/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright (C) 2016 Gvozden Neskovic <neskovic@compeng.uni-frankfurt.de>.
 */

/*
 * USER API:
 *
 * Kernel fpu methods:
 * 	kfpu_begin()
 * 	kfpu_end()
 *
 * SIMD support:
 *
 * Following functions should be called to determine whether CPU feature
 * is supported. All functions are usable in kernel and user space.
 * If a SIMD algorithm is using more than one instruction set
 * all relevant feature test functions should be called.
 *
 * Supported features:
 * 	zfs_sse_available()
 * 	zfs_sse2_available()
 * 	zfs_sse3_available()
 * 	zfs_ssse3_available()
 * 	zfs_sse4_1_available()
 * 	zfs_sse4_2_available()
 *
 * 	zfs_avx_available()
 * 	zfs_avx2_available()
 *
 * 	zfs_bmi1_available()
 * 	zfs_bmi2_available()
 *
 * 	zfs_avx512f_available()
 * 	zfs_avx512cd_available()
 * 	zfs_avx512er_available()
 * 	zfs_avx512pf_available()
 * 	zfs_avx512bw_available()
 * 	zfs_avx512dq_available()
 * 	zfs_avx512vl_available()
 * 	zfs_avx512ifma_available()
 * 	zfs_avx512vbmi_available()
 *
 * NOTE(AVX-512VL):	If using AVX-512 instructions with 128Bit registers
 * 			also add zfs_avx512vl_available() to feature check.
 */

#ifndef _SIMD_X86_H
#define	_SIMD_X86_H

#include <sys/isa_defs.h>

/* only for __x86 */
#if defined(__x86)

#include <sys/types.h>

#if defined(_KERNEL)
#include <asm/cpufeature.h>
#else
#include <cpuid.h>
#endif

#if defined(_KERNEL)
#if defined(HAVE_FPU_API_H)
#include <asm/fpu/api.h>
#include <asm/fpu/internal.h>
#define	kfpu_begin()		\
{							\
	preempt_disable();		\
	__kernel_fpu_begin();	\
}
#define	kfpu_end()			\
{							\
	__kernel_fpu_end();		\
	preempt_enable();		\
}
#else
#include <asm/i387.h>
#include <asm/xcr.h>
#define	kfpu_begin()	kernel_fpu_begin()
#define	kfpu_end()		kernel_fpu_end()
#endif /* defined(HAVE_FPU_API_H) */
#else
/*
 * fpu dummy methods for userspace
 */
#define	kfpu_begin() 	do {} while (0)
#define	kfpu_end() 		do {} while (0)
#endif /* defined(_KERNEL) */

/*
 * CPUID feature tests for user-space. Linux kernel provides an interface for
 * CPU feature testing.
 */
#if !defined(_KERNEL)

/*
 * x86 registers used implicitly by CPUID
 */
typedef enum cpuid_regs {
	EAX = 0,
	EBX,
	ECX,
	EDX,
	CPUID_REG_CNT = 4
} cpuid_regs_t;

/*
 * List of instruction sets identified by CPUID
 */
typedef enum cpuid_inst_sets {
	SSE = 0,
	SSE2,
	SSE3,
	SSSE3,
	SSE4_1,
	SSE4_2,
	OSXSAVE,
	AVX,
	AVX2,
	BMI1,
	BMI2,
	AVX512F,
	AVX512CD,
	AVX512DQ,
	AVX512BW,
	AVX512IFMA,
	AVX512VBMI,
	AVX512PF,
	AVX512ER,
	AVX512VL
} cpuid_inst_sets_t;

/*
 * Instruction set descriptor.
 */
typedef struct cpuid_feature_desc {
	uint32_t leaf;		/* CPUID leaf */
	uint32_t subleaf;	/* CPUID sub-leaf */
	uint32_t flag;		/* bit mask of the feature */
	cpuid_regs_t reg;	/* which CPUID return register to test */
} cpuid_feature_desc_t;

#define	_AVX512F_BIT		(1U << 16)
#define	_AVX512CD_BIT		(_AVX512F_BIT | (1U << 28))
#define	_AVX512DQ_BIT		(_AVX512F_BIT | (1U << 17))
#define	_AVX512BW_BIT		(_AVX512F_BIT | (1U << 30))
#define	_AVX512IFMA_BIT		(_AVX512F_BIT | (1U << 21))
#define	_AVX512VBMI_BIT		(1U << 1) /* AVX512F_BIT is on another leaf  */
#define	_AVX512PF_BIT		(_AVX512F_BIT | (1U << 26))
#define	_AVX512ER_BIT		(_AVX512F_BIT | (1U << 27))
#define	_AVX512VL_BIT		(1U << 31) /* if used also check other levels */

/*
 * Descriptions of supported instruction sets
 */
static const cpuid_feature_desc_t cpuid_features[] = {
	[SSE]		= {1U, 0U,	1U << 25, 	EDX	},
	[SSE2]		= {1U, 0U,	1U << 26,	EDX	},
	[SSE3]		= {1U, 0U,	1U << 0,	ECX	},
	[SSSE3]		= {1U, 0U,	1U << 9,	ECX	},
	[SSE4_1]	= {1U, 0U,	1U << 19,	ECX	},
	[SSE4_2]	= {1U, 0U,	1U << 20,	ECX	},
	[OSXSAVE]	= {1U, 0U,	1U << 27,	ECX	},
	[AVX]		= {1U, 0U,	1U << 28,	ECX	},
	[AVX2]		= {7U, 0U,	1U << 5,	EBX	},
	[BMI1]		= {7U, 0U,	1U << 3,	EBX	},
	[BMI2]		= {7U, 0U,	1U << 8,	EBX	},
	[AVX512F]	= {7U, 0U, _AVX512F_BIT,	EBX	},
	[AVX512CD]	= {7U, 0U, _AVX512CD_BIT,	EBX	},
	[AVX512DQ]	= {7U, 0U, _AVX512DQ_BIT,	EBX	},
	[AVX512BW]	= {7U, 0U, _AVX512BW_BIT,	EBX	},
	[AVX512IFMA]	= {7U, 0U, _AVX512IFMA_BIT,	EBX	},
	[AVX512VBMI]	= {7U, 0U, _AVX512VBMI_BIT,	ECX	},
	[AVX512PF]	= {7U, 0U, _AVX512PF_BIT,	EBX	},
	[AVX512ER]	= {7U, 0U, _AVX512ER_BIT,	EBX	},
	[AVX512VL]	= {7U, 0U, _AVX512ER_BIT,	EBX	}
};

/*
 * Check if OS supports AVX and AVX2 by checking XCR0
 * Only call this function if CPUID indicates that AVX feature is
 * supported by the CPU, otherwise it might be an illegal instruction.
 */
static inline uint64_t
xgetbv(uint32_t index)
{
	uint32_t eax, edx;
	/* xgetbv - instruction byte code */
	__asm__ __volatile__(".byte 0x0f; .byte 0x01; .byte 0xd0"
	    : "=a" (eax), "=d" (edx)
	    : "c" (index));

	return ((((uint64_t)edx)<<32) | (uint64_t)eax);
}

/*
 * Check if CPU supports a feature
 */
static inline boolean_t
__cpuid_check_feature(const cpuid_feature_desc_t *desc)
{
	uint32_t r[CPUID_REG_CNT];

	if (__get_cpuid_max(0, NULL) >= desc->leaf) {
		/*
		 * __cpuid_count is needed to properly check
		 * for AVX2. It is a macro, so return parameters
		 * are passed by value.
		 */
		__cpuid_count(desc->leaf, desc->subleaf,
		    r[EAX], r[EBX], r[ECX], r[EDX]);
		return ((r[desc->reg] & desc->flag) == desc->flag);
	}
	return (B_FALSE);
}

#define	CPUID_FEATURE_CHECK(name, id)				\
static inline boolean_t						\
__cpuid_has_ ## name(void)					\
{								\
	return (__cpuid_check_feature(&cpuid_features[id]));	\
}

