/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #define GHASH(c, d, t, o) \ xor_block((uint8_t *)(d), (uint8_t *)(c)->gcm_ghash); \ (o)->mul((uint64_t *)(void *)(c)->gcm_ghash, (c)->gcm_H, \ (uint64_t *)(void *)(t)); /* * Encrypt multiple blocks of data in GCM mode. Decrypt for GCM mode * is done in another function. */ int gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length, crypto_data_t *out, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { const gcm_impl_ops_t *gops; size_t remainder = length; size_t need = 0; uint8_t *datap = (uint8_t *)data; uint8_t *blockp; uint8_t *lastp; void *iov_or_mp; offset_t offset; uint8_t *out_data_1; uint8_t *out_data_2; size_t out_data_1_len; uint64_t counter; uint64_t counter_mask = ntohll(0x00000000ffffffffULL); if (length + ctx->gcm_remainder_len < block_size) { /* accumulate bytes here and return */ bcopy(datap, (uint8_t *)ctx->gcm_remainder + ctx->gcm_remainder_len, length); ctx->gcm_remainder_len += length; if (ctx->gcm_copy_to == NULL) { ctx->gcm_copy_to = datap; } return (CRYPTO_SUCCESS); } lastp = (uint8_t *)ctx->gcm_cb; if (out != NULL) crypto_init_ptrs(out, &iov_or_mp, &offset); gops = gcm_impl_get_ops(); do { /* Unprocessed data from last call. */ if (ctx->gcm_remainder_len > 0) { need = block_size - ctx->gcm_remainder_len; if (need > remainder) return (CRYPTO_DATA_LEN_RANGE); bcopy(datap, &((uint8_t *)ctx->gcm_remainder) [ctx->gcm_remainder_len], need); blockp = (uint8_t *)ctx->gcm_remainder; } else { blockp = datap; } /* * Increment counter. Counter bits are confined * to the bottom 32 bits of the counter block. */ counter = ntohll(ctx->gcm_cb[1] & counter_mask); counter = htonll(counter + 1); counter &= counter_mask; ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, (uint8_t *)ctx->gcm_tmp); xor_block(blockp, (uint8_t *)ctx->gcm_tmp); lastp = (uint8_t *)ctx->gcm_tmp; ctx->gcm_processed_data_len += block_size; if (out == NULL) { if (ctx->gcm_remainder_len > 0) { bcopy(blockp, ctx->gcm_copy_to, ctx->gcm_remainder_len); bcopy(blockp + ctx->gcm_remainder_len, datap, need); } } else { crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1, &out_data_1_len, &out_data_2, block_size); /* copy block to where it belongs */ if (out_data_1_len == block_size) { copy_block(lastp, out_data_1); } else { bcopy(lastp, out_data_1, out_data_1_len); if (out_data_2 != NULL) { bcopy(lastp + out_data_1_len, out_data_2, block_size - out_data_1_len); } } /* update offset */ out->cd_offset += block_size; } /* add ciphertext to the hash */ GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gops); /* Update pointer to next block of data to be processed. */ if (ctx->gcm_remainder_len != 0) { datap += need; ctx->gcm_remainder_len = 0; } else { datap += block_size; } remainder = (size_t)&data[length] - (size_t)datap; /* Incomplete last block. */ if (remainder > 0 && remainder < block_size) { bcopy(datap, ctx->gcm_remainder, remainder); ctx->gcm_remainder_len = remainder; ctx->gcm_copy_to = datap; goto out; } ctx->gcm_copy_to = NULL; } while (remainder > 0); out: return (CRYPTO_SUCCESS); } /* ARGSUSED */ int gcm_encrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { const gcm_impl_ops_t *gops; uint64_t counter_mask = ntohll(0x00000000ffffffffULL); uint8_t *ghash, *macp = NULL; int i, rv; if (out->cd_length < (ctx->gcm_remainder_len + ctx->gcm_tag_len)) { return (CRYPTO_DATA_LEN_RANGE); } gops = gcm_impl_get_ops(); ghash = (uint8_t *)ctx->gcm_ghash; if (ctx->gcm_remainder_len > 0) { uint64_t counter; uint8_t *tmpp = (uint8_t *)ctx->gcm_tmp; /* * Here is where we deal with data that is not a * multiple of the block size. */ /* * Increment counter. */ counter = ntohll(ctx->gcm_cb[1] & counter_mask); counter = htonll(counter + 1); counter &= counter_mask; ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, (uint8_t *)ctx->gcm_tmp); macp = (uint8_t *)ctx->gcm_remainder; bzero(macp + ctx->gcm_remainder_len, block_size - ctx->gcm_remainder_len); /* XOR with counter block */ for (i = 0; i < ctx->gcm_remainder_len; i++) { macp[i] ^= tmpp[i]; } /* add ciphertext to the hash */ GHASH(ctx, macp, ghash, gops); ctx->gcm_processed_data_len += ctx->gcm_remainder_len; } ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(ctx->gcm_processed_data_len)); GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops); encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0, (uint8_t *)ctx->gcm_J0); xor_block((uint8_t *)ctx->gcm_J0, ghash); if (ctx->gcm_remainder_len > 0) { rv = crypto_put_output_data(macp, out, ctx->gcm_remainder_len); if (rv != CRYPTO_SUCCESS) return (rv); } out->cd_offset += ctx->gcm_remainder_len; ctx->gcm_remainder_len = 0; rv = crypto_put_output_data(ghash, out, ctx->gcm_tag_len); if (rv != CRYPTO_SUCCESS) return (rv); out->cd_offset += ctx->gcm_tag_len; return (CRYPTO_SUCCESS); } /* * This will only deal with decrypting the last block of the input that * might not be a multiple of block length. */ static void gcm_decrypt_incomplete_block(gcm_ctx_t *ctx, size_t block_size, size_t index, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { uint8_t *datap, *outp, *counterp; uint64_t counter; uint64_t counter_mask = ntohll(0x00000000ffffffffULL); int i; /* * Increment counter. * Counter bits are confined to the bottom 32 bits */ counter = ntohll(ctx->gcm_cb[1] & counter_mask); counter = htonll(counter + 1); counter &= counter_mask; ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; datap = (uint8_t *)ctx->gcm_remainder; outp = &((ctx->gcm_pt_buf)[index]); counterp = (uint8_t *)ctx->gcm_tmp; /* authentication tag */ bzero((uint8_t *)ctx->gcm_tmp, block_size); bcopy(datap, (uint8_t *)ctx->gcm_tmp, ctx->gcm_remainder_len); /* add ciphertext to the hash */ GHASH(ctx, ctx->gcm_tmp, ctx->gcm_ghash, gcm_impl_get_ops()); /* decrypt remaining ciphertext */ encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, counterp); /* XOR with counter block */ for (i = 0; i < ctx->gcm_remainder_len; i++) { outp[i] = datap[i] ^ counterp[i]; } } /* ARGSUSED */ int gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *ctx, char *data, size_t length, crypto_data_t *out, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { size_t new_len; uint8_t *new; /* * Copy contiguous ciphertext input blocks to plaintext buffer. * Ciphertext will be decrypted in the final. */ if (length > 0) { new_len = ctx->gcm_pt_buf_len + length; new = vmem_alloc(new_len, ctx->gcm_kmflag); if (new == NULL) { vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len); ctx->gcm_pt_buf = NULL; return (CRYPTO_HOST_MEMORY); } bcopy(ctx->gcm_pt_buf, new, ctx->gcm_pt_buf_len); vmem_free(ctx->gcm_pt_buf, ctx->gcm_pt_buf_len); ctx->gcm_pt_buf = new; ctx->gcm_pt_buf_len = new_len; bcopy(data, &ctx->gcm_pt_buf[ctx->gcm_processed_data_len], length); ctx->gcm_processed_data_len += length; } ctx->gcm_remainder_len = 0; return (CRYPTO_SUCCESS); } int gcm_decrypt_final(gcm_ctx_t *ctx, crypto_data_t *out, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { const gcm_impl_ops_t *gops; size_t pt_len; size_t remainder; uint8_t *ghash; uint8_t *blockp; uint8_t *cbp; uint64_t counter; uint64_t counter_mask = ntohll(0x00000000ffffffffULL); int processed = 0, rv; ASSERT(ctx->gcm_processed_data_len == ctx->gcm_pt_buf_len); gops = gcm_impl_get_ops(); pt_len = ctx->gcm_processed_data_len - ctx->gcm_tag_len; ghash = (uint8_t *)ctx->gcm_ghash; blockp = ctx->gcm_pt_buf; remainder = pt_len; while (remainder > 0) { /* Incomplete last block */ if (remainder < block_size) { bcopy(blockp, ctx->gcm_remainder, remainder); ctx->gcm_remainder_len = remainder; /* * not expecting anymore ciphertext, just * compute plaintext for the remaining input */ gcm_decrypt_incomplete_block(ctx, block_size, processed, encrypt_block, xor_block); ctx->gcm_remainder_len = 0; goto out; } /* add ciphertext to the hash */ GHASH(ctx, blockp, ghash, gops); /* * Increment counter. * Counter bits are confined to the bottom 32 bits */ counter = ntohll(ctx->gcm_cb[1] & counter_mask); counter = htonll(counter + 1); counter &= counter_mask; ctx->gcm_cb[1] = (ctx->gcm_cb[1] & ~counter_mask) | counter; cbp = (uint8_t *)ctx->gcm_tmp; encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_cb, cbp); /* XOR with ciphertext */ xor_block(cbp, blockp); processed += block_size; blockp += block_size; remainder -= block_size; } out: ctx->gcm_len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(pt_len)); GHASH(ctx, ctx->gcm_len_a_len_c, ghash, gops); encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_J0, (uint8_t *)ctx->gcm_J0); xor_block((uint8_t *)ctx->gcm_J0, ghash); /* compare the input authentication tag with what we calculated */ if (bcmp(&ctx->gcm_pt_buf[pt_len], ghash, ctx->gcm_tag_len)) { /* They don't match */ return (CRYPTO_INVALID_MAC); } else { rv = crypto_put_output_data(ctx->gcm_pt_buf, out, pt_len); if (rv != CRYPTO_SUCCESS) return (rv); out->cd_offset += pt_len; } return (CRYPTO_SUCCESS); } static int gcm_validate_args(CK_AES_GCM_PARAMS *gcm_param) { size_t tag_len; /* * Check the length of the authentication tag (in bits). */ tag_len = gcm_param->ulTagBits; switch (tag_len) { case 32: case 64: case 96: case 104: case 112: case 120: case 128: break; default: return (CRYPTO_MECHANISM_PARAM_INVALID); } if (gcm_param->ulIvLen == 0) return (CRYPTO_MECHANISM_PARAM_INVALID); return (CRYPTO_SUCCESS); } static void gcm_format_initial_blocks(uchar_t *iv, ulong_t iv_len, gcm_ctx_t *ctx, size_t block_size, void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { const gcm_impl_ops_t *gops; uint8_t *cb; ulong_t remainder = iv_len; ulong_t processed = 0; uint8_t *datap, *ghash; uint64_t len_a_len_c[2]; gops = gcm_impl_get_ops(); ghash = (uint8_t *)ctx->gcm_ghash; cb = (uint8_t *)ctx->gcm_cb; if (iv_len == 12) { bcopy(iv, cb, 12); cb[12] = 0; cb[13] = 0; cb[14] = 0; cb[15] = 1; /* J0 will be used again in the final */ copy_block(cb, (uint8_t *)ctx->gcm_J0); } else { /* GHASH the IV */ do { if (remainder < block_size) { bzero(cb, block_size); bcopy(&(iv[processed]), cb, remainder); datap = (uint8_t *)cb; remainder = 0; } else { datap = (uint8_t *)(&(iv[processed])); processed += block_size; remainder -= block_size; } GHASH(ctx, datap, ghash, gops); } while (remainder > 0); len_a_len_c[0] = 0; len_a_len_c[1] = htonll(CRYPTO_BYTES2BITS(iv_len)); GHASH(ctx, len_a_len_c, ctx->gcm_J0, gops); /* J0 will be used again in the final */ copy_block((uint8_t *)ctx->gcm_J0, (uint8_t *)cb); } } /* * The following function is called at encrypt or decrypt init time * for AES GCM mode. */ int gcm_init(gcm_ctx_t *ctx, unsigned char *iv, size_t iv_len, unsigned char *auth_data, size_t auth_data_len, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { const gcm_impl_ops_t *gops; uint8_t *ghash, *datap, *authp; size_t remainder, processed; /* encrypt zero block to get subkey H */ bzero(ctx->gcm_H, sizeof (ctx->gcm_H)); encrypt_block(ctx->gcm_keysched, (uint8_t *)ctx->gcm_H, (uint8_t *)ctx->gcm_H); gcm_format_initial_blocks(iv, iv_len, ctx, block_size, copy_block, xor_block); gops = gcm_impl_get_ops(); authp = (uint8_t *)ctx->gcm_tmp; ghash = (uint8_t *)ctx->gcm_ghash; bzero(authp, block_size); bzero(ghash, block_size); processed = 0; remainder = auth_data_len; do { if (remainder < block_size) { /* * There's not a block full of data, pad rest of * buffer with zero */ bzero(authp, block_size); bcopy(&(auth_data[processed]), authp, remainder); datap = (uint8_t *)authp; remainder = 0; } else { datap = (uint8_t *)(&(auth_data[processed])); processed += block_size; remainder -= block_size; } /* add auth data to the hash */ GHASH(ctx, datap, ghash, gops); } while (remainder > 0); return (CRYPTO_SUCCESS); } int gcm_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { int rv; CK_AES_GCM_PARAMS *gcm_param; if (param != NULL) { gcm_param = (CK_AES_GCM_PARAMS *)(void *)param; if ((rv = gcm_validate_args(gcm_param)) != 0) { return (rv); } gcm_ctx->gcm_tag_len = gcm_param->ulTagBits; gcm_ctx->gcm_tag_len >>= 3; gcm_ctx->gcm_processed_data_len = 0; /* these values are in bits */ gcm_ctx->gcm_len_a_len_c[0] = htonll(CRYPTO_BYTES2BITS(gcm_param->ulAADLen)); rv = CRYPTO_SUCCESS; gcm_ctx->gcm_flags |= GCM_MODE; } else { return (CRYPTO_MECHANISM_PARAM_INVALID); } if (gcm_init(gcm_ctx, gcm_param->pIv, gcm_param->ulIvLen, gcm_param->pAAD, gcm_param->ulAADLen, block_size, encrypt_block, copy_block, xor_block) != 0) { rv = CRYPTO_MECHANISM_PARAM_INVALID; } return (rv); } int gmac_init_ctx(gcm_ctx_t *gcm_ctx, char *param, size_t block_size, int (*encrypt_block)(const void *, const uint8_t *, uint8_t *), void (*copy_block)(uint8_t *, uint8_t *), void (*xor_block)(uint8_t *, uint8_t *)) { int rv; CK_AES_GMAC_PARAMS *gmac_param; if (param != NULL) { gmac_param = (CK_AES_GMAC_PARAMS *)(void *)param; gcm_ctx->gcm_tag_len = CRYPTO_BITS2BYTES(AES_GMAC_TAG_BITS); gcm_ctx->gcm_processed_data_len = 0; /* these values are in bits */ gcm_ctx->gcm_len_a_len_c[0] = htonll(CRYPTO_BYTES2BITS(gmac_param->ulAADLen)); rv = CRYPTO_SUCCESS; gcm_ctx->gcm_flags |= GMAC_MODE; } else { return (CRYPTO_MECHANISM_PARAM_INVALID); } if (gcm_init(gcm_ctx, gmac_param->pIv, AES_GMAC_IV_LEN, gmac_param->pAAD, gmac_param->ulAADLen, block_size, encrypt_block, copy_block, xor_block) != 0) { rv = CRYPTO_MECHANISM_PARAM_INVALID; } return (rv); } void * gcm_alloc_ctx(int kmflag) { gcm_ctx_t *gcm_ctx; if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL) return (NULL); gcm_ctx->gcm_flags = GCM_MODE; return (gcm_ctx); } void * gmac_alloc_ctx(int kmflag) { gcm_ctx_t *gcm_ctx; if ((gcm_ctx = kmem_zalloc(sizeof (gcm_ctx_t), kmflag)) == NULL) return (NULL); gcm_ctx->gcm_flags = GMAC_MODE; return (gcm_ctx); } void gcm_set_kmflag(gcm_ctx_t *ctx, int kmflag) { ctx->gcm_kmflag = kmflag; } /* GCM implementation that contains the fastest methods */ static gcm_impl_ops_t gcm_fastest_impl = { .name = "fastest" }; /* All compiled in implementations */ const gcm_impl_ops_t *gcm_all_impl[] = { &gcm_generic_impl, #if defined(__x86_64) && defined(HAVE_PCLMULQDQ) &gcm_pclmulqdq_impl, #endif }; /* Indicate that benchmark has been completed */ static boolean_t gcm_impl_initialized = B_FALSE; /* Select GCM implementation */ #define IMPL_FASTEST (UINT32_MAX) #define IMPL_CYCLE (UINT32_MAX-1) #define GCM_IMPL_READ(i) (*(volatile uint32_t *) &(i)) static uint32_t icp_gcm_impl = IMPL_FASTEST; static uint32_t user_sel_impl = IMPL_FASTEST; /* Hold all supported implementations */ static size_t gcm_supp_impl_cnt = 0; static gcm_impl_ops_t *gcm_supp_impl[ARRAY_SIZE(gcm_all_impl)]; /* * Returns the GCM operations for encrypt/decrypt/key setup. When a * SIMD implementation is not allowed in the current context, then * fallback to the fastest generic implementation. */ const gcm_impl_ops_t * gcm_impl_get_ops() { if (!kfpu_allowed()) return (&gcm_generic_impl); const gcm_impl_ops_t *ops = NULL; const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl); switch (impl) { case IMPL_FASTEST: ASSERT(gcm_impl_initialized); ops = &gcm_fastest_impl; break; case IMPL_CYCLE: /* Cycle through supported implementations */ ASSERT(gcm_impl_initialized); ASSERT3U(gcm_supp_impl_cnt, >, 0); static size_t cycle_impl_idx = 0; size_t idx = (++cycle_impl_idx) % gcm_supp_impl_cnt; ops = gcm_supp_impl[idx]; break; default: ASSERT3U(impl, <, gcm_supp_impl_cnt); ASSERT3U(gcm_supp_impl_cnt, >, 0); if (impl < ARRAY_SIZE(gcm_all_impl)) ops = gcm_supp_impl[impl]; break; } ASSERT3P(ops, !