/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2018 by Delphix. All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Emulation of kernel services in userland. */ uint64_t physmem; uint32_t hostid; struct utsname hw_utsname; /* If set, all blocks read will be copied to the specified directory. */ char *vn_dumpdir = NULL; /* this only exists to have its address taken */ struct proc p0; /* * ========================================================================= * threads * ========================================================================= * * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for * the expected stack depth while small enough to avoid exhausting address * space with high thread counts. */ #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768) #define TS_STACK_MAX (256 * 1024) struct zk_thread_wrapper { void (*func)(void *); void *arg; }; static void * zk_thread_wrapper(void *arg) { struct zk_thread_wrapper ztw; memcpy(&ztw, arg, sizeof (ztw)); free(arg); ztw.func(ztw.arg); return (NULL); } kthread_t * zk_thread_create(void (*func)(void *), void *arg, size_t stksize, int state) { pthread_attr_t attr; pthread_t tid; char *stkstr; struct zk_thread_wrapper *ztw; int detachstate = PTHREAD_CREATE_DETACHED; VERIFY0(pthread_attr_init(&attr)); if (state & TS_JOINABLE) detachstate = PTHREAD_CREATE_JOINABLE; VERIFY0(pthread_attr_setdetachstate(&attr, detachstate)); /* * We allow the default stack size in user space to be specified by * setting the ZFS_STACK_SIZE environment variable. This allows us * the convenience of observing and debugging stack overruns in * user space. Explicitly specified stack sizes will be honored. * The usage of ZFS_STACK_SIZE is discussed further in the * ENVIRONMENT VARIABLES sections of the ztest(1) man page. */ if (stksize == 0) { stkstr = getenv("ZFS_STACK_SIZE"); if (stkstr == NULL) stksize = TS_STACK_MAX; else stksize = MAX(atoi(stkstr), TS_STACK_MIN); } VERIFY3S(stksize, >, 0); stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE); /* * If this ever fails, it may be because the stack size is not a * multiple of system page size. */ VERIFY0(pthread_attr_setstacksize(&attr, stksize)); VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE)); VERIFY(ztw = malloc(sizeof (*ztw))); ztw->func = func; ztw->arg = arg; VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw)); VERIFY0(pthread_attr_destroy(&attr)); return ((void *)(uintptr_t)tid); } /* * ========================================================================= * kstats * ========================================================================= */ kstat_t * kstat_create(const char *module, int instance, const char *name, const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) { (void) module, (void) instance, (void) name, (void) class, (void) type, (void) ndata, (void) ks_flag; return (NULL); } void kstat_install(kstat_t *ksp) { (void) ksp; } void kstat_delete(kstat_t *ksp) { (void) ksp; } void kstat_set_raw_ops(kstat_t *ksp, int (*headers)(char *buf, size_t size), int (*data)(char *buf, size_t size, void *data), void *(*addr)(kstat_t *ksp, loff_t index)) { (void) ksp, (void) headers, (void) data, (void) addr; } /* * ========================================================================= * mutexes * ========================================================================= */ void mutex_init(kmutex_t *mp, char *name, int type, void *cookie) { (void) name, (void) type, (void) cookie; VERIFY0(pthread_mutex_init(&mp->m_lock, NULL)); memset(&mp->m_owner, 0, sizeof (pthread_t)); } void mutex_destroy(kmutex_t *mp) { VERIFY0(pthread_mutex_destroy(&mp->m_lock)); } void mutex_enter(kmutex_t *mp) { VERIFY0(pthread_mutex_lock(&mp->m_lock)); mp->m_owner = pthread_self(); } int mutex_tryenter(kmutex_t *mp) { int error = pthread_mutex_trylock(&mp->m_lock); if (error == 0) { mp->m_owner = pthread_self(); return (1); } else { VERIFY3S(error, ==, EBUSY); return (0); } } void mutex_exit(kmutex_t *mp) { memset(&mp->m_owner, 0, sizeof (pthread_t)); VERIFY0(pthread_mutex_unlock(&mp->m_lock)); } /* * ========================================================================= * rwlocks * ========================================================================= */ void rw_init(krwlock_t *rwlp, char *name, int type, void *arg) { (void) name, (void) type, (void) arg; VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL)); rwlp->rw_readers = 0; rwlp->rw_owner = 0; } void rw_destroy(krwlock_t *rwlp) { VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock)); } void rw_enter(krwlock_t *rwlp, krw_t rw) { if (rw == RW_READER) { VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock)); atomic_inc_uint(&rwlp->rw_readers); } else { VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock)); rwlp->rw_owner = pthread_self(); } } void rw_exit(krwlock_t *rwlp) { if (RW_READ_HELD(rwlp)) atomic_dec_uint(&rwlp->rw_readers); else rwlp->rw_owner = 0; VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock)); } int rw_tryenter(krwlock_t *rwlp, krw_t rw) { int error; if (rw == RW_READER) error = pthread_rwlock_tryrdlock(&rwlp->rw_lock); else error = pthread_rwlock_trywrlock(&rwlp->rw_lock); if (error == 0) { if (rw == RW_READER) atomic_inc_uint(&rwlp->rw_readers); else rwlp->rw_owner = pthread_self(); return (1); } VERIFY3S(error, ==, EBUSY); return (0); } uint32_t zone_get_hostid(void *zonep) { /* * We're emulating the system's hostid in userland. */ (void) zonep; return (hostid); } int rw_tryupgrade(krwlock_t *rwlp) { (void) rwlp; return (0); } /* * ========================================================================= * condition variables * ========================================================================= */ void cv_init(kcondvar_t *cv, char *name, int type, void *arg) { (void) name, (void) type, (void) arg; VERIFY0(pthread_cond_init(cv, NULL)); } void cv_destroy(kcondvar_t *cv) { VERIFY0(pthread_cond_destroy(cv)); } void cv_wait(kcondvar_t *cv, kmutex_t *mp) { memset(&mp->m_owner, 0, sizeof (pthread_t)); VERIFY0(pthread_cond_wait(cv, &mp->m_lock)); mp->m_owner = pthread_self(); } int cv_wait_sig(kcondvar_t *cv, kmutex_t *mp) { cv_wait(cv, mp); return (1); } int cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) { int error; struct timeval tv; struct timespec ts; clock_t delta; delta = abstime - ddi_get_lbolt(); if (delta <= 0) return (-1); VERIFY(gettimeofday(&tv, NULL) == 0); ts.tv_sec = tv.tv_sec + delta / hz; ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz); if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } memset(&mp->m_owner, 0, sizeof (pthread_t)); error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); mp->m_owner = pthread_self(); if (error == ETIMEDOUT) return (-1); VERIFY0(error); return (1); } int cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, int flag) { (void) res; int error; struct timeval tv; struct timespec ts; hrtime_t delta; ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); delta = tim; if (flag & CALLOUT_FLAG_ABSOLUTE) delta -= gethrtime(); if (delta <= 0) return (-1); VERIFY0(gettimeofday(&tv, NULL)); ts.tv_sec = tv.tv_sec + delta / NANOSEC; ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC); if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } memset(&mp->m_owner, 0, sizeof (pthread_t)); error = pthread_cond_timedwait(cv, &mp->m_lock, &ts); mp->m_owner = pthread_self(); if (error == ETIMEDOUT) return (-1); VERIFY0(error); return (1); } void cv_signal(kcondvar_t *cv) { VERIFY0(pthread_cond_signal(cv)); } void cv_broadcast(kcondvar_t *cv) { VERIFY0(pthread_cond_broadcast(cv)); } /* * ========================================================================= * procfs list * ========================================================================= */ void seq_printf(struct seq_file *m, const char *fmt, ...) { (void) m, (void) fmt; } void procfs_list_install(const char *module, const char *submodule, const char *name, mode_t mode, procfs_list_t *procfs_list, int (*show)(struct seq_file *f, void *p), int (*show_header)(struct seq_file *f), int (*clear)(procfs_list_t *procfs_list), size_t procfs_list_node_off) { (void) module, (void) submodule, (void) name, (void) mode, (void) show, (void) show_header, (void) clear; mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&procfs_list->pl_list, procfs_list_node_off + sizeof (procfs_list_node_t), procfs_list_node_off + offsetof(procfs_list_node_t, pln_link)); procfs_list->pl_next_id = 1; procfs_list->pl_node_offset = procfs_list_node_off; } void procfs_list_uninstall(procfs_list_t *procfs_list) { (void) procfs_list; } void procfs_list_destroy(procfs_list_t *procfs_list) { ASSERT(list_is_empty(&procfs_list->pl_list)); list_destroy(&procfs_list->pl_list); mutex_destroy(&procfs_list->pl_lock); } #define