/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2011, 2015 by Delphix. All rights reserved. * Copyright (c) 2015, Intel Corporation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef ZFS_MAXNAMELEN #include #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ zio_compress_table[(idx)].ci_name : "UNKNOWN") #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ zio_checksum_table[(idx)].ci_name : "UNKNOWN") #define ZDB_OT_NAME(idx) ((idx) < DMU_OT_NUMTYPES ? \ dmu_ot[(idx)].ot_name : DMU_OT_IS_VALID(idx) ? \ dmu_ot_byteswap[DMU_OT_BYTESWAP(idx)].ob_name : "UNKNOWN") #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ (((idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA) ? \ DMU_OT_ZAP_OTHER : DMU_OT_NUMTYPES)) #ifndef lint extern int zfs_recover; extern uint64_t zfs_arc_max, zfs_arc_meta_limit; extern int zfs_vdev_async_read_max_active; #else int zfs_recover; uint64_t zfs_arc_max, zfs_arc_meta_limit; int zfs_vdev_async_read_max_active; #endif const char cmdname[] = "zdb"; uint8_t dump_opt[256]; typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); extern void dump_intent_log(zilog_t *); uint64_t *zopt_object = NULL; int zopt_objects = 0; libzfs_handle_t *g_zfs; uint64_t max_inflight = 1000; static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *); /* * These libumem hooks provide a reasonable set of defaults for the allocator's * debugging facilities. */ const char * _umem_debug_init(void) { return ("default,verbose"); /* $UMEM_DEBUG setting */ } const char * _umem_logging_init(void) { return ("fail,contents"); /* $UMEM_LOGGING setting */ } static void usage(void) { (void) fprintf(stderr, "Usage: %s [-CumMdibcsDvhLXFPA] [-t txg] [-e [-p path...]] " "[-U config] [-I inflight I/Os] [-x dumpdir] poolname [object...]\n" " %s [-divPA] [-e -p path...] [-U config] dataset " "[object...]\n" " %s -mM [-LXFPA] [-t txg] [-e [-p path...]] [-U config] " "poolname [vdev [metaslab...]]\n" " %s -R [-A] [-e [-p path...]] poolname " "vdev:offset:size[:flags]\n" " %s -S [-PA] [-e [-p path...]] [-U config] poolname\n" " %s -l [-uA] device\n" " %s -C [-A] [-U config]\n\n", cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname); (void) fprintf(stderr, " Dataset name must include at least one " "separator character '/' or '@'\n"); (void) fprintf(stderr, " If dataset name is specified, only that " "dataset is dumped\n"); (void) fprintf(stderr, " If object numbers are specified, only " "those objects are dumped\n\n"); (void) fprintf(stderr, " Options to control amount of output:\n"); (void) fprintf(stderr, " -u uberblock\n"); (void) fprintf(stderr, " -d dataset(s)\n"); (void) fprintf(stderr, " -i intent logs\n"); (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); (void) fprintf(stderr, " -h pool history\n"); (void) fprintf(stderr, " -b block statistics\n"); (void) fprintf(stderr, " -m metaslabs\n"); (void) fprintf(stderr, " -M metaslab groups\n"); (void) fprintf(stderr, " -c checksum all metadata (twice for " "all data) blocks\n"); (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); (void) fprintf(stderr, " -D dedup statistics\n"); (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); (void) fprintf(stderr, " -v verbose (applies to all others)\n"); (void) fprintf(stderr, " -l dump label contents\n"); (void) fprintf(stderr, " -L disable leak tracking (do not " "load spacemaps)\n"); (void) fprintf(stderr, " -R read and display block from a " "device\n\n"); (void) fprintf(stderr, " Below options are intended for use " "with other options:\n"); (void) fprintf(stderr, " -A ignore assertions (-A), enable " "panic recovery (-AA) or both (-AAA)\n"); (void) fprintf(stderr, " -F attempt automatic rewind within " "safe range of transaction groups\n"); (void) fprintf(stderr, " -U -- use alternate " "cachefile\n"); (void) fprintf(stderr, " -X attempt extreme rewind (does not " "work with dataset)\n"); (void) fprintf(stderr, " -e pool is exported/destroyed/" "has altroot/not in a cachefile\n"); (void) fprintf(stderr, " -p -- use one or more with " "-e to specify path to vdev dir\n"); (void) fprintf(stderr, " -x -- " "dump all read blocks into specified directory\n"); (void) fprintf(stderr, " -P print numbers in parsable form\n"); (void) fprintf(stderr, " -t -- highest txg to use when " "searching for uberblocks\n"); (void) fprintf(stderr, " -I -- " "specify the maximum number of " "checksumming I/Os [default is 200]\n"); (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " "to make only that option verbose\n"); (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); exit(1); } /* * Called for usage errors that are discovered after a call to spa_open(), * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. */ static void fatal(const char *fmt, ...) { va_list ap; va_start(ap, fmt); (void) fprintf(stderr, "%s: ", cmdname); (void) vfprintf(stderr, fmt, ap); va_end(ap); (void) fprintf(stderr, "\n"); exit(1); } /* ARGSUSED */ static void dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) { nvlist_t *nv; size_t nvsize = *(uint64_t *)data; char *packed = umem_alloc(nvsize, UMEM_NOFAIL); VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); umem_free(packed, nvsize); dump_nvlist(nv, 8); nvlist_free(nv); } /* ARGSUSED */ static void dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) { spa_history_phys_t *shp = data; if (shp == NULL) return; (void) printf("\t\tpool_create_len = %llu\n", (u_longlong_t)shp->sh_pool_create_len); (void) printf("\t\tphys_max_off = %llu\n", (u_longlong_t)shp->sh_phys_max_off); (void) printf("\t\tbof = %llu\n", (u_longlong_t)shp->sh_bof); (void) printf("\t\teof = %llu\n", (u_longlong_t)shp->sh_eof); (void) printf("\t\trecords_lost = %llu\n", (u_longlong_t)shp->sh_records_lost); } static void zdb_nicenum(uint64_t num, char *buf) { if (dump_opt['P']) (void) sprintf(buf, "%llu", (longlong_t)num); else nicenum(num, buf); } const char histo_stars[] = "****************************************"; const int histo_width = sizeof (histo_stars) - 1; static void dump_histogram(const uint64_t *histo, int size, int offset) { int i; int minidx = size - 1; int maxidx = 0; uint64_t max = 0; for (i = 0; i < size; i++) { if (histo[i] > max) max = histo[i]; if (histo[i] > 0 && i > maxidx) maxidx = i; if (histo[i] > 0 && i < minidx) minidx = i; } if (max < histo_width) max = histo_width; for (i = minidx; i <= maxidx; i++) { (void) printf("\t\t\t%3u: %6llu %s\n", i + offset, (u_longlong_t)histo[i], &histo_stars[(max - histo[i]) * histo_width / max]); } } static void dump_zap_stats(objset_t *os, uint64_t object) { int error; zap_stats_t zs; error = zap_get_stats(os, object, &zs); if (error) return; if (zs.zs_ptrtbl_len == 0) { ASSERT(zs.zs_num_blocks == 1); (void) printf("\tmicrozap: %llu bytes, %llu entries\n", (u_longlong_t)zs.zs_blocksize, (u_longlong_t)zs.zs_num_entries); return; } (void) printf("\tFat ZAP stats:\n"); (void) printf("\t\tPointer table:\n"); (void) printf("\t\t\t%llu elements\n", (u_longlong_t)zs.zs_ptrtbl_len); (void) printf("\t\t\tzt_blk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_blk); (void) printf("\t\t\tzt_numblks: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_numblks); (void) printf("\t\t\tzt_shift: %llu\n", (u_longlong_t)zs.zs_ptrtbl_zt_shift); (void) printf("\t\t\tzt_blks_copied: %llu\n", (u_longlong_t)zs.zs_ptrtbl_blks_copied); (void) printf("\t\t\tzt_nextblk: %llu\n", (u_longlong_t)zs.zs_ptrtbl_nextblk); (void) printf("\t\tZAP entries: %llu\n", (u_longlong_t)zs.zs_num_entries); (void) printf("\t\tLeaf blocks: %llu\n", (u_longlong_t)zs.zs_num_leafs); (void) printf("\t\tTotal blocks: %llu\n", (u_longlong_t)zs.zs_num_blocks); (void) printf("\t\tzap_block_type: 0x%llx\n", (u_longlong_t)zs.zs_block_type); (void) printf("\t\tzap_magic: 0x%llx\n", (u_longlong_t)zs.zs_magic); (void) printf("\t\tzap_salt: 0x%llx\n", (u_longlong_t)zs.zs_salt); (void) printf("\t\tLeafs with 2^n pointers:\n"); dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks with n*5 entries:\n"); dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBlocks n/10 full:\n"); dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tEntries with n chunks:\n"); dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); (void) printf("\t\tBuckets with n entries:\n"); dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); } /*ARGSUSED*/ static void dump_none(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) { (void) printf("\tUNKNOWN OBJECT TYPE\n"); } /*ARGSUSED*/ void dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_zap(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; void *prop; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } prop = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); (void) zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, prop); if (attr.za_integer_length == 1) { (void) printf("%s", (char *)prop); } else { for (i = 0; i < attr.za_num_integers; i++) { switch (attr.za_integer_length) { case 2: (void) printf("%u ", ((uint16_t *)prop)[i]); break; case 4: (void) printf("%u ", ((uint32_t *)prop)[i]); break; case 8: (void) printf("%lld ", (u_longlong_t)((int64_t *)prop)[i]); break; } } } (void) printf("\n"); umem_free(prop, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } static void dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) { bpobj_phys_t *bpop = data; uint64_t i; char bytes[32], comp[32], uncomp[32]; if (bpop == NULL) return; zdb_nicenum(bpop->bpo_bytes, bytes); zdb_nicenum(bpop->bpo_comp, comp); zdb_nicenum(bpop->bpo_uncomp, uncomp); (void) printf("\t\tnum_blkptrs = %llu\n", (u_longlong_t)bpop->bpo_num_blkptrs); (void) printf("\t\tbytes = %s\n", bytes); if (size >= BPOBJ_SIZE_V1) { (void) printf("\t\tcomp = %s\n", comp); (void) printf("\t\tuncomp = %s\n", uncomp); } if (size >= sizeof (*bpop)) { (void) printf("\t\tsubobjs = %llu\n", (u_longlong_t)bpop->bpo_subobjs); (void) printf("\t\tnum_subobjs = %llu\n", (u_longlong_t)bpop->bpo_num_subobjs); } if (dump_opt['d'] < 5) return; for (i = 0; i < bpop->bpo_num_blkptrs; i++) { char blkbuf[BP_SPRINTF_LEN]; blkptr_t bp; int err = dmu_read(os, object, i * sizeof (bp), sizeof (bp), &bp, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); break; } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp); (void) printf("\t%s\n", blkbuf); } } /* ARGSUSED */ static void dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) { dmu_object_info_t doi; int64_t i; VERIFY0(dmu_object_info(os, object, &doi)); uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); if (err != 0) { (void) printf("got error %u from dmu_read\n", err); kmem_free(subobjs, doi.doi_max_offset); return; } int64_t last_nonzero = -1; for (i = 0; i < doi.doi_max_offset / 8; i++) { if (subobjs[i] != 0) last_nonzero = i; } for (i = 0; i <= last_nonzero; i++) { (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); } kmem_free(subobjs, doi.doi_max_offset); } /*ARGSUSED*/ static void dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) { dump_zap_stats(os, object); /* contents are printed elsewhere, properly decoded */ } /*ARGSUSED*/ static void dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = ", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } (void) printf(" %llx : [%d:%d:%d]\n", (u_longlong_t)attr.za_first_integer, (int)ATTR_LENGTH(attr.za_first_integer), (int)ATTR_BSWAP(attr.za_first_integer), (int)ATTR_NUM(attr.za_first_integer)); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; uint16_t *layout_attrs; int i; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = [", attr.za_name); if (attr.za_num_integers == 0) { (void) printf("\n"); continue; } VERIFY(attr.za_integer_length == 2); layout_attrs = umem_zalloc(attr.za_num_integers * attr.za_integer_length, UMEM_NOFAIL); VERIFY(zap_lookup(os, object, attr.za_name, attr.za_integer_length, attr.za_num_integers, layout_attrs) == 0); for (i = 0; i != attr.za_num_integers; i++) (void) printf(" %d ", (int)layout_attrs[i]); (void) printf("]\n"); umem_free(layout_attrs, attr.za_num_integers * attr.za_integer_length); } zap_cursor_fini(&zc); } /*ARGSUSED*/ static void dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) { zap_cursor_t zc; zap_attribute_t attr; const char *typenames[] = { /* 0 */ "not specified", /* 1 */ "FIFO", /* 2 */ "Character Device", /* 3 */ "3 (invalid)", /* 4 */ "Directory", /* 5 */ "5 (invalid)", /* 6 */ "Block Device", /* 7 */ "7 (invalid)", /* 8 */ "Regular File", /* 9 */ "9 (invalid)", /* 10 */ "Symbolic Link", /* 11 */ "11 (invalid)", /* 12 */ "Socket", /* 13 */ "Door", /* 14 */ "Event Port", /* 15 */ "15 (invalid)", }; dump_zap_stats(os, object); (void) printf("\n"); for (zap_cursor_init(&zc, os, object); zap_cursor_retrieve(&zc, &attr) == 0; zap_cursor_advance(&zc)) { (void) printf("\t\t%s = %lld (type: %s)\n", attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); } zap_cursor_fini(&zc); } int get_dtl_refcount(vdev_t *vd) { int refcount = 0; int c; if (vd->vdev_ops->vdev_op_leaf) { space_map_t *sm = vd->vdev_dtl_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) return (1); return (0); } for (c = 0; c < vd->vdev_children; c++) refcount += get_dtl_refcount(vd->vdev_child[c]); return (refcount); } int get_metaslab_refcount(vdev_t *vd) { int refcount = 0; int c, m; if (vd->vdev_top == vd && !vd->vdev_removing) { for (m = 0; m < vd->vdev_ms_count; m++) { space_map_t *sm = vd->vdev_ms[m]->ms_sm; if (sm != NULL && sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) refcount++; } } for (c = 0; c < vd->vdev_children; c++) refcount += get_metaslab_refcount(vd->vdev_child[c]); return (refcount); } static int verify_spacemap_refcounts(spa_t *spa) { uint64_t expected_refcount = 0; uint64_t actual_refcount; (void) feature_get_refcount(spa, &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], &expected_refcount); actual_refcount = get_dtl_refcount(spa->spa_root_vdev); actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); if (expected_refcount != actual_refcount) { (void) printf("space map refcount mismatch: expected %lld != " "actual %lld\n", (longlong_t)expected_refcount, (longlong_t)actual_refcount); return (2); } return (0); } static void dump_spacemap(objset_t *os, space_map_t *sm) { uint64_t alloc, offset, entry; char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; if (sm == NULL) return; /* * Print out the freelist entries in both encoded and decoded form. */ alloc = 0; for (offset = 0; offset < space_map_length(sm); offset += sizeof (entry)) { uint8_t mapshift = sm->sm_shift; VERIFY0(dmu_read(os, space_map_object(sm), offset, sizeof (entry), &entry, DMU_READ_PREFETCH)); if (SM_DEBUG_DECODE(entry)) { (void) printf("\t [%6llu] %s: txg %llu, pass %llu\n", (u_longlong_t)(offset / sizeof (entry)), ddata[SM_DEBUG_ACTION_DECODE(entry)], (u_longlong_t)SM_DEBUG_TXG_DECODE(entry), (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry)); } else { (void) printf("\t [%6llu] %c range:" " %010llx-%010llx size: %06llx\n", (u_longlong_t)(offset / sizeof (entry)), SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F', (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + sm->sm_start), (u_longlong_t)((SM_OFFSET_DECODE(entry) << mapshift) + sm->sm_start + (SM_RUN_DECODE(entry) << mapshift)), (u_longlong_t)(SM_RUN_DECODE(entry) << mapshift)); if (SM_TYPE_DECODE(entry) == SM_ALLOC) alloc += SM_RUN_DECODE(entry) << mapshift; else alloc -= SM_RUN_DECODE(entry) << mapshift; } } if (alloc != space_map_allocated(sm)) { (void) printf("space_map_object alloc (%llu) INCONSISTENT " "with space map summary (%llu)\n", (u_longlong_t)space_map_allocated(sm), (u_longlong_t)alloc); } } static void dump_metaslab_stats(metaslab_t *msp) { char maxbuf[32]; range_tree_t *rt = msp->ms_tree; avl_tree_t *t = &msp->ms_size_tree; int free_pct = range_tree_space(rt) * 100 / msp->ms_size; zdb_nicenum(metaslab_block_maxsize(msp), maxbuf); (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", "segments", avl_numnodes(t), "maxsize", maxbuf, "freepct", free_pct); (void) printf("\tIn-memory histogram:\n"); dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void dump_metaslab(metaslab_t *msp) { vdev_t *vd = msp->ms_group->mg_vd; spa_t *spa = vd->vdev_spa; space_map_t *sm = msp->ms_sm; char freebuf[32]; zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf); (void) printf( "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, (u_longlong_t)space_map_object(sm), freebuf); if (dump_opt['m'] > 2 && !dump_opt['L']) { mutex_enter(&msp->ms_lock); metaslab_load_wait(msp); if (!msp->ms_loaded) { VERIFY0(metaslab_load(msp)); range_tree_stat_verify(msp->ms_tree); } dump_metaslab_stats(msp); metaslab_unload(msp); mutex_exit(&msp->ms_lock); } if (dump_opt['m'] > 1 && sm != NULL && spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { /* * The space map histogram represents free space in chunks * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). */ (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", (u_longlong_t)msp->ms_fragmentation); dump_histogram(sm->sm_phys->smp_histogram, SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); } if (dump_opt['d'] > 5 || dump_opt['m'] > 3) { ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift)); mutex_enter(&msp->ms_lock); dump_spacemap(spa->spa_meta_objset, msp->ms_sm); mutex_exit(&msp->ms_lock); } } static void print_vdev_metaslab_header(vdev_t *vd) { (void) printf("\tvdev %10llu\n\t%-10s%5llu %-19s %-15s %-10s\n", (u_longlong_t)vd->vdev_id, "metaslabs", (u_longlong_t)vd->vdev_ms_count, "offset", "spacemap", "free"); (void) printf("\t%15s %19s %15s %10s\n", "---------------", "-------------------", "---------------", "-------------"); } static void dump_metaslab_groups(spa_t *spa) { vdev_t *rvd = spa->spa_root_vdev; metaslab_class_t *mc = spa_normal_class(spa); uint64_t fragmentation; int c; metaslab_class_histogram_verify(mc); for (c = 0; c < rvd->vdev_children; c++) { vdev_t *tvd = rvd->vdev_child[c]; metaslab_group_t *mg = tvd->vdev_mg; if (mg->mg_class != mc) continue; metaslab_group_histogram_verify(mg); mg->mg_fragmentation = metaslab_group_fragmentation(mg); (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" "fragmentation", (u_longlong_t)tvd->vdev_id, (u_longlong_t)tvd->vdev_ms_count); if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { (void) printf("%3s\n", "-"); } else { (void) printf("%3llu%%\n", (u_longlong_t)mg->mg_fragmentation); } dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } (void) printf("\tpool %s\tfragmentation", spa_name(spa)); fragmentation = metaslab_class_fragmentation(mc); if (fragmentation == ZFS_FRAG_INVALID) (void) printf("\t%3s\n", "-"); else (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); } static void dump_metaslabs(spa_t *spa) { vdev_t *vd, *rvd = spa->spa_root_vdev; uint64_t m, c = 0, children = rvd->vdev_children; (void) printf("\nMetaslabs:\n"); if (!dump_opt['d'] && zopt_objects > 0) { c = zopt_object[0]; if (c >= children) (void) fatal("bad vdev id: %llu", (u_longlong_t)c); if (zopt_objects > 1) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 1; m < zopt_objects; m++) { if (zopt_object[m] < vd->vdev_ms_count) dump_metaslab( vd->vdev_ms[zopt_object[m]]); else (void) fprintf(stderr, "bad metaslab " "number %llu\n", (u_longlong_t)zopt_object[m]); } (void) printf("\n"); return; } children = c + 1; } for (; c < children; c++) { vd = rvd->vdev_child[c]; print_vdev_metaslab_header(vd); for (m = 0; m < vd->vdev_ms_count; m++) dump_metaslab(vd->vdev_ms[m]); (void) printf("\n"); } } static void dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) { const ddt_phys_t *ddp = dde->dde_phys; const ddt_key_t *ddk = &dde->dde_key; char *types[4] = { "ditto", "single", "double", "triple" }; char blkbuf[BP_SPRINTF_LEN]; blkptr_t blk; int p; for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); (void) printf("index %llx refcnt %llu %s %s\n", (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, types[p], blkbuf); } } static void dump_dedup_ratio(const ddt_stat_t *dds) { double rL, rP, rD, D, dedup, compress, copies; if (dds->dds_blocks == 0) return; rL = (double)dds->dds_ref_lsize; rP = (double)dds->dds_ref_psize; rD = (double)dds->dds_ref_dsize; D = (double)dds->dds_dsize; dedup = rD / D; compress = rL / rP; copies = rD / rP; (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " "dedup * compress / copies = %.2f\n\n", dedup, compress, copies, dedup * compress / copies); } static void dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) { char name[DDT_NAMELEN]; ddt_entry_t dde; uint64_t walk = 0; dmu_object_info_t doi; uint64_t count, dspace, mspace; int error; error = ddt_object_info(ddt, type, class, &doi); if (error == ENOENT) return; ASSERT(error == 0); error = ddt_object_count(ddt, type, class, &count); ASSERT(error == 0); if (count == 0) return; dspace = doi.doi_physical_blocks_512 << 9; mspace = doi.doi_fill_count * doi.doi_data_block_size; ddt_object_name(ddt, type, class, name); (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", name, (u_longlong_t)count, (u_longlong_t)(dspace / count), (u_longlong_t)(mspace / count)); if (dump_opt['D'] < 3) return; zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); if (dump_opt['D'] < 4) return; if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) return; (void) printf("%s contents:\n\n", name); while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) dump_dde(ddt, &dde, walk); ASSERT(error == ENOENT); (void) printf("\n"); } static void dump_all_ddts(spa_t *spa) { ddt_histogram_t ddh_total; ddt_stat_t dds_total; enum zio_checksum c; enum ddt_type type; enum ddt_class class; bzero(&ddh_total, sizeof (ddt_histogram_t)); bzero(&dds_total, sizeof (ddt_stat_t)); for (c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { ddt_t *ddt = spa->spa_ddt[c]; for (type = 0; type < DDT_TYPES; type++) { for (class = 0; class < DDT_CLASSES; class++) { dump_ddt(ddt, type, class); } } } ddt_get_dedup_stats(spa, &dds_total); if (dds_total.dds_blocks == 0) { (void) printf("All DDTs are empty\n"); return; } (void) printf("\n"); if (dump_opt['D'] > 1) { (void) printf("DDT histogram (aggregated over all DDTs):\n"); ddt_get_dedup_histogram(spa, &ddh_total); zpool_dump_ddt(&dds_total, &ddh_total); } dump_dedup_ratio(&dds_total); } static void dump_dtl_seg(void *arg, uint64_t start, uint64_t size) { char *prefix = arg; (void) printf("%s [%llu,%llu) length %llu\n", prefix, (u_longlong_t)start, (u_longlong_t)(start + size), (u_longlong_t)(size)); } static void dump_dtl(vdev_t *vd, int indent) { spa_t *spa = vd->vdev_spa; boolean_t required; char *name[DTL_TYPES] = { "missing", "partial", "scrub", "outage" }; char prefix[256]; int c, t; spa_vdev_state_enter(spa, SCL_NONE); required = vdev_dtl_required(vd); (void) spa_vdev_state_exit(spa, NULL, 0); if (indent == 0) (void) printf("\nDirty time logs:\n\n"); (void) printf("\t%*s%s [%s]\n", indent, "", vd->vdev_path ? vd->vdev_path : vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), required ? "DTL-required" : "DTL-expendable"); for (t = 0; t < DTL_TYPES; t++) { range_tree_t *rt = vd->vdev_dtl[t]; if (range_tree_space(rt) == 0) continue; (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", indent + 2, "", name[t]); mutex_enter(rt->rt_lock); range_tree_walk(rt, dump_dtl_seg, prefix); mutex_exit(rt->rt_lock); if (dump_opt['d'] > 5 && vd->vdev_children == 0) dump_spacemap(spa->spa_meta_objset, vd->vdev_dtl_sm); } for (c = 0; c < vd->vdev_children; c++) dump_dtl(vd->vdev_child[c], indent + 4); } static void dump_history(spa_t *spa) { nvlist_t **events = NULL; char *buf; uint64_t resid, len, off = 0; uint_t num = 0; int error; time_t tsec; struct tm t; char tbuf[30]; char internalstr[MAXPATHLEN]; int i; if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", __func__); return; } do { len = SPA_OLD_MAXBLOCKSIZE; if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { (void) fprintf(stderr, "Unable to read history: " "error %d\n", error); free(buf); return; } if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) break; off -= resid; } while (len != 0); (void) printf("\nHistory:\n"); for (i = 0; i < num; i++) { uint64_t time, txg, ievent; char *cmd, *intstr; boolean_t printed = B_FALSE; if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, &time) != 0) goto next; if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, &cmd) != 0) { if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_INT_EVENT, &ievent) != 0) goto next; verify(nvlist_lookup_uint64(events[i], ZPOOL_HIST_TXG, &txg) == 0); verify(nvlist_lookup_string(events[i], ZPOOL_HIST_INT_STR, &intstr) == 0); if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) goto next; (void) snprintf(internalstr, sizeof (internalstr), "[internal %s txg:%lld] %s", zfs_history_event_names[ievent], (longlong_t)txg, intstr); cmd = internalstr; } tsec = time; (void) localtime_r(&tsec, &t); (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); (void) printf("%s %s\n", tbuf, cmd); printed = B_TRUE; next: if (dump_opt['h'] > 1) { if (!printed) (void) printf("unrecognized record:\n"); dump_nvlist(events[i], 2); } } free(buf); } /*ARGSUSED*/ static void dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) { } static uint64_t blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, const zbookmark_phys_t *zb) { if (dnp == NULL) { ASSERT(zb->zb_level < 0); if (zb->zb_object == 0) return (zb->zb_blkid); return (zb->zb_blkid * BP_GET_LSIZE(bp)); } ASSERT(zb->zb_level >= 0); return ((zb->zb_blkid << (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); } static void snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp) { const dva_t *dva = bp->blk_dva; int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; int i; if (dump_opt['b'] >= 6) { snprintf_blkptr(blkbuf, buflen, bp); return; } if (BP_IS_EMBEDDED(bp)) { (void) sprintf(blkbuf, "EMBEDDED et=%u %llxL/%llxP B=%llu", (int)BPE_GET_ETYPE(bp), (u_longlong_t)BPE_GET_LSIZE(bp), (u_longlong_t)BPE_GET_PSIZE(bp), (u_longlong_t)bp->blk_birth); return; } blkbuf[0] = '\0'; for (i = 0; i < ndvas; i++) (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llu:%llx:%llx ", (u_longlong_t)DVA_GET_VDEV(&dva[i]), (u_longlong_t)DVA_GET_OFFSET(&dva[i]), (u_longlong_t)DVA_GET_ASIZE(&dva[i])); if (BP_IS_HOLE(bp)) { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL B=%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)bp->blk_birth); } else { (void) snprintf(blkbuf + strlen(blkbuf), buflen - strlen(blkbuf), "%llxL/%llxP F=%llu B=%llu/%llu", (u_longlong_t)BP_GET_LSIZE(bp), (u_longlong_t)BP_GET_PSIZE(bp), (u_longlong_t)BP_GET_FILL(bp), (u_longlong_t)bp->blk_birth, (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); } } static void print_indirect(blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp) { char blkbuf[BP_SPRINTF_LEN]; int l; if (!BP_IS_EMBEDDED(bp)) { ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); } (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); ASSERT(zb->zb_level >= 0); for (l = dnp->dn_nlevels - 1; l >= -1; l--) { if (l == zb->zb_level) { (void) printf("L%llx", (u_longlong_t)zb->zb_level); } else { (void) printf(" "); } } snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static int visit_indirect(spa_t *spa, const dnode_phys_t *dnp, blkptr_t *bp, const zbookmark_phys_t *zb) { int err = 0; if (bp->blk_birth == 0) return (0); print_indirect(bp, zb, dnp); if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { arc_flags_t flags = ARC_FLAG_WAIT; int i; blkptr_t *cbp; int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; arc_buf_t *buf; uint64_t fill = 0; err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); if (err) return (err); ASSERT(buf->b_data); /* recursively visit blocks below this */ cbp = buf->b_data; for (i = 0; i < epb; i++, cbp++) { zbookmark_phys_t czb; SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, zb->zb_level - 1, zb->zb_blkid * epb + i); err = visit_indirect(spa, dnp, cbp, &czb); if (err) break; fill += BP_GET_FILL(cbp); } if (!err) ASSERT3U(fill, ==, BP_GET_FILL(bp)); (void) arc_buf_remove_ref(buf, &buf); } return (err); } /*ARGSUSED*/ static void dump_indirect(dnode_t *dn) { dnode_phys_t *dnp = dn->dn_phys; int j; zbookmark_phys_t czb; (void) printf("Indirect blocks:\n"); SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), dn->dn_object, dnp->dn_nlevels - 1, 0); for (j = 0; j < dnp->dn_nblkptr; j++) { czb.zb_blkid = j; (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, &dnp->dn_blkptr[j], &czb); } (void) printf("\n"); } /*ARGSUSED*/ static void dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dir_phys_t *dd = data; time_t crtime; char nice[32]; if (dd == NULL) return; ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); crtime = dd->dd_creation_time; (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\thead_dataset_obj = %llu\n", (u_longlong_t)dd->dd_head_dataset_obj); (void) printf("\t\tparent_dir_obj = %llu\n", (u_longlong_t)dd->dd_parent_obj); (void) printf("\t\torigin_obj = %llu\n", (u_longlong_t)dd->dd_origin_obj); (void) printf("\t\tchild_dir_zapobj = %llu\n", (u_longlong_t)dd->dd_child_dir_zapobj); zdb_nicenum(dd->dd_used_bytes, nice); (void) printf("\t\tused_bytes = %s\n", nice); zdb_nicenum(dd->dd_compressed_bytes, nice); (void) printf("\t\tcompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_uncompressed_bytes, nice); (void) printf("\t\tuncompressed_bytes = %s\n", nice); zdb_nicenum(dd->dd_quota, nice); (void) printf("\t\tquota = %s\n", nice); zdb_nicenum(dd->dd_reserved, nice); (void) printf("\t\treserved = %s\n", nice); (void) printf("\t\tprops_zapobj = %llu\n", (u_longlong_t)dd->dd_props_zapobj); (void) printf("\t\tdeleg_zapobj = %llu\n", (u_longlong_t)dd->dd_deleg_zapobj); (void) printf("\t\tflags = %llx\n", (u_longlong_t)dd->dd_flags); #define DO(which) \ zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice); \ (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) DO(HEAD); DO(SNAP); DO(CHILD); DO(CHILD_RSRV); DO(REFRSRV); #undef DO } /*ARGSUSED*/ static void dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) { dsl_dataset_phys_t *ds = data; time_t crtime; char used[32], compressed[32], uncompressed[32], unique[32]; char blkbuf[BP_SPRINTF_LEN]; if (ds == NULL) return; ASSERT(size == sizeof (*ds)); crtime = ds->ds_creation_time; zdb_nicenum(ds->ds_referenced_bytes, used); zdb_nicenum(ds->ds_compressed_bytes, compressed); zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed); zdb_nicenum(ds->ds_unique_bytes, unique); snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); (void) printf("\t\tdir_obj = %llu\n", (u_longlong_t)ds->ds_dir_obj); (void) printf("\t\tprev_snap_obj = %llu\n", (u_longlong_t)ds->ds_prev_snap_obj); (void) printf("\t\tprev_snap_txg = %llu\n", (u_longlong_t)ds->ds_prev_snap_txg); (void) printf("\t\tnext_snap_obj = %llu\n", (u_longlong_t)ds->ds_next_snap_obj); (void) printf("\t\tsnapnames_zapobj = %llu\n", (u_longlong_t)ds->ds_snapnames_zapobj); (void) printf("\t\tnum_children = %llu\n", (u_longlong_t)ds->ds_num_children); (void) printf("\t\tuserrefs_obj = %llu\n", (u_longlong_t)ds->ds_userrefs_obj); (void) printf("\t\tcreation_time = %s", ctime(&crtime)); (void) printf("\t\tcreation_txg = %llu\n", (u_longlong_t)ds->ds_creation_txg); (void) printf("\t\tdeadlist_obj = %llu\n", (u_longlong_t)ds->ds_deadlist_obj); (void) printf("\t\tused_bytes = %s\n", used); (void) printf("\t\tcompressed_bytes = %s\n", compressed); (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); (void) printf("\t\tunique = %s\n", unique); (void) printf("\t\tfsid_guid = %llu\n", (u_longlong_t)ds->ds_fsid_guid); (void) printf("\t\tguid = %llu\n", (u_longlong_t)ds->ds_guid); (void) printf("\t\tflags = %llx\n", (u_longlong_t)ds->ds_flags); (void) printf("\t\tnext_clones_obj = %llu\n", (u_longlong_t)ds->ds_next_clones_obj); (void) printf("\t\tprops_obj = %llu\n", (u_longlong_t)ds->ds_props_obj); (void) printf("\t\tbp = %s\n", blkbuf); } /* ARGSUSED */ static int dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; if (bp->blk_birth != 0) { snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); } return (0); } static void dump_bptree(objset_t *os, uint64_t obj, char *name) { char bytes[32]; bptree_phys_t *bt; dmu_buf_t *db; if (dump_opt['d'] < 3) return; VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); bt = db->db_data; zdb_nicenum(bt->bt_bytes, bytes); (void) printf("\n %s: %llu datasets, %s\n", name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); dmu_buf_rele(db, FTAG); if (dump_opt['d'] < 5) return; (void) printf("\n"); (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); } /* ARGSUSED */ static int dump_bpobj_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { char blkbuf[BP_SPRINTF_LEN]; ASSERT(bp->blk_birth != 0); snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp); (void) printf("\t%s\n", blkbuf); return (0); } static void dump_full_bpobj(bpobj_t *bpo, char *name, int indent) { char bytes[32]; char comp[32]; char uncomp[32]; uint64_t i; if (dump_opt['d'] < 3) return; zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes); if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { zdb_nicenum(bpo->bpo_phys->bpo_comp, comp); zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp); (void) printf(" %*s: object %llu, %llu local blkptrs, " "%llu subobjs in object, %llu, %s (%s/%s comp)\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, (u_longlong_t)bpo->bpo_phys->bpo_subobjs, bytes, comp, uncomp); for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { uint64_t subobj; bpobj_t subbpo; int error; VERIFY0(dmu_read(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, i * sizeof (subobj), sizeof (subobj), &subobj, 0)); error = bpobj_open(&subbpo, bpo->bpo_os, subobj); if (error != 0) { (void) printf("ERROR %u while trying to open " "subobj id %llu\n", error, (u_longlong_t)subobj); continue; } dump_full_bpobj(&subbpo, "subobj", indent + 1); bpobj_close(&subbpo); } } else { (void) printf(" %*s: object %llu, %llu blkptrs, %s\n", indent * 8, name, (u_longlong_t)bpo->bpo_object, (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, bytes); } if (dump_opt['d'] < 5) return; if (indent == 0) { (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); (void) printf("\n"); } } static void dump_deadlist(dsl_deadlist_t *dl) { dsl_deadlist_entry_t *dle; uint64_t unused; char bytes[32]; char comp[32]; char uncomp[32]; if (dump_opt['d'] < 3) return; if (dl->dl_oldfmt) { dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); return; } zdb_nicenum(dl->dl_phys->dl_used, bytes); zdb_nicenum(dl->dl_phys->dl_comp, comp); zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp); (void) printf("\n Deadlist: %s (%s/%s