/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Functions to convert between a list of vdevs and an nvlist representing the * configuration. Each entry in the list can be one of: * * Device vdevs * disk=(path=..., devid=...) * file=(path=...) * * Group vdevs * raidz[1|2]=(...) * mirror=(...) * * Hot spares * * While the underlying implementation supports it, group vdevs cannot contain * other group vdevs. All userland verification of devices is contained within * this file. If successful, the nvlist returned can be passed directly to the * kernel; we've done as much verification as possible in userland. * * Hot spares are a special case, and passed down as an array of disk vdevs, at * the same level as the root of the vdev tree. * * The only function exported by this file is 'make_root_vdev'. The * function performs several passes: * * 1. Construct the vdev specification. Performs syntax validation and * makes sure each device is valid. * 2. Check for devices in use. Using libblkid to make sure that no * devices are also in use. Some can be overridden using the 'force' * flag, others cannot. * 3. Check for replication errors if the 'force' flag is not specified. * validates that the replication level is consistent across the * entire pool. * 4. Call libzfs to label any whole disks with an EFI label. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBBLKID #include #endif #include "zpool_util.h" /* * For any given vdev specification, we can have multiple errors. The * vdev_error() function keeps track of whether we have seen an error yet, and * prints out a header if its the first error we've seen. */ boolean_t error_seen; boolean_t is_force; /*PRINTFLIKE1*/ static void vdev_error(const char *fmt, ...) { va_list ap; if (!error_seen) { (void) fprintf(stderr, gettext("invalid vdev specification\n")); if (!is_force) (void) fprintf(stderr, gettext("use '-f' to override " "the following errors:\n")); else (void) fprintf(stderr, gettext("the following errors " "must be manually repaired:\n")); error_seen = B_TRUE; } va_start(ap, fmt); (void) vfprintf(stderr, fmt, ap); va_end(ap); } /* * Check that a file is valid. All we can do in this case is check that it's * not in use by another pool, and not in use by swap. */ static int check_file(const char *file, boolean_t force, boolean_t isspare) { char *name; int fd; int ret = 0; pool_state_t state; boolean_t inuse; if ((fd = open(file, O_RDONLY|O_EXCL)) < 0) return (0); if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) { const char *desc; switch (state) { case POOL_STATE_ACTIVE: desc = gettext("active"); break; case POOL_STATE_EXPORTED: desc = gettext("exported"); break; case POOL_STATE_POTENTIALLY_ACTIVE: desc = gettext("potentially active"); break; default: desc = gettext("unknown"); break; } /* * Allow hot spares to be shared between pools. */ if (state == POOL_STATE_SPARE && isspare) return (0); if (state == POOL_STATE_ACTIVE || state == POOL_STATE_SPARE || !force) { switch (state) { case POOL_STATE_SPARE: vdev_error(gettext("%s is reserved as a hot " "spare for pool %s\n"), file, name); break; default: vdev_error(gettext("%s is part of %s pool " "'%s'\n"), file, desc, name); break; } ret = -1; } free(name); } (void) close(fd); return (ret); } #ifdef HAVE_LIBBLKID static void check_error(int err) { (void) fprintf(stderr, gettext("warning: device in use checking " "failed: %s\n"), strerror(err)); } static int check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare) { struct stat64 statbuf; char *value; int err; if (stat64(path, &statbuf) != 0) { vdev_error(gettext("cannot stat %s: %s\n"), path, strerror(errno)); return (-1); } /* No valid type detected device is safe to use */ value = blkid_get_tag_value(cache, "TYPE", path); if (value == NULL) return (0); /* * If libblkid detects a ZFS device, we check the device * using check_file() to see if it's safe. The one safe * case is a spare device shared between multiple pools. */ if (strcmp(value, "zfs") == 0) { err = check_file(path, force, isspare); } else { if (force) { err = 0; } else { err = -1; vdev_error(gettext("%s