/* * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86) * * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute * Fletcher4 in two incremental 64-bit parallel accumulator streams, * and then combine the streams to form the final four checksum words. * This implementation is a derivative of the AVX SIMD implementation by * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). * * Copyright (C) 2016 Tyler J. Stachecki. * * Authors: * Tyler J. Stachecki <stachecki.tyler@gmail.com> * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(HAVE_SSE2) #include <linux/simd_x86.h> #include <sys/spa_checksum.h> #include <sys/byteorder.h> #include <sys/strings.h> #include <zfs_fletcher.h> static void fletcher_4_sse2_init(fletcher_4_ctx_t *ctx) { bzero(ctx->sse, 4 * sizeof (zfs_fletcher_sse_t)); } static void fletcher_4_sse2_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) { uint64_t A, B, C, D; /* * The mixing matrix for checksum calculation is: * a = a0 + a1 * b = 2b0 + 2b1 - a1 * c = 4c0 - b0 + 4c1 -3b1 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1; * * c and d are multiplied by 4 and 8, respectively, * before spilling the vectors out to memory. */ A = ctx->sse[0].v[0] + ctx->sse[0].v[1]; B = 2 * ctx->sse[1].v[0] + 2 * ctx->sse[1].v[1] - ctx->sse[0].v[1]; C = 4 * ctx->sse[2].v[0] - ctx->sse[1].v[0] + 4 * ctx->sse[2].v[1] - 3 * ctx->sse[1].v[1]; D = 8 * ctx->sse[3].v[0] - 4 * ctx->sse[2].v[0] + 8 * ctx->sse[3].v[1] - 8 * ctx->sse[2].v[1] + ctx->sse[1].v[1]; ZIO_SET_CHECKSUM(zcp, A, B, C, D); } #define FLETCHER_4_SSE_RESTORE_CTX(ctx) \ { \ asm volatile("movdqu %0, %%xmm0" :: "m" ((ctx)->sse[0])); \ asm volatile("movdqu %0, %%xmm1" :: "m" ((ctx)->sse[1])); \ asm volatile("movdqu %0, %%xmm2" :: "m" ((ctx)->sse[2])); \ asm volatile("movdqu %0, %%xmm3" :: "m" ((ctx)->sse[3])); \ } #define FLETCHER_4_SSE_SAVE_CTX(ctx) \ { \ asm volatile("movdqu %%xmm0, %0" : "=m" ((ctx)->sse[0])); \ asm volatile("movdqu %%xmm1, %0" : "=m" ((ctx)->sse[1])); \ asm volatile("movdqu %%xmm2, %0" : "=m" ((ctx)->sse[2])); \ asm volatile("movdqu %%xmm3, %0" : "=m" ((ctx)->sse[3])); \ } static void fletcher_4_sse2_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); kfpu_begin(); FLETCHER_4_SSE_RESTORE_CTX(ctx); asm volatile("pxor %xmm4, %xmm4"); for (; ip < ipend; ip += 2) { asm volatile("movdqu %0, %%xmm5" :: "m"(*ip)); asm volatile("movdqa %xmm5, %xmm6"); asm volatile("punpckldq %xmm4, %xmm5"); asm volatile("punpckhdq %xmm4, %xmm6"); asm volatile("paddq %xmm5, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); asm volatile("paddq %xmm6, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); } FLETCHER_4_SSE_SAVE_CTX(ctx); kfpu_end(); } static void fletcher_4_sse2_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint32_t *ip = buf; const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size); kfpu_begin(); FLETCHER_4_SSE_RESTORE_CTX(ctx); for (; ip < ipend; ip += 2) { uint32_t scratch1 = BSWAP_32(ip[0]); uint32_t scratch2 = BSWAP_32(ip[1]); asm volatile("movd %0, %%xmm5" :: "r"(scratch1)); asm volatile("movd %0, %%xmm6" :: "r"(scratch2)); asm volatile("punpcklqdq %xmm6, %xmm5"); asm volatile("paddq %xmm5, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); } FLETCHER_4_SSE_SAVE_CTX(ctx); kfpu_end(); } static boolean_t fletcher_4_sse2_valid(void) { return (zfs_sse2_available()); } const fletcher_4_ops_t fletcher_4_sse2_ops = { .init_native = fletcher_4_sse2_init, .fini_native = fletcher_4_sse2_fini, .compute_native = fletcher_4_sse2_native, .init_byteswap = fletcher_4_sse2_init, .fini_byteswap = fletcher_4_sse2_fini, .compute_byteswap = fletcher_4_sse2_byteswap, .valid = fletcher_4_sse2_valid, .name = "sse2" }; #endif /* defined(HAVE_SSE2) */ #if defined(HAVE_SSE2) && defined(HAVE_SSSE3) static void fletcher_4_ssse3_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { static const zfs_fletcher_sse_t mask = { .v = { 0x0405060700010203, 0x0C0D0E0F08090A0B } }; const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); kfpu_begin(); FLETCHER_4_SSE_RESTORE_CTX(ctx); asm volatile("movdqu %0, %%xmm7"::"m" (mask)); asm volatile("pxor %xmm4, %xmm4"); for (; ip < ipend; ip += 2) { asm volatile("movdqu %0, %%xmm5"::"m" (*ip)); asm volatile("pshufb %xmm7, %xmm5"); asm volatile("movdqa %xmm5, %xmm6"); asm volatile("punpckldq %xmm4, %xmm5"); asm volatile("punpckhdq %xmm4, %xmm6"); asm volatile("paddq %xmm5, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); asm volatile("paddq %xmm6, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); } FLETCHER_4_SSE_SAVE_CTX(ctx); kfpu_end(); } static boolean_t fletcher_4_ssse3_valid(void) { return (zfs_sse2_available() && zfs_ssse3_available()); } const fletcher_4_ops_t fletcher_4_ssse3_ops = { .init_native = fletcher_4_sse2_init, .fini_native = fletcher_4_sse2_fini, .compute_native = fletcher_4_sse2_native, .init_byteswap = fletcher_4_sse2_init, .fini_byteswap = fletcher_4_sse2_fini, .compute_byteswap = fletcher_4_ssse3_byteswap, .valid = fletcher_4_ssse3_valid, .name = "ssse3" }; #endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */