/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include /* * Pool-wide transaction groups. */ static void txg_sync_thread(dsl_pool_t *dp); static void txg_quiesce_thread(dsl_pool_t *dp); int zfs_txg_timeout = 30; /* max seconds worth of delta per txg */ /* * Prepare the txg subsystem. */ void txg_init(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; int c; bzero(tx, sizeof (tx_state_t)); tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); for (c = 0; c < max_ncpus; c++) { int i; mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); for (i = 0; i < TXG_SIZE; i++) { cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, NULL); list_create(&tx->tx_cpu[c].tc_callbacks[i], sizeof (dmu_tx_callback_t), offsetof(dmu_tx_callback_t, dcb_node)); } } rw_init(&tx->tx_suspend, NULL, RW_DEFAULT, NULL); mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); tx->tx_open_txg = txg; } /* * Close down the txg subsystem. */ void txg_fini(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; int c; ASSERT(tx->tx_threads == 0); rw_destroy(&tx->tx_suspend); mutex_destroy(&tx->tx_sync_lock); cv_destroy(&tx->tx_sync_more_cv); cv_destroy(&tx->tx_sync_done_cv); cv_destroy(&tx->tx_quiesce_more_cv); cv_destroy(&tx->tx_quiesce_done_cv); cv_destroy(&tx->tx_exit_cv); for (c = 0; c < max_ncpus; c++) { int i; mutex_destroy(&tx->tx_cpu[c].tc_lock); for (i = 0; i < TXG_SIZE; i++) { cv_destroy(&tx->tx_cpu[c].tc_cv[i]); list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); } } if (tx->tx_commit_cb_taskq != NULL) taskq_destroy(tx->tx_commit_cb_taskq); vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); bzero(tx, sizeof (tx_state_t)); } /* * Start syncing transaction groups. */ void txg_sync_start(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; mutex_enter(&tx->tx_sync_lock); dprintf("pool %p\n", dp); ASSERT(tx->tx_threads == 0); tx->tx_threads = 2; tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, dp, 0, &p0, TS_RUN, minclsyspri); /* * The sync thread can need a larger-than-default stack size on * 32-bit x86. This is due in part to nested pools and * scrub_visitbp() recursion. */ tx->tx_sync_thread = thread_create(NULL, 12<<10, txg_sync_thread, dp, 0, &p0, TS_RUN, minclsyspri); mutex_exit(&tx->tx_sync_lock); } static void txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) { CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); mutex_enter(&tx->tx_sync_lock); } static void txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) { ASSERT(*tpp != NULL); *tpp = NULL; tx->tx_threads--; cv_broadcast(&tx->tx_exit_cv); CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ thread_exit(); } static void txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t wt) { CALLB_CPR_SAFE_BEGIN(cpr); if (wt) (void) cv_timedwait(cv, &tx->tx_sync_lock, lbolt + wt); else cv_wait(cv, &tx->tx_sync_lock); CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); } /* * Stop syncing transaction groups. */ void txg_sync_stop(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; dprintf("pool %p\n", dp); /* * Finish off any work in progress. */ ASSERT(tx->tx_threads == 2); txg_wait_synced(dp, 0); /* * Wake all sync threads and wait for them to die. */ mutex_enter(&tx->tx_sync_lock); ASSERT(tx->tx_threads == 2); tx->tx_exiting = 1; cv_broadcast(&tx->tx_quiesce_more_cv); cv_broadcast(&tx->tx_quiesce_done_cv); cv_broadcast(&tx->tx_sync_more_cv); while (tx->tx_threads != 0) cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); tx->tx_exiting = 0; mutex_exit(&tx->tx_sync_lock); } uint64_t txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) { tx_state_t *tx = &dp->dp_tx; tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; uint64_t txg; mutex_enter(&tc->tc_lock); txg = tx->tx_open_txg; tc->tc_count[txg & TXG_MASK]++; th->th_cpu = tc; th->th_txg = txg; return (txg); } void txg_rele_to_quiesce(txg_handle_t *th) { tx_cpu_t *tc = th->th_cpu; mutex_exit(&tc->tc_lock); } void txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) { tx_cpu_t *tc = th->th_cpu; int g = th->th_txg & TXG_MASK; mutex_enter(&tc->tc_lock); list_move_tail(&tc->tc_callbacks[g], tx_callbacks); mutex_exit(&tc->tc_lock); } static void txg_exit(tx_cpu_t *tc, uint64_t txg) { int g = txg & TXG_MASK; mutex_enter(&tc->tc_lock); ASSERT(tc->tc_count[g] != 0); if (--tc->tc_count[g] == 0) cv_broadcast(&tc->tc_cv[g]); mutex_exit(&tc->tc_lock); } void txg_rele_to_sync(txg_handle_t *th) { txg_exit(th->th_cpu, th->th_txg); th->th_cpu = NULL; /* defensive */ } static void txg_wait_exit(tx_state_t *tx, uint64_t txg) { int g = txg & TXG_MASK; int c; for (c = 0; c < max_ncpus; c++) { tx_cpu_t *tc = &tx->tx_cpu[c]; mutex_enter(&tc->tc_lock); while (tc->tc_count[g] != 0) cv_wait(&tc->tc_cv[g], &tc->tc_lock); mutex_exit(&tc->tc_lock); } } static void txg_quiesce(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; int c; /* * Grab all tx_cpu locks so nobody else can get into this txg. */ for (c = 0; c < max_ncpus; c++) mutex_enter(&tx->tx_cpu[c].tc_lock); ASSERT(txg == tx->tx_open_txg); tx->tx_open_txg++; /* * Now that we've incremented tx_open_txg, we can let threads * enter the next transaction group. */ for (c = 0; c < max_ncpus; c++) mutex_exit(&tx->tx_cpu[c].tc_lock); /* * Quiesce the transaction group by waiting for everyone to txg_exit(). */ txg_wait_exit(tx, txg); } static void txg_callback(tx_cb_t *tcb) { tx_cpu_t *tc = tcb->tcb_tc; int g = tcb->tcb_txg & TXG_MASK; dmu_tx_callback(&tc->tc_callbacks[g], 0); txg_exit(tc, tcb->tcb_txg); kmem_free(tcb, sizeof (tx_cb_t)); } /* * Dispatch the commit callbacks registered on this txg to worker threads. */ static void txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) { int c; tx_state_t *tx = &dp->dp_tx; tx_cb_t *tcb; for (c = 0; c < max_ncpus; c++) { tx_cpu_t *tc = &tx->tx_cpu[c]; /* No need to lock tx_cpu_t at this point */ int g = txg & TXG_MASK; if (list_is_empty(&tc->tc_callbacks[g])) continue; if (tx->tx_commit_cb_taskq == NULL) { /* * Commit callback taskq hasn't been created yet. */ tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", max_ncpus, minclsyspri, max_ncpus, max_ncpus * 4, TASKQ_PREPOPULATE); } tcb = kmem_alloc(sizeof (tx_cb_t), KM_SLEEP); tcb->tcb_txg = txg; tcb->tcb_tc = tc; /* There shouldn't be any holders on this txg at this point */ ASSERT3U(tc->tc_count[g], ==, 0); tc->tc_count[g]++; (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) txg_callback, tcb, TQ_SLEEP); } } static void txg_sync_thread(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; callb_cpr_t cpr; uint64_t start, delta; txg_thread_enter(tx, &cpr); start = delta = 0; for (;;) { uint64_t timer, timeout = zfs_txg_timeout * hz; uint64_t txg; /* * We sync when we're scrubbing, there's someone waiting * on us, or the quiesce thread has handed off a txg to * us, or we have reached our timeout. */ timer = (delta >= timeout ? 0 : timeout - delta); while ((dp->dp_scrub_func == SCRUB_FUNC_NONE || spa_shutting_down(dp->dp_spa)) && !tx->tx_exiting && timer > 0 && tx->tx_synced_txg >= tx->tx_sync_txg_waiting && tx->tx_quiesced_txg == 0) { dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); delta = lbolt - start; timer = (delta > timeout ? 0 : timeout - delta); } /* * Wait until the quiesce thread hands off a txg to us, * prompting it to do so if necessary. */ while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; cv_broadcast(&tx->tx_quiesce_more_cv); txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); } if (tx->tx_exiting) txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); rw_enter(&tx->tx_suspend, RW_WRITER); /* * Consume the quiesced txg which has been handed off to * us. This may cause the quiescing thread to now be * able to quiesce another txg, so we must signal it. */ txg = tx->tx_quiesced_txg; tx->tx_quiesced_txg = 0; tx->tx_syncing_txg = txg; cv_broadcast(&tx->tx_quiesce_more_cv); rw_exit(&tx->tx_suspend); dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); mutex_exit(&tx->tx_sync_lock); start = lbolt; spa_sync(dp->dp_spa, txg); delta = lbolt - start; /* * Dispatch commit callbacks to worker threads and wait for * them to finish. */ txg_dispatch_callbacks(dp, txg); txg_wait_exit(tx, txg); mutex_enter(&tx->tx_sync_lock); rw_enter(&tx->tx_suspend, RW_WRITER); tx->tx_synced_txg = txg; tx->tx_syncing_txg = 0; rw_exit(&tx->tx_suspend); cv_broadcast(&tx->tx_sync_done_cv); } thread_exit(); } static void txg_quiesce_thread(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; callb_cpr_t cpr; txg_thread_enter(tx, &cpr); for (;;) { uint64_t txg; /* * We quiesce when there's someone waiting on us. * However, we can only have one txg in "quiescing" or * "quiesced, waiting to sync" state. So we wait until * the "quiesced, waiting to sync" txg has been consumed * by the sync thread. */ while (!tx->tx_exiting && (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || tx->tx_quiesced_txg != 0)) txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); if (tx->tx_exiting) txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); txg = tx->tx_open_txg; dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); mutex_exit(&tx->tx_sync_lock); txg_quiesce(dp, txg); mutex_enter(&tx->tx_sync_lock); /* * Hand this txg off to the sync thread. */ dprintf("quiesce done, handing off txg %llu\n", txg); tx->tx_quiesced_txg = txg; cv_broadcast(&tx->tx_sync_more_cv); cv_broadcast(&tx->tx_quiesce_done_cv); } thread_exit(); } /* * Delay this thread by 'ticks' if we are still in the open transaction * group and there is already a waiting txg quiesing or quiesced. Abort * the delay if this txg stalls or enters the quiesing state. */ void txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks) { tx_state_t *tx = &dp->dp_tx; int timeout = lbolt + ticks; /* don't delay if this txg could transition to quiesing immediately */ if (tx->tx_open_txg > txg || tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) return; mutex_enter(&tx->tx_sync_lock); if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { mutex_exit(&tx->tx_sync_lock); return; } while (lbolt < timeout && tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock, timeout); mutex_exit(&tx->tx_sync_lock); } void txg_wait_synced(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; mutex_enter(&tx->tx_sync_lock); ASSERT(tx->tx_threads == 2); if (txg == 0) txg = tx->tx_open_txg; if (tx->tx_sync_txg_waiting < txg) tx->tx_sync_txg_waiting = txg; dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); while (tx->tx_synced_txg < txg) { dprintf("broadcasting sync more " "tx_synced=%llu waiting=%llu dp=%p\n", tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); cv_broadcast(&tx->tx_sync_more_cv); cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); } mutex_exit(&tx->tx_sync_lock); } void txg_wait_open(dsl_pool_t *dp, uint64_t txg) { tx_state_t *tx = &dp->dp_tx; mutex_enter(&tx->tx_sync_lock); ASSERT(tx->tx_threads == 2); if (txg == 0) txg = tx->tx_open_txg + 1; if (tx->tx_quiesce_txg_waiting < txg) tx->tx_quiesce_txg_waiting = txg; dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); while (tx->tx_open_txg < txg) { cv_broadcast(&tx->tx_quiesce_more_cv); cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); } mutex_exit(&tx->tx_sync_lock); } boolean_t txg_stalled(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); } boolean_t txg_sync_waiting(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || tx->tx_quiesced_txg != 0); } void txg_suspend(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; /* XXX some code paths suspend when they are already suspended! */ rw_enter(&tx->tx_suspend, RW_READER); } void txg_resume(dsl_pool_t *dp) { tx_state_t *tx = &dp->dp_tx; rw_exit(&tx->tx_suspend); } /* * Per-txg object lists. */ void txg_list_create(txg_list_t *tl, size_t offset) { int t; mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); tl->tl_offset = offset; for (t = 0; t < TXG_SIZE; t++) tl->tl_head[t] = NULL; } void txg_list_destroy(txg_list_t *tl) { int t; for (t = 0; t < TXG_SIZE; t++) ASSERT(txg_list_empty(tl, t)); mutex_destroy(&tl->tl_lock); } int txg_list_empty(txg_list_t *tl, uint64_t txg) { return (tl->tl_head[txg & TXG_MASK] == NULL); } /* * Add an entry to the list. * Returns 0 if it's a new entry, 1 if it's already there. */ int txg_list_add(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); int already_on_list; mutex_enter(&tl->tl_lock); already_on_list = tn->tn_member[t]; if (!already_on_list) { tn->tn_member[t] = 1; tn->tn_next[t] = tl->tl_head[t]; tl->tl_head[t] = tn; } mutex_exit(&tl->tl_lock); return (already_on_list); } /* * Remove the head of the list and return it. */ void * txg_list_remove(txg_list_t *tl, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn; void *p = NULL; mutex_enter(&tl->tl_lock); if ((tn = tl->tl_head[t]) != NULL) { p = (char *)tn - tl->tl_offset; tl->tl_head[t] = tn->tn_next[t]; tn->tn_next[t] = NULL; tn->tn_member[t] = 0; } mutex_exit(&tl->tl_lock); return (p); } /* * Remove a specific item from the list and return it. */ void * txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn, **tp; mutex_enter(&tl->tl_lock); for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { if ((char *)tn - tl->tl_offset == p) { *tp = tn->tn_next[t]; tn->tn_next[t] = NULL; tn->tn_member[t] = 0; mutex_exit(&tl->tl_lock); return (p); } } mutex_exit(&tl->tl_lock); return (NULL); } int txg_list_member(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); return (tn->tn_member[t]); } /* * Walk a txg list -- only safe if you know it's not changing. */ void * txg_list_head(txg_list_t *tl, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = tl->tl_head[t]; return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); } void * txg_list_next(txg_list_t *tl, void *p, uint64_t txg) { int t = txg & TXG_MASK; txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); tn = tn->tn_next[t]; return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); }