or in bits, with legal values of 128, 192 and 256. These * values correspond with Nk values of 4, 6 and 8 respectively. * * The following macros implement a single cycle in the key * schedule generation process. The number of cycles needed * for each cx->n_col and nk value is: * * nk = 4 5 6 7 8 * ------------------------------ * cx->n_col = 4 10 9 8 7 7 * cx->n_col = 5 14 11 10 9 9 * cx->n_col = 6 19 15 12 11 11 * cx->n_col = 7 21 19 16 13 14 * cx->n_col = 8 29 23 19 17 14 */ /* * OpenSolaris changes * 1. Added header files aes_impl.h and aestab2.h * 2. Changed uint_8t and uint_32t to uint8_t and uint32_t * 3. Remove code under ifdef USE_VIA_ACE_IF_PRESENT (always undefined) * 4. Removed always-defined ifdefs FUNCS_IN_C, ENC_KEYING_IN_C, * AES_128, AES_192, AES_256, AES_VAR defines * 5. Changed aes_encrypt_key* aes_decrypt_key* functions to "static void" * 6. Changed N_COLS to MAX_AES_NB * 7. Replaced functions aes_encrypt_key and aes_decrypt_key with * OpenSolaris-compatible functions rijndael_key_setup_enc_amd64 and * rijndael_key_setup_dec_amd64 * 8. cstyled code and removed lint warnings */ #if defined(REDUCE_CODE_SIZE) #define ls_box ls_sub uint32_t ls_sub(const uint32_t t, const uint32_t n); #define inv_mcol im_sub uint32_t im_sub(const uint32_t x); #ifdef ENC_KS_UNROLL #undef ENC_KS_UNROLL #endif #ifdef DEC_KS_UNROLL #undef DEC_KS_UNROLL #endif #endif /* REDUCE_CODE_SIZE */ #define ke4(k, i) \ { k[4 * (i) + 4] = ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \ k[4 * (i) + 5] = ss[1] ^= ss[0]; \ k[4 * (i) + 6] = ss[2] ^= ss[1]; \ k[4 * (i) + 7] = ss[3] ^= ss[2]; \ } static void aes_encrypt_key128(const unsigned char *key, uint32_t rk[]) { uint32_t ss[4]; rk[0] = ss[0] = word_in(key, 0); rk[1] = ss[1] = word_in(key, 1); rk[2] = ss[2] = word_in(key, 2); rk[3] = ss[3] = word_in(key, 3); #ifdef ENC_KS_UNROLL ke4(rk, 0); ke4(rk, 1); ke4(rk, 2); ke4(rk, 3); ke4(rk, 4); ke4(rk, 5); ke4(rk, 6); ke4(rk, 7); ke4(rk, 8); #else { uint32_t i; for (i = 0; i < 9; ++i) ke4(rk, i); } #endif /* ENC_KS_UNROLL */ ke4(rk, 9); } #define kef6(k, i) \ { k[6 * (i) + 6] = ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \ k[6 * (i) + 7] = ss[1] ^= ss[0]; \ k[6 * (i) + 8] = ss[2] ^= ss[1]; \ k[6 * (i) + 9] = ss[3] ^= ss[2]; \ } #define ke6(k, i) \ { kef6(k, i); \ k[6 * (i) + 10] = ss[4] ^= ss[3]; \ k[6 * (i) + 11] = ss[5] ^= ss[4]; \ } static void aes_encrypt_key192(const unsigned char *key, uint32_t rk[]) { uint32_t ss[6]; rk[0] = ss[0] = word_in(key, 0); rk[1] = ss[1] = word_in(key, 1); rk[2] = ss[2] = word_in(key, 2); rk[3] = ss[3] = word_in(key, 3); rk[4] = ss[4] = word_in(key, 4); rk[5] = ss[5] = word_in(key, 5); #ifdef ENC_KS_UNROLL ke6(rk, 0); ke6(rk, 1); ke6(rk, 2); ke6(rk, 3); ke6(rk, 4); ke6(rk, 5); ke6(rk, 6); #else { uint32_t i; for (i = 0; i < 7; ++i) ke6(rk, i); } #endif /* ENC_KS_UNROLL */ kef6(rk, 