NODE_ID(procfs_list, obj) \ (((procfs_list_node_t *)(((char *)obj) + \ (procfs_list)->pl_node_offset))->pln_id) void procfs_list_add(procfs_list_t *procfs_list, void *p) { ASSERT(MUTEX_HELD(&procfs_list->pl_lock)); NODE_ID(procfs_list, p) = procfs_list->pl_next_id++; list_insert_tail(&procfs_list->pl_list, p); } /* * ========================================================================= * vnode operations * ========================================================================= */ /* * ========================================================================= * Figure out which debugging statements to print * ========================================================================= */ static char *dprintf_string; static int dprintf_print_all; int dprintf_find_string(const char *string) { char *tmp_str = dprintf_string; int len = strlen(string); /* * Find out if this is a string we want to print. * String format: file1.c,function_name1,file2.c,file3.c */ while (tmp_str != NULL) { if (strncmp(tmp_str, string, len) == 0 && (tmp_str[len] == ',' || tmp_str[len] == '\0')) return (1); tmp_str = strchr(tmp_str, ','); if (tmp_str != NULL) tmp_str++; /* Get rid of , */ } return (0); } void dprintf_setup(int *argc, char **argv) { int i, j; /* * Debugging can be specified two ways: by setting the * environment variable ZFS_DEBUG, or by including a * "debug=..." argument on the command line. The command * line setting overrides the environment variable. */ for (i = 1; i < *argc; i++) { int len = strlen("debug="); /* First look for a command line argument */ if (strncmp("debug=", argv[i], len) == 0) { dprintf_string = argv[i] + len; /* Remove from args */ for (j = i; j < *argc; j++) argv[j] = argv[j+1]; argv[j] = NULL; (*argc)--; } } if (dprintf_string == NULL) { /* Look for ZFS_DEBUG environment variable */ dprintf_string = getenv("ZFS_DEBUG"); } /* * Are we just turning on all debugging? */ if (dprintf_find_string("on")) dprintf_print_all = 1; if (dprintf_string != NULL) zfs_flags |= ZFS_DEBUG_DPRINTF; } /* * ========================================================================= * debug printfs * ========================================================================= */ void __dprintf(boolean_t dprint, const char *file, const char *func, int line, const char *fmt, ...) { /* Get rid of annoying "../common/" prefix to filename. */ const char *newfile = zfs_basename(file); va_list adx; if (dprint) { /* dprintf messages are printed immediately */ if (!dprintf_print_all && !dprintf_find_string(newfile) && !dprintf_find_string(func)) return; /* Print out just the function name if requested */ flockfile(stdout); if (dprintf_find_string("pid")) (void) printf("%d ", getpid()); if (dprintf_find_string("tid")) (void) printf("%ju ", (uintmax_t)(uintptr_t)pthread_self()); if (dprintf_find_string("cpu")) (void) printf("%u ", getcpuid()); if (dprintf_find_string("time")) (void) printf("%llu ", gethrtime()); if (dprintf_find_string("long")) (void) printf("%s, line %d: ", newfile, line); (void) printf("dprintf: %s: ", func); va_start(adx, fmt); (void) vprintf(fmt, adx); va_end(adx); funlockfile(stdout); } else { /* zfs_dbgmsg is logged for dumping later */ size_t size; char *buf; int i; size = 1024; buf = umem_alloc(size, UMEM_NOFAIL); i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func); if (i < size) { va_start(adx, fmt); (void) vsnprintf(buf + i, size - i, fmt, adx); va_end(adx); } __zfs_dbgmsg(buf); umem_free(buf, size); } } /* * ========================================================================= * cmn_err() and panic() * ========================================================================= */ static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; __attribute__((noreturn)) void vpanic(const char *fmt, va_list adx) { (void) fprintf(stderr, "error: "); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "\n"); abort(); /* think of it as a "user-level crash dump" */ } __attribute__((noreturn)) void panic(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vpanic(fmt, adx); va_end(adx); } void vcmn_err(int ce, const char *fmt, va_list adx) { if (ce == CE_PANIC) vpanic(fmt, adx); if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ (void) fprintf(stderr, "%s", ce_prefix[ce]); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "%s", ce_suffix[ce]); } } void cmn_err(int