/*
 * Define functions for user-space CPUID features testing
 */
CPUID_FEATURE_CHECK(sse, SSE);
CPUID_FEATURE_CHECK(sse2, SSE2);
CPUID_FEATURE_CHECK(sse3, SSE3);
CPUID_FEATURE_CHECK(ssse3, SSSE3);
CPUID_FEATURE_CHECK(sse4_1, SSE4_1);
CPUID_FEATURE_CHECK(sse4_2, SSE4_2);
CPUID_FEATURE_CHECK(avx, AVX);
CPUID_FEATURE_CHECK(avx2, AVX2);
CPUID_FEATURE_CHECK(osxsave, OSXSAVE);
CPUID_FEATURE_CHECK(bmi1, BMI1);
CPUID_FEATURE_CHECK(bmi2, BMI2);
CPUID_FEATURE_CHECK(avx512f, AVX512F);
CPUID_FEATURE_CHECK(avx512cd, AVX512CD);
CPUID_FEATURE_CHECK(avx512dq, AVX512DQ);
CPUID_FEATURE_CHECK(avx512bw, AVX512BW);
CPUID_FEATURE_CHECK(avx512ifma, AVX512IFMA);
CPUID_FEATURE_CHECK(avx512vbmi, AVX512VBMI);
CPUID_FEATURE_CHECK(avx512pf, AVX512PF);
CPUID_FEATURE_CHECK(avx512er, AVX512ER);
CPUID_FEATURE_CHECK(avx512vl, AVX512VL);

#endif /* !defined(_KERNEL) */


/*
 * Detect register set support
 */
static inline boolean_t
__simd_state_enabled(const uint64_t state)
{
	boolean_t has_osxsave;
	uint64_t xcr0;

#if defined(_KERNEL) && defined(X86_FEATURE_OSXSAVE)
	has_osxsave = !!boot_cpu_has(X86_FEATURE_OSXSAVE);
#elif defined(_KERNEL) && !defined(X86_FEATURE_OSXSAVE)
	has_osxsave = B_FALSE;
#else
	has_osxsave = __cpuid_has_osxsave();
#endif

	if (!has_osxsave)
		return (B_FALSE);

	xcr0 = xgetbv(0);
	return ((xcr0 & state) == state);
}

#define	_XSTATE_SSE_AVX		(0x2 | 0x4)
#define	_XSTATE_AVX512		(0xE0 | _XSTATE_SSE_AVX)

#define	__ymm_enabled() __simd_state_enabled(_XSTATE_SSE_AVX)
#define	__zmm_enabled() __simd_state_enabled(_XSTATE_AVX512)


/*
 * Check if SSE instruction set is available
 */
static inline boolean_t
zfs_sse_available(void)
{
#if defined(_KERNEL)
	return (!!boot_cpu_has(X86_FEATURE_XMM));
#else
	return (__cpuid_has_sse());
#endif
}

/*
 * Check if SSE2 instruction set is available
 */
static inline boolean_t
zfs_sse2_available(void)
{
#if defined(_KERNEL)
	return (!!boot_cpu_has(X86_FEATURE_XMM2));
#else
	return (__cpuid_has_sse2());
#endif
}

/*
 * Check if SSE3 instruction set is available
 */
static inline boolean_t
zfs_sse3_available(void)
{
#if defined(_KERNEL)
	return (!!boot_cpu_has(X86_FEATURE_XMM3));
#else
	return (__cpuid_has_sse3());
#endif
}

/*
 * Check if SSSE3 instruction set is available
 */
static inline boolean_t
zfs_ssse3_available(void)
{
#if defined(_KERNEL)
	return (!!boot_cpu_has(X86_FEATURE_SSSE3));
#else
	return (__cpuid_has_ssse3());
#endif
}

/*
 * Check if SSE4.1 instruction set is available
 */
static inline boolean_t
zfs_sse4_1_available(void)
{
#if defined(_KERNEL)
	return (!!boot_cpu_has(X86_FEATURE_XMM4_1));
#else
	return (__cpuid_has_sse4_1());
#endif
}

/*
 * Check if SSE4.2 instruction set is available
 */
static inline boolean_t
zfs_sse4_2_available(void)
{
#if defined(_KERNEL)
	return (!!boot_cpu_has(X86_FEATURE_XMM4_2));
#else
	return (__cpuid_has_sse4_2());
#endif
}