7); } #define kef8(k, i) \ { k[8 * (i) + 8] = ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \ k[8 * (i) + 9] = ss[1] ^= ss[0]; \ k[8 * (i) + 10] = ss[2] ^= ss[1]; \ k[8 * (i) + 11] = ss[3] ^= ss[2]; \ } #define ke8(k, i) \ { kef8(k, i); \ k[8 * (i) + 12] = ss[4] ^= ls_box(ss[3], 0); \ k[8 * (i) + 13] = ss[5] ^= ss[4]; \ k[8 * (i) + 14] = ss[6] ^= ss[5]; \ k[8 * (i) + 15] = ss[7] ^= ss[6]; \ } static void aes_encrypt_key256(const unsigned char *key, uint32_t rk[]) { uint32_t ss[8]; rk[0] = ss[0] = word_in(key, 0); rk[1] = ss[1] = word_in(key, 1); rk[2] = ss[2] = word_in(key, 2); rk[3] = ss[3] = word_in(key, 3); rk[4] = ss[4] = word_in(key, 4); rk[5] = ss[5] = word_in(key, 5); rk[6] = ss[6] = word_in(key, 6); rk[7] = ss[7] = word_in(key, 7); #ifdef ENC_KS_UNROLL ke8(rk, 0); ke8(rk, 1); ke8(rk, 2); ke8(rk, 3); ke8(rk, 4); ke8(rk, 5); #else { uint32_t i; for (i = 0; i < 6; ++i) ke8(rk, i); } #endif /* ENC_KS_UNROLL */ kef8(rk, 6); } /* * Expand the cipher key into the encryption key schedule. * * Return the number of rounds for the given cipher key size. * The size of the key schedule depends on the number of rounds * (which can be computed from the size of the key), i.e. 4 * (Nr + 1). * * Parameters: * rk AES key schedule 32-bit array to be initialized * cipherKey User key * keyBits AES key size (128, 192, or 256 bits) */ int rijndael_key_setup_enc_amd64(uint32_t rk[], const uint32_t cipherKey[], int keyBits) { switch (keyBits) { case 128: aes_encrypt_key128((unsigned char *)&cipherKey[0], rk); return (10); case 192: aes_encrypt_key192((unsigned char *)&cipherKey[0], rk); return (12); case 256: aes_encrypt_key256((unsigned char *)&cipherKey[0], rk); return (14); default: /* should never get here */ break; } return (0); } /* this is used to store the decryption round keys */ /* in forward or reverse order */ #ifdef AES_REV_DKS #define v(n, i) ((n) - (i) + 2 * ((i) & 3)) #else #define v(n, i) (i) #endif #if DEC_ROUND == NO_TABLES #define ff(x) (x) #else #define ff(x) inv_mcol(x) #if defined(dec_imvars) #define d_vars dec_imvars #endif #endif /* FUNCS_IN_C & DEC_KEYING_IN_C */ #define k4e(k, i) \ { k[v(40, (4 * (i)) + 4)] = ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \ k[v(40, (4 * (i)) + 5)] = ss[1] ^= ss[0]; \ k[v(40, (4 * (i)) + 6)] = ss[2] ^= ss[1]; \ k[v(40, (4 * (i)) + 7)] = ss[3] ^= ss[2]; \ } #if 1 #define kdf4(k, i) \ { ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ ss[1] = ss[1] ^ ss[3]; \ ss[2] = ss[2] ^ ss[3]; \ ss[4] = ls_box(ss[(i + 3) % 4], 3) ^ t_use(r, c)[i]; \ ss[i % 4] ^= ss[4]; \ ss[4] ^= k[v(40, (4 * (i)))]; k[v(40, (4 * (i)) + 4)] = ff(ss[4]); \ ss[4] ^= k[v(40, (4 * (i)) + 1)]; k[v(40, (4 * (i)) + 5)] = ff(ss[4]); \ ss[4] ^= k[v(40, (4 * (i)) + 2)]; k[v(40, (4 * (i)) + 6)] = ff(ss[4]); \ ss[4] ^= k[v(40, (4 * (i)) + 3)]; k[v(40, (4 * (i)) + 7)] = ff(ss[4]); \ } #define