contains a filesystem of " "type '%s'\n"), path, value); } } free(value); return (err); } /* * Validate a whole disk. Iterate over all slices on the disk and make sure * that none is in use by calling check_slice(). */ static int check_disk(const char *path, blkid_cache cache, int force, boolean_t isspare, boolean_t iswholedisk) { struct dk_gpt *vtoc; char slice_path[MAXPATHLEN]; int err = 0; int fd, i; /* This is not a wholedisk we only check the given partition */ if (!iswholedisk) return check_slice(path, cache, force, isspare); /* * When the device is a whole disk try to read the efi partition * label. If this is successful we safely check the all of the * partitions. However, when it fails it may simply be because * the disk is partitioned via the MBR. Since we currently can * not easily decode the MBR return a failure and prompt to the * user to use force option since we cannot check the partitions. */ if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0) { check_error(errno); return -1; } if ((err = efi_alloc_and_read(fd, &vtoc)) != 0) { (void) close(fd); if (force) { return 0; } else { vdev_error(gettext("%s does not contain an EFI " "label but it may contain partition\n" "information in the MBR.\n"), path); return -1; } } /* * The primary efi partition label is damaged however the secondary * label at the end of the device is intact. Rather than use this * label we should play it safe and treat this as a non efi device. */ if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) { efi_free(vtoc); (void) close(fd); if (force) { /* Partitions will no be created using the backup */ return 0; } else { vdev_error(gettext("%s contains a corrupt primary " "EFI label.\n"), path); return -1; } } for (i = 0; i < vtoc->efi_nparts; i++) { if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED || uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid)) continue; if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) (void) snprintf(slice_path, sizeof (slice_path), "%s%s%d", path, "-part", i+1); else (void) snprintf(slice_path, sizeof (slice_path), "%s%s%d", path, isdigit(path[strlen(path)-1]) ? "p" : "", i+1); err = check_slice(slice_path, cache, force, isspare); if (err) break; } efi_free(vtoc); (void) close(fd); return (err); } static int check_device(const char *path, boolean_t force, boolean_t isspare, boolean_t iswholedisk) { static blkid_cache cache = NULL; int err; /* * There is no easy way to add a correct blkid_put_cache() call, * memory will be reclaimed when the command exits. */ if (cache == NULL) { if ((err = blkid_get_cache(&cache, NULL)) != 0) { check_error(err); return -1; } if ((err = blkid_probe_all(cache)) != 0) { blkid_put_cache(cache); check_error(err); return -1; } } return check_disk(path, cache, force, isspare, iswholedisk); } #else /* HAVE_LIBBLKID */ static int check_device(const char *path, boolean_t force, boolean_t isspare, boolean_t iswholedisk) { return check_file(path, force, isspare); } #endif /* HAVE_LIBBLKID */ /* * By "whole disk" we mean an entire physical disk (something we can * label, toggle the write cache on, etc.) as opposed to the full * capacity of a pseudo-device such as lofi or did. We act as if we * are labeling the disk, which should be a pretty good test of whether * it's a viable device or not. Returns B_TRUE if it is and B_FALSE if * it isn't. */ static boolean_t is_whole_disk(const char *arg) { struct dk_gpt *label; int fd; char path[MAXPATHLEN]; (void) snprintf(path, sizeof (path), "%s%s%s", RDISK_ROOT, strrchr(arg, '/'), BACKUP_SLICE); if ((fd = open(path, O_RDWR|O_DIRECT|O_EXCL)) < 0) return (B_FALSE); if (efi_alloc_and_init(fd, EFI_NUMPAR, &label) != 0) { (void) close(fd); return (B_FALSE); } efi_free(label); (void) close(fd); return (B_TRUE); } /* * Create a leaf vdev. Determine if this is a file or a device. If it's a * device, fill in the device id to make a complete nvlist. Valid forms for a * leaf vdev are: * * /dev/dsk/xxx Complete disk path * /xxx Full path to file * xxx Shorthand for /dev/dsk/xxx */ static nvlist_t * make_leaf_vdev(const char *arg, uint64_t is_log) { char path[MAXPATHLEN]; struct stat64 statbuf; nvlist_t *vdev = NULL; char *type = NULL; boolean_t wholedisk = B_FALSE; /* * Determine what type of vdev this is, and put the full path into * 'path'. We detect whether this is a device of file afterwards by * checking the st_mode of the file. */ if (arg[0] == '/') { /* * Complete device or file path. Exact type is determined by * examining the file descriptor afterwards. Symbolic links * are resolved to their real paths for the is_whole_disk() * and S_ISBLK/S_ISREG type checks. However, we are careful * to store the given path as ZPOOL_CONFIG_PATH to ensure we * can leverage udev's persistent device labels. */ if (realpath(arg, path) == NULL) { (void) fprintf(stderr, gettext("cannot resolve path '%s'\n"), arg); return (NULL); } wholedisk = is_whole_disk(path); if (!wholedisk && (stat64(path, &statbuf) != 0)) { (void) fprintf(stderr, gettext("cannot open '%s': %s\n"), path, strerror(errno)); return (NULL); } /* After is_whole_disk() check restore original passed path */ strlcpy(path, arg, MAXPATHLEN); } else { /* * This may be a short path for a device, or it could be total * gibberish. Check to see if it's a known device in * /dev/dsk/. As part of this check, see if we've been given a * an entire disk (minus the slice number). */ (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT, arg); wholedisk = is_whole_disk(path); if (!wholedisk && (stat64(path, &statbuf) != 0)) { /* * If we got ENOENT, then the user gave us * gibberish, so try to direct them with a * reasonable error message. Otherwise, * regurgitate strerror() since it's the best we * can do. */ if (errno == ENOENT) { (void) fprintf(stderr, gettext("cannot open '%s': no such " "device in %s\n"), arg, DISK_ROOT); (void) fprintf(stderr, gettext("must be a full path or " "shorthand device name\n")); return (NULL); } else { (void) fprintf(stderr, gettext("cannot open '%s': %s\n"), path, strerror(errno)); return (NULL); } } } /* * Determine whether this is a device or a file. */ if (wholedisk || S_ISBLK(statbuf.st_mode)) { type = VDEV_TYPE_DISK; } else if (S_ISREG(statbuf.st_mode)) { type = VDEV_TYPE_FILE; } else { (void) fprintf(stderr, gettext("cannot use '%s': must be a " "block device or regular file\n"), path); return (NULL); } /* * Finally, we have the complete device or file, and we know that it is * acceptable to use. Construct the nvlist to describe this vdev. All * vdevs have a 'path' element, and devices also have a 'devid' element. */ verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_IS_LOG, is_log) == 0); if (strcmp(type, VDEV_TYPE_DISK) == 0) verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, (uint64_t)wholedisk) == 0); #if defined(__sun__) || defined(__sun) /* * For a whole disk, defer getting its devid until after labeling it. */ if (S_ISBLK(statbuf.st_mode) && !wholedisk) { /* * Get the devid for the device. */ int fd; ddi_devid_t devid; char *minor = NULL, *devid_str = NULL; if ((fd = open(path, O_RDONLY|O_EXCL)) < 0) { (void) fprintf(stderr, gettext("cannot open '%s': " "%s\n"), path, strerror(errno)); nvlist_free(vdev); return (NULL); } if (devid_get(fd, &devid) == 0) { if (devid_get_minor_name(fd, &minor) == 0 && (devid_str = devid_str_encode(devid, minor)) != NULL) { verify(nvlist_add_string(vdev, ZPOOL_CONFIG_DEVID, devid_str) == 0); } if (devid_str != NULL) devid_str_free(devid_str); if (minor != NULL) devid_str_free(minor); devid_free(devid); } (void) close(fd); } #endif return (vdev); } /* * Go through and verify the replication level of the pool is consistent. * Performs the following checks: * * For the new spec, verifies that devices in mirrors and raidz are the * same size. * * If the current configuration already has inconsistent replication * levels, ignore any other potential problems in the new spec. * * Otherwise, make sure that the current spec (if there is one) and the new * spec have consistent replication levels. */ typedef struct replication_level { char *zprl_type; uint64_t zprl_children; uint64_t zprl_parity; } replication_level_t; #define