ce, const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(ce, fmt, adx); va_end(adx); } /* * ========================================================================= * misc routines * ========================================================================= */ void delay(clock_t ticks) { (void) poll(0, 0, ticks * (1000 / hz)); } /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. * The __builtin_clzll() function is supported by both GCC and Clang. */ int highbit64(uint64_t i) { if (i == 0) return (0); return (NBBY * sizeof (uint64_t) - __builtin_clzll(i)); } /* * Find lowest one bit set. * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. * The __builtin_ffsll() function is supported by both GCC and Clang. */ int lowbit64(uint64_t i) { if (i == 0) return (0); return (__builtin_ffsll(i)); } const char *random_path = "/dev/random"; const char *urandom_path = "/dev/urandom"; static int random_fd = -1, urandom_fd = -1; void random_init(void) { VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1); VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1); } void random_fini(void) { close(random_fd); close(urandom_fd); random_fd = -1; urandom_fd = -1; } static int random_get_bytes_common(uint8_t *ptr, size_t len, int fd) { size_t resid = len; ssize_t bytes; ASSERT(fd != -1); while (resid != 0) { bytes = read(fd, ptr, resid); ASSERT3S(bytes, >=, 0); ptr += bytes; resid -= bytes; } return (0); } int random_get_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, random_fd)); } int random_get_pseudo_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, urandom_fd)); } int ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) { (void) nptr; char *end; *result = strtoull(str, &end, base); if (*result == 0) return (errno); return (0); } utsname_t * utsname(void) { return (&hw_utsname); } /* * ========================================================================= * kernel emulation setup & teardown * ========================================================================= */ static int umem_out_of_memory(void) { char errmsg[] = "out of memory -- generating core dump\n"; (void) fprintf(stderr, "%s", errmsg); abort(); return (0); } void kernel_init(int mode) { extern uint_t rrw_tsd_key; umem_nofail_callback(umem_out_of_memory); physmem = sysconf(_SC_PHYS_PAGES); dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem, (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); hostid = (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0; random_init(); VERIFY0(uname(&hw_utsname)); system_taskq_init(); icp_init(); zstd_init(); spa_init((spa_mode_t)mode); fletcher_4_init(); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); } void kernel_fini(void) { fletcher_4_fini(); spa_fini(); zstd_fini(); icp_fini(); system_taskq_fini(); random_fini(); } uid_t crgetuid(cred_t *cr) { (void) cr; return (0); } uid_t crgetruid(cred_t *cr) { (void) cr; return (0); } gid_t crgetgid(cred_t *cr) { (void) cr; return (0); } int crgetngroups(cred_t *cr) { (void) cr; return (0); } gid_t * crgetgroups(cred_t *cr) { (void) cr; return (NULL); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { (void) name, (void) cr; return (0); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { (void) from, (void) to, (void) cr; return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { (void) name, (void) cr; return (0); } int secpolicy_zfs(const cred_t *cr) { (void) cr; return (0); } int secpolicy_zfs_proc(const cred_t *cr, proc_t *proc) { (void) cr, (void) proc; return (0); } ksiddomain_t * ksid_lookupdomain(const char *dom) { ksiddomain_t *kd; kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); kd->kd_name = spa_strdup(dom); return (kd); } void ksiddomain_rele(ksiddomain_t *ksid) { spa_strfree(ksid->kd_name); umem_free(ksid, sizeof (ksiddomain_t)); } char * kmem_vasprintf(const char *fmt, va_list adx) { char *buf = NULL; va_list adx_copy; va_copy(adx_copy, adx); VERIFY(vasprintf(&buf, fmt, adx_copy) != -1); va_end(adx_copy); return (buf); } char * kmem_asprintf(const char *fmt, ...) { char *buf = NULL; va_list adx; va_start(adx, fmt); VERIFY(vasprintf(&buf, fmt, adx) != -1); va_end(adx); return (buf); } /* * kmem_scnprintf() will return the number of characters that it would have * printed whenever it is limited by value of the size variable, rather than * the number of characters that it did print. This can cause misbehavior on * subsequent uses of the return value, so we define a safe version that will * return the number of characters actually printed, minus the NULL format * character. Subsequent use of this by the safe string functions is safe * whether it is snprintf(), strlcat() or strlcpy(). */ int kmem_scnprintf(char *restrict str, size_t size, const char *restrict fmt, ...) { int n; va_list ap; /* Make the 0 case a no-op so that we do not return -1 */ if (size == 0) return (0); va_start(ap, fmt); n = vsnprintf(str, size, fmt, ap); va_end(ap); if (n >= size) n = size - 1; return (n); } zfs_file_t * zfs_onexit_fd_hold(int fd, minor_t *minorp) { (void) fd; *minorp = 0; return (NULL); } void zfs_onexit_fd_rele(zfs_file_t *fp) { (void) fp; } int zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, uintptr_t *action_handle) { (void) minor, (void) func, (void) data, (void) action_handle; return (0); } fstrans_cookie_t spl_fstrans_mark(void) { return ((fstrans_cookie_t)0); } void spl_fstrans_unmark(fstrans_cookie_t cookie) { (void) cookie; } int __spl_pf_fstrans_check(void) { return (0); } int kmem_cache_reap_active(void) { return (0); } void zvol_create_minor(const char *name) { (void) name; } void zvol_create_minors_recursive(const char *name) { (void) name; } void zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) { (void) spa, (void) name, (void) async; } void zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname, boolean_t async) { (void) spa, (void) oldname, (void) newname, (void) async; } /* * Open file * * path - fully qualified path to file * flags - file attributes O_READ / O_WRITE / O_EXCL * fpp - pointer to return file pointer * * Returns 0 on success underlying error on failure. */ int zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp) { int fd = -1; int dump_fd = -1; int err; int old_umask = 0; zfs_file_t *fp; struct stat64 st; if (!(flags & O_CREAT) && stat64(path, &st) == -1) return (errno); if (!(flags & O_CREAT) && S_ISBLK(st.st_mode)) flags |= O_DIRECT; if (flags & O_CREAT) old_umask = umask(0); fd = open64(path, flags, mode); if (fd == -1) return (errno); if (flags & O_CREAT) (void) umask(old_umask); if (vn_dumpdir != NULL) { char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL); const char *inpath = zfs_basename(path); (void) snprintf(dumppath, MAXPATHLEN, "%s/%s", vn_dumpdir, inpath); dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); umem_free(dumppath, MAXPATHLEN); if (dump_fd == -1) { err = errno; close(fd); return (err); } } else { dump_fd = -1; } (void) fcntl(fd, F_SETFD, FD_CLOEXEC); fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL); fp->f_fd = fd; fp->f_dump_fd = dump_fd; *fpp = fp; return (0); } void zfs_file_close(zfs_file_t *fp) { close(fp->f_fd); if (fp->f_dump_fd != -1) close(fp->f_dump_fd); umem_free(fp, sizeof (zfs_file_t)); } /* * Stateful write - use os internal file pointer to determine where to * write and update on successful completion. * * fp - pointer to file (pipe, socket, etc) to write to * buf - buffer to write * count - # of bytes to write * resid - pointer to count of unwritten bytes (if short write) * * Returns 0 on success errno on failure. */ int zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid) { ssize_t rc; rc = write(fp->f_fd, buf, count); if (rc < 0) return (errno); if (resid) { *resid = count - rc; } else if (rc != count) { return (EIO); } return (0); } /* * Stateless write - os internal file pointer is not updated. * * fp - pointer to file (pipe, socket, etc) to write to * buf - buffer to write * count - # of bytes to write * off - file offset to write to (only valid for seekable types) * resid - pointer to count of unwritten bytes * * Returns 0 on success errno on failure. */ int zfs_file_pwrite(zfs_file_t *fp, const void *buf, size_t count, loff_t pos, ssize_t *resid) { ssize_t rc, split, done; int sectors; /* * To simulate partial disk writes, we split writes into two * system calls so that the process can be killed in between. * This is used by ztest to simulate realistic failure modes. */ sectors = count >> SPA_MINBLOCKSHIFT; split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; rc = pwrite64(fp->f_fd, buf, split, pos); if (rc != -1) { done = rc; rc = pwrite64(fp->f_fd, (char *)buf + split, count - split, pos + split); } #ifdef __linux__ if (rc == -1 && errno == EINVAL) { /* * Under Linux, this most likely means