=, NULL); return (ops); } /* * Initialize all supported implementations. */ void gcm_impl_init(void) { gcm_impl_ops_t *curr_impl; int i, c; /* Move supported implementations into gcm_supp_impls */ for (i = 0, c = 0; i < ARRAY_SIZE(gcm_all_impl); i++) { curr_impl = (gcm_impl_ops_t *)gcm_all_impl[i]; if (curr_impl->is_supported()) gcm_supp_impl[c++] = (gcm_impl_ops_t *)curr_impl; } gcm_supp_impl_cnt = c; /* * Set the fastest implementation given the assumption that the * hardware accelerated version is the fastest. */ #if defined(__x86_64) && defined(HAVE_PCLMULQDQ) if (gcm_pclmulqdq_impl.is_supported()) { memcpy(&gcm_fastest_impl, &gcm_pclmulqdq_impl, sizeof (gcm_fastest_impl)); } else #endif { memcpy(&gcm_fastest_impl, &gcm_generic_impl, sizeof (gcm_fastest_impl)); } strcpy(gcm_fastest_impl.name, "fastest"); /* Finish initialization */ atomic_swap_32(&icp_gcm_impl, user_sel_impl); gcm_impl_initialized = B_TRUE; } static const struct { char *name; uint32_t sel; } gcm_impl_opts[] = { { "cycle", IMPL_CYCLE }, { "fastest", IMPL_FASTEST }, }; /* * Function sets desired gcm implementation. * * If we are called before init(), user preference will be saved in * user_sel_impl, and applied in later init() call. This occurs when module * parameter is specified on module load. Otherwise, directly update * icp_gcm_impl. * * @val Name of gcm implementation to use * @param Unused. */ int gcm_impl_set(const char *val) { int err = -EINVAL; char req_name[GCM_IMPL_NAME_MAX]; uint32_t impl = GCM_IMPL_READ(user_sel_impl); size_t i; /* sanitize input */ i = strnlen(val, GCM_IMPL_NAME_MAX); if (i == 0 || i >= GCM_IMPL_NAME_MAX) return (err); strlcpy(req_name, val, GCM_IMPL_NAME_MAX); while (i > 0 && isspace(req_name[i-1])) i--; req_name[i] = '\0'; /* Check mandatory options */ for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) { if (strcmp(req_name, gcm_impl_opts[i].name) == 0) { impl = gcm_impl_opts[i].sel; err = 0; break; } } /* check all supported impl if init() was already called */ if (err != 0 && gcm_impl_initialized) { /* check all supported implementations */ for (i = 0; i < gcm_supp_impl_cnt; i++) { if (strcmp(req_name, gcm_supp_impl[i]->name) == 0) { impl = i; err = 0; break; } } } if (err == 0) { if (gcm_impl_initialized) atomic_swap_32(&icp_gcm_impl, impl); else atomic_swap_32(&user_sel_impl, impl); } return (err); } #if defined(_KERNEL) static int icp_gcm_impl_set(const char *val, zfs_kernel_param_t *kp) { return (gcm_impl_set(val)); } static int icp_gcm_impl_get(char *buffer, zfs_kernel_param_t *kp) { int i, cnt = 0; char *fmt; const uint32_t impl = GCM_IMPL_READ(icp_gcm_impl); ASSERT(gcm_impl_initialized); /* list mandatory options */ for (i = 0; i < ARRAY_SIZE(gcm_impl_opts); i++) { fmt = (impl == gcm_impl_opts[i].sel) ? "[%s] " : "%s "; cnt += sprintf(buffer + cnt, fmt, gcm_impl_opts[i].name); } /* list all supported implementations */ for (i = 0; i < gcm_supp_impl_cnt; i++) { fmt = (i == impl) ? "[%s] " : "%s "; cnt += sprintf(buffer + cnt, fmt, gcm_supp_impl[i]->name); } return (cnt); } module_param_call(icp_gcm_impl, icp_gcm_impl_set, icp_gcm_impl_get, NULL, 0644); MODULE_PARM_DESC(icp_gcm_impl, "Select gcm implementation."); #endif