kd4(k, i) \ { ss[4] = ls_box(ss[(i + 3) % 4], 3) ^ t_use(r, c)[i]; \ ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \ k[v(40, (4 * (i)) + 4)] = ss[4] ^= k[v(40, (4 * (i)))]; \ k[v(40, (4 * (i)) + 5)] = ss[4] ^= k[v(40, (4 * (i)) + 1)]; \ k[v(40, (4 * (i)) + 6)] = ss[4] ^= k[v(40, (4 * (i)) + 2)]; \ k[v(40, (4 * (i)) + 7)] = ss[4] ^= k[v(40, (4 * (i)) + 3)]; \ } #define kdl4(k, i) \ { ss[4] = ls_box(ss[(i + 3) % 4], 3) ^ t_use(r, c)[i]; \ ss[i % 4] ^= ss[4]; \ k[v(40, (4 * (i)) + 4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ k[v(40, (4 * (i)) + 5)] = ss[1] ^ ss[3]; \ k[v(40, (4 * (i)) + 6)] = ss[0]; \ k[v(40, (4 * (i)) + 7)] = ss[1]; \ } #else #define kdf4(k, i) \ { ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \ k[v(40, (4 * (i)) + 4)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(40, (4 * (i)) + 5)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(40, (4 * (i)) + 6)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(40, (4 * (i)) + 7)] = ff(ss[3]); \ } #define kd4(k, i) \ { ss[4] = ls_box(ss[3], 3) ^ t_use(r, c)[i]; \ ss[0] ^= ss[4]; \ ss[4] = ff(ss[4]); \ k[v(40, (4 * (i)) + 4)] = ss[4] ^= k[v(40, (4 * (i)))]; \ ss[1] ^= ss[0]; \ k[v(40, (4 * (i)) + 5)] = ss[4] ^= k[v(40, (4 * (i)) + 1)]; \ ss[2] ^= ss[1]; \ k[v(40, (4 * (i)) + 6)] = ss[4] ^= k[v(40, (4 * (i)) + 2)]; \ ss[3] ^= ss[2]; \ k[v(40, (4 * (i)) + 7)] = ss[4] ^= k[v(40, (4 * (i)) + 3)]; \ } #define kdl4(k, i) \ { ss[0] ^= ls_box(ss[3], 3) ^ t_use(r, c)[i]; \ k[v(40, (4 * (i)) + 4)] = ss[0]; \ ss[1] ^= ss[0]; k[v(40, (4 * (i)) + 5)] = ss[1]; \ ss[2] ^= ss[1]; k[v(40, (4 * (i)) + 6)] = ss[2]; \ ss[3] ^= ss[2]; k[v(40, (4 * (i)) + 7)] = ss[3]; \ } #endif static void aes_decrypt_key128(const unsigned char *key, uint32_t rk[]) { uint32_t ss[5]; #if defined(d_vars) d_vars; #endif rk[v(40, (0))] = ss[0] = word_in(key, 0); rk[v(40, (1))] = ss[1] = word_in(key, 1); rk[v(40, (2))] = ss[2] = word_in(key, 2); rk[v(40, (3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL kdf4(rk, 0); kd4(rk, 1); kd4(rk, 2); kd4(rk, 3); kd4(rk, 4); kd4(rk, 5); kd4(rk, 6); kd4(rk, 7); kd4(rk, 8); kdl4(rk, 9); #else { uint32_t i; for (i = 0; i < 10; ++i) k4e(rk, i); #if !(DEC_ROUND == NO_TABLES) for (i = MAX_AES_NB; i < 10 * MAX_AES_NB; ++i) rk[i] = inv_mcol(rk[i]); #endif } #endif /* DEC_KS_UNROLL */ } #define k6ef(k, i) \ { k[v(48, (6 * (i)) + 6)] = ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \ k[v(48, (6 * (i)) + 7)] = ss[1] ^= ss[0]; \ k[v(48, (6 * (i)) + 8)] = ss[2] ^= ss[1]; \ k[v(48, (6 * (i)) + 9)] = ss[3] ^= ss[2]; \ } #define k6e(k, i) \ { k6ef(k, i); \ k[v(48, (6 * (i)) + 10)] = ss[4] ^= ss[3]; \ k[v(48, (6 * (i)) + 11)] = ss[5] ^= ss[4]; \ } #define kdf6(k, i) \ { ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \ k[v(48, (6 * (i)) + 6)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(48, (6 * (i)) + 