an alignment issue * (memory or disk) due to O_DIRECT, so we abort() in order * to catch the offender. */ abort(); } #endif if (rc < 0) return (errno); done += rc; if (resid) { *resid = count - done; } else if (done != count) { return (EIO); } return (0); } /* * Stateful read - use os internal file pointer to determine where to * read and update on successful completion. * * fp - pointer to file (pipe, socket, etc) to read from * buf - buffer to write * count - # of bytes to read * resid - pointer to count of unread bytes (if short read) * * Returns 0 on success errno on failure. */ int zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid) { int rc; rc = read(fp->f_fd, buf, count); if (rc < 0) return (errno); if (resid) { *resid = count - rc; } else if (rc != count) { return (EIO); } return (0); } /* * Stateless read - os internal file pointer is not updated. * * fp - pointer to file (pipe, socket, etc) to read from * buf - buffer to write * count - # of bytes to write * off - file offset to read from (only valid for seekable types) * resid - pointer to count of unwritten bytes (if short write) * * Returns 0 on success errno on failure. */ int zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off, ssize_t *resid) { ssize_t rc; rc = pread64(fp->f_fd, buf, count, off); if (rc < 0) { #ifdef __linux__ /* * Under Linux, this most likely means an alignment issue * (memory or disk) due to O_DIRECT, so we abort() in order to * catch the offender. */ if (errno == EINVAL) abort(); #endif return (errno); } if (fp->f_dump_fd != -1) { int status; status = pwrite64(fp->f_dump_fd, buf, rc, off); ASSERT(status != -1); } if (resid) { *resid = count - rc; } else if (rc != count) { return (EIO); } return (0); } /* * lseek - set / get file pointer * * fp - pointer to file (pipe, socket, etc) to read from * offp - value to seek to, returns current value plus passed offset * whence - see man pages for standard lseek whence values * * Returns 0 on success errno on failure (ESPIPE for non seekable types) */ int zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence) { loff_t rc; rc = lseek(fp->f_fd, *offp, whence); if (rc < 0) return (errno); *offp = rc; return (0); } /* * Get file attributes * * filp - file pointer * zfattr - pointer to file attr structure * * Currently only used for fetching size and file mode * * Returns 0 on success or error code of underlying getattr call on failure. */ int zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr) { struct stat64 st; if (fstat64_blk(fp->f_fd, &st) == -1) return (errno); zfattr->zfa_size = st.st_size; zfattr->zfa_mode = st.st_mode; return (0); } /* * Sync file to disk * * filp - file pointer * flags - O_SYNC and or O_DSYNC * * Returns 0 on success or error code of underlying sync call on failure. */ int zfs_file_fsync(zfs_file_t *fp, int flags) { (void) flags; if (fsync(fp->f_fd) < 0) return (errno); return (0); } /* * fallocate - allocate or free space on disk * * fp - file pointer * mode (non-standard options for hole punching etc) * offset - offset to start allocating or freeing from * len - length to free / allocate * * OPTIONAL */ int zfs_file_fallocate(zfs_file_t *fp, int mode, loff_t offset, loff_t len) { #ifdef __linux__ return (fallocate(fp->f_fd, mode, offset, len)); #else (void) fp, (void) mode, (void) offset, (void) len; return (EOPNOTSUPP); #endif } /* * Request current file pointer offset * * fp - pointer to file * * Returns current file offset. */ loff_t zfs_file_off(zfs_file_t *fp) { return (lseek(fp->f_fd, SEEK_CUR, 0)); } /* * unlink file * * path - fully qualified file path * * Returns 0 on success. * * OPTIONAL */ int zfs_file_unlink(const char *path) { return (remove(path)); } /* * Get reference to file pointer * * fd - input file descriptor * * Returns pointer to file struct or NULL. * Unsupported in user space. */ zfs_file_t * zfs_file_get(int fd) { (void) fd; abort(); return (NULL); } /* * Drop reference to file pointer * * fp - pointer to file struct * * Unsupported in user space. */ void zfs_file_put(zfs_file_t *fp) { abort(); (void) fp; } void zfsvfs_update_fromname(const char *oldname, const char *newname) { (void) oldname, (void) newname; } void spa_import_os(spa_t *spa) { (void) spa; } void spa_export_os(spa_t *spa) { (void) spa; } void spa_activate_os(spa_t *spa) { (void) spa; } void spa_deactivate_os(spa_t *spa) { (void) spa; }