ZPOOL_FUZZ (16 * 1024 * 1024) /* * Given a list of toplevel vdevs, return the current replication level. If * the config is inconsistent, then NULL is returned. If 'fatal' is set, then * an error message will be displayed for each self-inconsistent vdev. */ static replication_level_t * get_replication(nvlist_t *nvroot, boolean_t fatal) { nvlist_t **top; uint_t t, toplevels; nvlist_t **child; uint_t c, children; nvlist_t *nv; char *type; replication_level_t lastrep = { 0 }, rep, *ret; boolean_t dontreport; ret = safe_malloc(sizeof (replication_level_t)); verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, &top, &toplevels) == 0); lastrep.zprl_type = NULL; for (t = 0; t < toplevels; t++) { uint64_t is_log = B_FALSE; nv = top[t]; /* * For separate logs we ignore the top level vdev replication * constraints. */ (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &is_log); if (is_log) continue; verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { /* * This is a 'file' or 'disk' vdev. */ rep.zprl_type = type; rep.zprl_children = 1; rep.zprl_parity = 0; } else { uint64_t vdev_size; /* * This is a mirror or RAID-Z vdev. Go through and make * sure the contents are all the same (files vs. disks), * keeping track of the number of elements in the * process. * * We also check that the size of each vdev (if it can * be determined) is the same. */ rep.zprl_type = type; rep.zprl_children = 0; if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &rep.zprl_parity) == 0); assert(rep.zprl_parity != 0); } else { rep.zprl_parity = 0; } /* * The 'dontreport' variable indicates that we've * already reported an error for this spec, so don't * bother doing it again. */ type = NULL; dontreport = 0; vdev_size = -1ULL; for (c = 0; c < children; c++) { nvlist_t *cnv = child[c]; char *path; struct stat64 statbuf; uint64_t size = -1ULL; char *childtype; int fd, err; rep.zprl_children++; verify(nvlist_lookup_string(cnv, ZPOOL_CONFIG_TYPE, &childtype) == 0); /* * If this is a replacing or spare vdev, then * get the real first child of the vdev. */ if (strcmp(childtype, VDEV_TYPE_REPLACING) == 0 || strcmp(childtype, VDEV_TYPE_SPARE) == 0) { nvlist_t **rchild; uint_t rchildren; verify(nvlist_lookup_nvlist_array(cnv, ZPOOL_CONFIG_CHILDREN, &rchild, &rchildren) == 0); assert(rchildren == 2); cnv = rchild[0]; verify(nvlist_lookup_string(cnv, ZPOOL_CONFIG_TYPE, &childtype) == 0); } verify(nvlist_lookup_string(cnv, ZPOOL_CONFIG_PATH, &path) == 0); /* * If we have a raidz/mirror that combines disks * with files, report it as an error. */ if (!dontreport && type != NULL && strcmp(type, childtype) != 0) { if (ret != NULL) free(ret); ret = NULL; if (fatal) vdev_error(gettext( "mismatched replication " "level: %s contains both " "files and devices\n"), rep.zprl_type); else return (NULL); dontreport = B_TRUE; } /* * According to stat(2), the value of 'st_size' * is undefined for block devices and character * devices. But there is no effective way to * determine the real size in userland. * * Instead, we'll take advantage of an * implementation detail of spec_size(). If the * device is currently open, then we (should) * return a valid size. * * If we still don't get a valid size (indicated * by a size of 0 or MAXOFFSET_T), then ignore * this device altogether. */ if ((fd = open(path, O_RDONLY)) >= 0) { err = fstat64(fd, &statbuf); (void) close(fd); } else { err = stat64(path, &statbuf); } if (err != 0 || statbuf.st_size == 0 || statbuf.st_size == MAXOFFSET_T) continue; size = statbuf.st_size; /* * Also make sure that devices and * slices have a consistent size. If * they differ by a significant amount * (~16MB) then report an error. */ if (!dontreport && (vdev_size != -1ULL && (labs(size - vdev_size) > ZPOOL_FUZZ))) { if (ret != NULL) free(ret); ret = NULL; if (fatal) vdev_error(gettext( "%s contains devices of " "different sizes\n"), rep.zprl_type); else return (NULL); dontreport = B_TRUE; } type = childtype; vdev_size = size; } } /* * At this point, we have the replication of the last toplevel * vdev in 'rep'. Compare it to 'lastrep' to see if its * different. */ if (lastrep.zprl_type != NULL) { if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) { if (ret != NULL) free(ret); ret = NULL; if (fatal) vdev_error(gettext( "mismatched replication level: " "both %s and %s vdevs are " "present\n"), lastrep.zprl_type, rep.zprl_type); else return (NULL); } else if (lastrep.zprl_parity != rep.zprl_parity) { if (ret) free(ret); ret = NULL; if (fatal) vdev_error(gettext( "mismatched replication level: " "both %llu and %llu device parity " "%s vdevs are present\n"), lastrep.zprl_parity, rep.zprl_parity, rep.zprl_type); else return (NULL); } else if (lastrep.zprl_children != rep.zprl_children) { if (ret) free(ret); ret = NULL; if (fatal) vdev_error(gettext( "mismatched replication level: " "both %llu-way and %llu-way %s " "vdevs are present\n"), lastrep.zprl_children, rep.zprl_children, rep.zprl_type); else return (NULL); } } lastrep = rep; } if (ret != NULL) *ret = rep; return (ret); } /* * Check the replication level of the vdev spec against the current pool. Calls * get_replication() to make sure the new spec is self-consistent. If the pool * has a consistent replication level, then we ignore any errors. Otherwise, * report any difference between the two. */ static int check_replication(nvlist_t *config, nvlist_t *newroot) { nvlist_t **child; uint_t children; replication_level_t *current = NULL, *new; int ret; /* * If we have a current pool configuration, check to see if it's * self-consistent. If not, simply return success. */ if (config != NULL) { nvlist_t *nvroot; verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if ((current = get_replication(nvroot, B_FALSE)) == NULL) return (0); } /* * for spares there may be no children, and therefore no * replication level to check */ if ((nvlist_lookup_nvlist_array(newroot, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) || (children == 0)) { free(current); return (0); } /* * If all we have is logs then there's no replication level to check. */ if (num_logs(newroot) == children) { free(current); return (0); } /* * Get the replication level of the new vdev spec, reporting any * inconsistencies found. */ if ((new = get_replication(newroot, B_TRUE)) == NULL) { free(current); return (-1); } /* * Check to see if the new vdev spec matches the replication level of * the current pool. */ ret = 0; if (current != NULL) { if (strcmp(current->zprl_type, new->zprl_type) != 0) { vdev_error(gettext( "mismatched replication level: pool uses %s " "and new vdev is %s\n"), current->zprl_type, new->zprl_type); ret = -1; } else if (current->zprl_parity != new->zprl_parity) { vdev_error(gettext( "mismatched replication level: pool uses %llu " "device parity and new vdev uses %llu\n"), current->zprl_parity, new->zprl_parity); ret = -1; } else if (current->zprl_children != new->zprl_children) { vdev_error(gettext( "mismatched replication level: pool uses %llu-way " "%s and new vdev uses %llu-way %s\n"), current->zprl_children, current->zprl_type, new->zprl_children, new->zprl_type); ret = -1; } } free(new); if (current != NULL) free(current); return (ret); } static int zero_label(char *path) { const int size = 4096; char buf[size]; int err, fd; if ((fd = open(path, O_WRONLY|O_EXCL)) < 0) { (void) fprintf(stderr, gettext("cannot open '%s': %s\n"), path, strerror(errno)); return (-1); } memset(buf, 0, size); err = write(fd, buf, size); (void) fdatasync(fd); (void) close(fd); if (err == -1) { (void) fprintf(stderr, gettext("cannot zero first %d bytes " "of '%s': %s\n"), size, path, strerror(errno)); return (-1); } if (err != size) { (void) fprintf(stderr, gettext("could only zero %d/%d bytes " "of '%s'\n"), err, size, path); return (-1); } return 0; } /* * Go through and find any whole disks in the vdev specification, labelling them * as appropriate. When constructing the vdev spec, we were unable to open this * device in order to provide a devid. Now that we have labelled the disk and * know that slice 0 is valid, we can construct the devid now. * * If the disk was already labeled with an EFI label, we will have gotten the * devid already (because