7)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(48, (6 * (i)) + 8)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(48, (6 * (i)) + 9)] = ff(ss[3]); \ ss[4] ^= ss[3]; k[v(48, (6 * (i)) + 10)] = ff(ss[4]); \ ss[5] ^= ss[4]; k[v(48, (6 * (i)) + 11)] = ff(ss[5]); \ } #define kd6(k, i) \ { ss[6] = ls_box(ss[5], 3) ^ t_use(r, c)[i]; \ ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ k[v(48, (6 * (i)) + 6)] = ss[6] ^= k[v(48, (6 * (i)))]; \ ss[1] ^= ss[0]; \ k[v(48, (6 * (i)) + 7)] = ss[6] ^= k[v(48, (6 * (i)) + 1)]; \ ss[2] ^= ss[1]; \ k[v(48, (6 * (i)) + 8)] = ss[6] ^= k[v(48, (6 * (i)) + 2)]; \ ss[3] ^= ss[2]; \ k[v(48, (6 * (i)) + 9)] = ss[6] ^= k[v(48, (6 * (i)) + 3)]; \ ss[4] ^= ss[3]; \ k[v(48, (6 * (i)) + 10)] = ss[6] ^= k[v(48, (6 * (i)) + 4)]; \ ss[5] ^= ss[4]; \ k[v(48, (6 * (i)) + 11)] = ss[6] ^= k[v(48, (6 * (i)) + 5)]; \ } #define kdl6(k, i) \ { ss[0] ^= ls_box(ss[5], 3) ^ t_use(r, c)[i]; \ k[v(48, (6 * (i)) + 6)] = ss[0]; \ ss[1] ^= ss[0]; k[v(48, (6 * (i)) + 7)] = ss[1]; \ ss[2] ^= ss[1]; k[v(48, (6 * (i)) + 8)] = ss[2]; \ ss[3] ^= ss[2]; k[v(48, (6 * (i)) + 9)] = ss[3]; \ } static void aes_decrypt_key192(const unsigned char *key, uint32_t rk[]) { uint32_t ss[7]; #if defined(d_vars) d_vars; #endif rk[v(48, (0))] = ss[0] = word_in(key, 0); rk[v(48, (1))] = ss[1] = word_in(key, 1); rk[v(48, (2))] = ss[2] = word_in(key, 2); rk[v(48, (3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL ss[4] = word_in(key, 4); rk[v(48, (4))] = ff(ss[4]); ss[5] = word_in(key, 5); rk[v(48, (5))] = ff(ss[5]); kdf6(rk, 0); kd6(rk, 1); kd6(rk, 2); kd6(rk, 3); kd6(rk, 4); kd6(rk, 5); kd6(rk, 6); kdl6(rk, 7); #else rk[v(48, (4))] = ss[4] = word_in(key, 4); rk[v(48, (5))] = ss[5] = word_in(key, 5); { uint32_t i; for (i = 0; i < 7; ++i) k6e(rk, i); k6ef(rk, 7); #if !(DEC_ROUND == NO_TABLES) for (i = MAX_AES_NB; i < 12 * MAX_AES_NB; ++i) rk[i] = inv_mcol(rk[i]); #endif } #endif } #define k8ef(k, i) \ { k[v(56, (8 * (i)) + 8)] = ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \ k[v(56, (8 * (i)) + 9)] = ss[1] ^= ss[0]; \ k[v(56, (8 * (i)) + 10)] = ss[2] ^= ss[1]; \ k[v(56, (8 * (i)) + 11)] = ss[3] ^= ss[2]; \ } #define k8e(k, i) \ { k8ef(k, i); \ k[v(56, (8 * (i)) + 12)] = ss[4] ^= ls_box(ss[3], 0); \ k[v(56, (8 * (i)) + 13)] = ss[5] ^= ss[4]; \ k[v(56, (8 * (i)) + 14)] = ss[6] ^= ss[5]; \ k[v(56, (8 * (i)) + 15)] = ss[7] ^= ss[6]; \ } #define kdf8(k, i) \ { ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \ k[v(56, (8 * (i)) + 8)] = ff(ss[0]); \ ss[1] ^= ss[0]; k[v(56, (8 * (i)) + 9)] = ff(ss[1]); \ ss[2] ^= ss[1]; k[v(56, (8 * (i)) + 10)] = ff(ss[2]); \ ss[3] ^= ss[2]; k[v(56, (8 * (i)) + 11)] = ff(ss[3]); \ ss[4] ^= ls_box(ss[3], 0); k[v(56, (8 * (i)) + 12)] = ff(ss[4]); \ ss[5] ^= ss[4]; k[v(56, (8 * (i)) + 13)] = ff(ss[5]); \ ss[6] ^= ss[5]; k[v(56, (8 * (i)) + 14)] = ff(ss[6]); \ ss[7] ^= ss[6]; k[v(56, (8 * (i)) + 