/*
 * Check if AVX instruction set is available
 */
static inline boolean_t
zfs_avx_available(void)
{
	boolean_t has_avx;
#if defined(_KERNEL)
	has_avx = !!boot_cpu_has(X86_FEATURE_AVX);
#else
	has_avx = __cpuid_has_avx();
#endif

	return (has_avx && __ymm_enabled());
}

/*
 * Check if AVX2 instruction set is available
 */
static inline boolean_t
zfs_avx2_available(void)
{
	boolean_t has_avx2;
#if defined(_KERNEL) && defined(X86_FEATURE_AVX2)
	has_avx2 = !!boot_cpu_has(X86_FEATURE_AVX2);
#elif defined(_KERNEL) && !defined(X86_FEATURE_AVX2)
	has_avx2 = B_FALSE;
#else
	has_avx2 = __cpuid_has_avx2();
#endif

	return (has_avx2 && __ymm_enabled());
}

/*
 * Check if BMI1 instruction set is available
 */
static inline boolean_t
zfs_bmi1_available(void)
{
#if defined(_KERNEL) && defined(X86_FEATURE_BMI1)
	return (!!boot_cpu_has(X86_FEATURE_BMI1));
#elif defined(_KERNEL) && !defined(X86_FEATURE_BMI1)
	return (B_FALSE);
#else
	return (__cpuid_has_bmi1());
#endif
}

/*
 * Check if BMI2 instruction set is available
 */
static inline boolean_t
zfs_bmi2_available(void)
{
#if defined(_KERNEL) && defined(X86_FEATURE_BMI2)
	return (!!boot_cpu_has(X86_FEATURE_BMI2));
#elif defined(_KERNEL) && !defined(X86_FEATURE_BMI2)
	return (B_FALSE);
#else
	return (__cpuid_has_bmi2());
#endif
}


/*
 * AVX-512 family of instruction sets:
 *
 * AVX512F	Foundation
 * AVX512CD	Conflict Detection Instructions
 * AVX512ER	Exponential and Reciprocal Instructions
 * AVX512PF	Prefetch Instructions
 *
 * AVX512BW	Byte and Word Instructions
 * AVX512DQ	Double-word and Quadword Instructions
 * AVX512VL	Vector Length Extensions
 *
 * AVX512IFMA	Integer Fused Multiply Add (Not supported by kernel 4.4)
 * AVX512VBMI	Vector Byte Manipulation Instructions
 */


/* Check if AVX512F instruction set is available */
static inline boolean_t
zfs_avx512f_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512F)
	has_avx512 = !!boot_cpu_has(X86_FEATURE_AVX512F);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512f();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512CD instruction set is available */
static inline boolean_t
zfs_avx512cd_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512CD)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512CD);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512cd();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512ER instruction set is available */
static inline boolean_t
zfs_avx512er_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512ER)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512ER);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512er();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512PF instruction set is available */
static inline boolean_t
zfs_avx512pf_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512PF)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512PF);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512pf();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512BW instruction set is available */
static inline boolean_t
zfs_avx512bw_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512BW)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512BW);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512bw();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512DQ instruction set is available */
static inline boolean_t
zfs_avx512dq_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512DQ)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512DQ);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512dq();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512VL instruction set is available */
static inline boolean_t
zfs_avx512vl_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512VL)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512VL);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512vl();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512IFMA instruction set is available */
static inline boolean_t
zfs_avx512ifma_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512IFMA)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512IFMA);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512ifma();
#endif

	return (has_avx512 && __zmm_enabled());
}

/* Check if AVX512VBMI instruction set is available */
static inline boolean_t
zfs_avx512vbmi_available(void)
{
	boolean_t has_avx512 = B_FALSE;

#if defined(_KERNEL) && defined(X86_FEATURE_AVX512VBMI)
	has_avx512 = boot_cpu_has(X86_FEATURE_AVX512F) &&
	    boot_cpu_has(X86_FEATURE_AVX512VBMI);
#elif !defined(_KERNEL)
	has_avx512 = __cpuid_has_avx512f() &&
	    __cpuid_has_avx512vbmi();
#endif

	return (has_avx512 && __zmm_enabled());
}

#endif /* defined(__x86) */

#endif /* _SIMD_X86_H */