we were able to open the whole disk). Otherwise, we * need to get the devid after we label the disk. */ static int make_disks(zpool_handle_t *zhp, nvlist_t *nv) { nvlist_t **child; uint_t c, children; char *type, *path, *diskname; char buf[MAXPATHLEN]; uint64_t wholedisk; int ret; verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { if (strcmp(type, VDEV_TYPE_DISK) != 0) return (0); /* * We have a disk device. If this is a whole disk write * out the efi partition table, otherwise write zero's to * the first 4k of the partition. This is to ensure that * libblkid will not misidentify the partition due to a * magic value left by the previous filesystem. */ verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path)); verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk)); if (!wholedisk) { ret = zero_label(path); return (ret); } if (realpath(path, buf) == NULL) { ret = errno; (void) fprintf(stderr, gettext("cannot resolve path '%s'\n"), path); return (ret); } diskname = strrchr(buf, '/'); assert(diskname != NULL); diskname++; if (zpool_label_disk(g_zfs, zhp, diskname) == -1) return (-1); /* * Now the we've labeled the disk and the partitions have * been created. We still need to wait for udev to create * the symlinks to those partitions. If we are accessing * the devices via a udev disk path, /dev/disk, then wait * for *-part# to be created. Otherwise just use the normal * syntax for devices in /dev. */ if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0) (void) snprintf(buf, sizeof (buf), "%s%s%s", path, "-part", FIRST_SLICE); else (void) snprintf(buf, sizeof (buf), "%s%s%s", path, isdigit(path[strlen(path)-1]) ? "p" : "", FIRST_SLICE); if ((ret = zpool_label_disk_wait(buf, 1000)) != 0) { (void) fprintf(stderr, gettext( "cannot resolve path '%s'\n"), buf); return (-1); } /* * Update the path to refer to FIRST_SLICE. The presence of * the 'whole_disk' field indicates to the CLI that we should * chop off the slice number when displaying the device in * future output. */ verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0); /* Just in case this partition already existed. */ (void) zero_label(buf); return (0); } for (c = 0; c < children; c++) if ((ret = make_disks(zhp, child[c])) != 0) return (ret); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) for (c = 0; c < children; c++) if ((ret = make_disks(zhp, child[c])) != 0) return (ret); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) for (c = 0; c < children; c++) if ((ret = make_disks(zhp, child[c])) != 0) return (ret); return (0); } /* * Determine if the given path is a hot spare within the given configuration. */ static boolean_t is_spare(nvlist_t *config, const char *path) { int fd; pool_state_t state; char *name = NULL; nvlist_t *label; uint64_t guid, spareguid; nvlist_t *nvroot; nvlist_t **spares; uint_t i, nspares; boolean_t inuse; if ((fd = open(path, O_RDONLY|O_EXCL)) < 0) return (B_FALSE); if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 || !inuse || state != POOL_STATE_SPARE || zpool_read_label(fd, &label) != 0) { free(name); (void) close(fd); return (B_FALSE); } free(name); (void) close(fd); verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0); nvlist_free(label); verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { for (i = 0; i < nspares; i++) { verify(nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &spareguid) == 0); if (spareguid == guid) return (B_TRUE); } } return (B_FALSE); } /* * Go through and find any devices that are in use. We rely on libdiskmgt for * the majority of this task. */ static int check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing, int isspare) { nvlist_t **child; uint_t c, children; char *type, *path; int ret = 0; char buf[MAXPATHLEN]; uint64_t wholedisk = B_FALSE; verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) { verify(!nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path)); if (strcmp(type, VDEV_TYPE_DISK) == 0) verify(!nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk)); /* * As a generic check, we look to see if this is a replace of a * hot spare