15)] = ff(ss[7]); \ } #define kd8(k, i) \ { ss[8] = ls_box(ss[7], 3) ^ t_use(r, c)[i]; \ ss[0] ^= ss[8]; \ ss[8] = ff(ss[8]); \ k[v(56, (8 * (i)) + 8)] = ss[8] ^= k[v(56, (8 * (i)))]; \ ss[1] ^= ss[0]; \ k[v(56, (8 * (i)) + 9)] = ss[8] ^= k[v(56, (8 * (i)) + 1)]; \ ss[2] ^= ss[1]; \ k[v(56, (8 * (i)) + 10)] = ss[8] ^= k[v(56, (8 * (i)) + 2)]; \ ss[3] ^= ss[2]; \ k[v(56, (8 * (i)) + 11)] = ss[8] ^= k[v(56, (8 * (i)) + 3)]; \ ss[8] = ls_box(ss[3], 0); \ ss[4] ^= ss[8]; \ ss[8] = ff(ss[8]); \ k[v(56, (8 * (i)) + 12)] = ss[8] ^= k[v(56, (8 * (i)) + 4)]; \ ss[5] ^= ss[4]; \ k[v(56, (8 * (i)) + 13)] = ss[8] ^= k[v(56, (8 * (i)) + 5)]; \ ss[6] ^= ss[5]; \ k[v(56, (8 * (i)) + 14)] = ss[8] ^= k[v(56, (8 * (i)) + 6)]; \ ss[7] ^= ss[6]; \ k[v(56, (8 * (i)) + 15)] = ss[8] ^= k[v(56, (8 * (i)) + 7)]; \ } #define kdl8(k, i) \ { ss[0] ^= ls_box(ss[7], 3) ^ t_use(r, c)[i]; \ k[v(56, (8 * (i)) + 8)] = ss[0]; \ ss[1] ^= ss[0]; k[v(56, (8 * (i)) + 9)] = ss[1]; \ ss[2] ^= ss[1]; k[v(56, (8 * (i)) + 10)] = ss[2]; \ ss[3] ^= ss[2]; k[v(56, (8 * (i)) + 11)] = ss[3]; \ } static void aes_decrypt_key256(const unsigned char *key, uint32_t rk[]) { uint32_t ss[9]; #if defined(d_vars) d_vars; #endif rk[v(56, (0))] = ss[0] = word_in(key, 0); rk[v(56, (1))] = ss[1] = word_in(key, 1); rk[v(56, (2))] = ss[2] = word_in(key, 2); rk[v(56, (3))] = ss[3] = word_in(key, 3); #ifdef DEC_KS_UNROLL ss[4] = word_in(key, 4); rk[v(56, (4))] = ff(ss[4]); ss[5] = word_in(key, 5); rk[v(56, (5))] = ff(ss[5]); ss[6] = word_in(key, 6); rk[v(56, (6))] = ff(ss[6]); ss[7] = word_in(key, 7); rk[v(56, (7))] = ff(ss[7]); kdf8(rk, 0); kd8(rk, 1); kd8(rk, 2); kd8(rk, 3); kd8(rk, 4); kd8(rk, 5); kdl8(rk, 6); #else rk[v(56, (4))] = ss[4] = word_in(key, 4); rk[v(56, (5))] = ss[5] = word_in(key, 5); rk[v(56, (6))] = ss[6] = word_in(key, 6); rk[v(56, (7))] = ss[7] = word_in(key, 7); { uint32_t i; for (i = 0; i < 6; ++i) k8e(rk, i); k8ef(rk, 6); #if !(DEC_ROUND == NO_TABLES) for (i = MAX_AES_NB; i < 14 * MAX_AES_NB; ++i) rk[i] = inv_mcol(rk[i]); #endif } #endif /* DEC_KS_UNROLL */ } /* * Expand the cipher key into the decryption key schedule. * * Return the number of rounds for the given cipher key size. * The size of the key schedule depends on the number of rounds * (which can be computed from the size of the key), i.e. 4 * (Nr + 1). * * Parameters: * rk AES key schedule 32-bit array to be initialized * cipherKey User key * keyBits AES key size (128, 192, or 256 bits) */ int rijndael_key_setup_dec_amd64(uint32_t rk[], const uint32_t cipherKey[], int keyBits) { switch (keyBits) { case 128: aes_decrypt_key128((unsigned char *)&cipherKey[0], rk); return (10); case 192: aes_decrypt_key192((unsigned char *)&cipherKey[0], rk); return (12); case 256: aes_decrypt_key256((unsigned char *)&cipherKey[0], rk); return (14); default: /* should never get here */ break; } return (0); }