within the same pool. If so, we allow it * regardless of what libblkid or zpool_in_use() says. */ if (isreplacing) { if (wholedisk) (void) snprintf(buf, sizeof (buf), "%ss0", path); else (void) strlcpy(buf, path, sizeof (buf)); if (is_spare(config, buf)) return (0); } if (strcmp(type, VDEV_TYPE_DISK) == 0) ret = check_device(path, force, isspare, wholedisk); if (strcmp(type, VDEV_TYPE_FILE) == 0) ret = check_file(path, force, isspare); return (ret); } for (c = 0; c < children; c++) if ((ret = check_in_use(config, child[c], force, isreplacing, B_FALSE)) != 0) return (ret); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) == 0) for (c = 0; c < children; c++) if ((ret = check_in_use(config, child[c], force, isreplacing, B_TRUE)) != 0) return (ret); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) for (c = 0; c < children; c++) if ((ret = check_in_use(config, child[c], force, isreplacing, B_FALSE)) != 0) return (ret); return (0); } static const char * is_grouping(const char *type, int *mindev, int *maxdev) { if (strncmp(type, "raidz", 5) == 0) { const char *p = type + 5; char *end; long nparity; if (*p == '\0') { nparity = 1; } else if (*p == '0') { return (NULL); /* no zero prefixes allowed */ } else { errno = 0; nparity = strtol(p, &end, 10); if (errno != 0 || nparity < 1 || nparity >= 255 || *end != '\0') return (NULL); } if (mindev != NULL) *mindev = nparity + 1; if (maxdev != NULL) *maxdev = 255; return (VDEV_TYPE_RAIDZ); } if (maxdev != NULL) *maxdev = INT_MAX; if (strcmp(type, "mirror") == 0) { if (mindev != NULL) *mindev = 2; return (VDEV_TYPE_MIRROR); } if (strcmp(type, "spare") == 0) { if (mindev != NULL) *mindev = 1; return (VDEV_TYPE_SPARE); } if (strcmp(type, "log") == 0) { if (mindev != NULL) *mindev = 1; return (VDEV_TYPE_LOG); } if (strcmp(type, "cache") == 0) { if (mindev != NULL) *mindev = 1; return (VDEV_TYPE_L2CACHE); } return (NULL); } /* * Construct a syntactically valid vdev specification, * and ensure that all devices and files exist and can be opened. * Note: we don't bother freeing anything in the error paths * because the program is just going to exit anyway. */ nvlist_t * construct_spec(int argc, char **argv) { nvlist_t *nvroot, *nv, **top, **spares, **l2cache; int t, toplevels, mindev, maxdev, nspares, nlogs, nl2cache; const char *type; uint64_t is_log; boolean_t seen_logs; top = NULL; toplevels = 0; spares = NULL; l2cache = NULL; nspares = 0; nlogs = 0; nl2cache = 0; is_log = B_FALSE; seen_logs = B_FALSE; while (argc > 0) { nv = NULL; /* * If it's a mirror or raidz, the subsequent arguments are * its leaves -- until we encounter the next mirror or raidz. */ if ((type = is_grouping(argv[0], &mindev, &maxdev)) != NULL) { nvlist_t **child = NULL; int c, children = 0; if (strcmp(type, VDEV_TYPE_SPARE) == 0) { if (spares != NULL) { (void) fprintf(stderr, gettext("invalid vdev " "specification: 'spare' can be " "specified only once\n")); return (NULL); } is_log = B_FALSE; } if (strcmp(type, VDEV_TYPE_LOG) == 0) { if (seen_logs) { (void) fprintf(stderr, gettext("invalid vdev " "specification: 'log' can be " "specified only once\n")); return (NULL); } seen_logs = B_TRUE; is_log = B_TRUE; argc--; argv++; /* * A log is not a real grouping device. * We just set is_log and continue. */ continue; } if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { if (l2cache != NULL) { (void) fprintf(stderr, gettext("invalid vdev " "specification: 'cache' can be " "specified only once\n")); return (NULL); } is_log = B_FALSE; } if (is_log) { if (strcmp(type, VDEV_TYPE_MIRROR) != 0) { (void) fprintf(stderr, gettext("invalid vdev " "specification: unsupported 'log' " "device: %s\n"), type); return (NULL); } nlogs++; } for (c = 1; c < argc; c++) { if (is_grouping(argv[c], NULL, NULL) != NULL) break; children++; child = realloc(child, children * sizeof (nvlist_t *)); if (child == NULL) zpool_no_memory(); if ((nv = make_leaf_vdev(argv[c], B_FALSE)) == NULL) return (NULL); child[children - 1] = nv; } if (children < mindev) { (void) fprintf(stderr, gettext("invalid vdev " "specification: %s requires at least %d " "devices\n"), argv[0], mindev); return (NULL); } if (children > maxdev) { (void) fprintf(stderr, gettext("invalid vdev " "specification: %s supports no more than " "%d devices\n"), argv[0], maxdev); return (NULL); } argc -= c; argv += c; if (strcmp(type, VDEV_TYPE_SPARE) == 0) { spares = child; nspares = children; continue; } else if (strcmp(type, VDEV_TYPE_L2CACHE) == 0) { l2cache = child; nl2cache = children; continue; } else { verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0); verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, type) == 0); verify(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, is_log) == 0); if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) { verify(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, mindev - 1) == 0); } verify(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, child, children) == 0); for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); } } else { /* * We have a device. Pass off to make_leaf_vdev() to * construct the appropriate nvlist describing the vdev. */ if ((nv = make_leaf_vdev(argv[0], is_log)) == NULL) return (NULL); if (is_log) nlogs++; argc--; argv++; } toplevels++; top = realloc(top, toplevels * sizeof (nvlist_t *)); if (top == NULL) zpool_no_memory(); top[toplevels - 1] = nv; } if (toplevels == 0 && nspares == 0 && nl2cache == 0) { (void) fprintf(stderr, gettext("invalid vdev " "specification: at least one toplevel vdev must be " "specified\n")); return (NULL); } if (seen_logs && nlogs == 0) { (void) fprintf(stderr, gettext("invalid vdev specification: " "log requires at least 1 device\n")); return (NULL); } /* * Finally, create nvroot and add all top-level vdevs to it. */ verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, top, toplevels) == 0); if (nspares != 0) verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, spares, nspares) == 0); if (nl2cache != 0) verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); for (t = 0; t < toplevels; t++) nvlist_free(top[t]); for (t = 0; t < nspares; t++) nvlist_free(spares[t]); for (t = 0; t < nl2cache; t++) nvlist_free(l2cache[t]); if (spares) free(spares); if (l2cache) free(l2cache); free(top); return (nvroot); } /* * Get and validate the contents of the given vdev specification. This ensures * that the nvlist returned is well-formed, that all the devices exist, and that * they are not currently in use by any other known consumer. The 'poolconfig' * parameter is the current configuration of the pool when adding devices * existing pool, and is used to perform additional checks, such as changing the * replication level of the pool. It can be 'NULL' to indicate that this is a * new pool. The 'force' flag controls whether devices should be forcefully * added, even if they appear in use. */ nvlist_t * make_root_vdev(zpool_handle_t *zhp, int force, int check_rep, boolean_t isreplacing, boolean_t dryrun, int argc, char **argv) { nvlist_t *newroot; nvlist_t *poolconfig = NULL; is_force = force; /* * Construct the vdev specification. If this is successful, we know * that we have a valid specification, and that all devices can be * opened. */ if ((newroot = construct_spec(argc, argv)) == NULL) return (NULL); if (zhp && ((poolconfig = zpool_get_config(zhp, NULL)) == NULL)) return (NULL); /* * Validate each device to make sure that its not shared with another * subsystem. We do this even if 'force' is set, because there are some * uses (such as a dedicated dump device) that even '-f' cannot * override. */ if (check_in_use(poolconfig, newroot, force, isreplacing, B_FALSE) != 0) { nvlist_free(newroot); return (NULL); } /* * Check the replication level of the given vdevs and report any errors * found. We include the existing pool spec, if any, as we need to * catch changes against the existing replication level. */ if (check_rep && check_replication(poolconfig, newroot) != 0) { nvlist_free(newroot); return (NULL); } /* * Run through the vdev specification and label any whole disks found. */ if (!dryrun && make_disks(zhp, newroot) != 0) { nvlist_free(newroot); return (NULL); } return (newroot); }