comp)\n", bytes, comp, uncomp); if (dump_opt['d'] < 4) return; (void) printf("\n"); /* force the tree to be loaded */ dsl_deadlist_space_range(dl, 0, UINT64_MAX, &unused, &unused, &unused); for (dle = avl_first(&dl->dl_tree); dle; dle = AVL_NEXT(&dl->dl_tree, dle)) { if (dump_opt['d'] >= 5) { char buf[128]; (void) snprintf(buf, sizeof (buf), "mintxg %llu -> obj %llu", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); dump_full_bpobj(&dle->dle_bpobj, buf, 0); } else { (void) printf("mintxg %llu -> obj %llu\n", (longlong_t)dle->dle_mintxg, (longlong_t)dle->dle_bpobj.bpo_object); } } } static avl_tree_t idx_tree; static avl_tree_t domain_tree; static boolean_t fuid_table_loaded; static boolean_t sa_loaded; sa_attr_type_t *sa_attr_table; static void fuid_table_destroy(void) { if (fuid_table_loaded) { zfs_fuid_table_destroy(&idx_tree, &domain_tree); fuid_table_loaded = B_FALSE; } } /* * print uid or gid information. * For normal POSIX id just the id is printed in decimal format. * For CIFS files with FUID the fuid is printed in hex followed by * the domain-rid string. */ static void print_idstr(uint64_t id, const char *id_type) { if (FUID_INDEX(id)) { char *domain; domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); (void) printf("\t%s %llx [%s-%d]\n", id_type, (u_longlong_t)id, domain, (int)FUID_RID(id)); } else { (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); } } static void dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) { uint32_t uid_idx, gid_idx; uid_idx = FUID_INDEX(uid); gid_idx = FUID_INDEX(gid); /* Load domain table, if not already loaded */ if (!fuid_table_loaded && (uid_idx || gid_idx)) { uint64_t fuid_obj; /* first find the fuid object. It lives in the master node */ VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &fuid_obj) == 0); zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); (void) zfs_fuid_table_load(os, fuid_obj, &idx_tree, &domain_tree); fuid_table_loaded = B_TRUE; } print_idstr(uid, "uid"); print_idstr(gid, "gid"); } static void dump_znode_sa_xattr(sa_handle_t *hdl) { nvlist_t *sa_xattr; nvpair_t *elem = NULL; int sa_xattr_size = 0; int sa_xattr_entries = 0; int error; char *sa_xattr_packed; error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); if (error || sa_xattr_size == 0) return; sa_xattr_packed = malloc(sa_xattr_size); if (sa_xattr_packed == NULL) return; error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], sa_xattr_packed, sa_xattr_size); if (error) { free(sa_xattr_packed); return; } error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); if (error) { free(sa_xattr_packed); return; } while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) sa_xattr_entries++; (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", sa_xattr_size, sa_xattr_entries); while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { uchar_t *value; uint_t cnt, idx; (void) printf("\t\t%s = ", nvpair_name(elem)); nvpair_value_byte_array(elem, &value, &cnt); for (idx = 0; idx < cnt; ++idx) { if (isprint(value[idx])) (void) putchar(value[idx]); else (void) printf("\\%3.3o", value[idx]); } (void) putchar('\n'); } nvlist_free(sa_xattr); free(sa_xattr_packed); } /*ARGSUSED*/ static void dump_znode(objset_t *os, uint64_t object, void *data, size_t size) { char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ sa_handle_t *hdl; uint64_t xattr, rdev, gen; uint64_t uid, gid, mode, fsize, parent, links; uint64_t pflags; uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; time_t z_crtime, z_atime, z_mtime, z_ctime; sa_bulk_attr_t bulk[12]; int idx = 0; int error; if (!sa_loaded) { uint64_t sa_attrs = 0; uint64_t version; VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &version) == 0); if (version >= ZPL_VERSION_SA) { VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_attrs) == 0); } if ((error = sa_setup(os, sa_attrs, zfs_attr_table, ZPL_END, &sa_attr_table)) != 0) { (void) printf("sa_setup failed errno %d, can't " "display znode contents\n", error); return; } sa_loaded = B_TRUE; } if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { (void) printf("Failed to get handle for SA znode\n"); return; } SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, &links, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, &mode, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], NULL, &parent, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, &fsize, 8); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, acctm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, modtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, crtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, chgtm, 16); SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, &pflags, 8); if (sa_bulk_lookup(hdl, bulk, idx)) { (void) sa_handle_destroy(hdl); return; } error = zfs_obj_to_path(os, object, path, sizeof (path)); if (error != 0) { (void) snprintf(path, sizeof (path), "\?\?\?", (u_longlong_t)object); } if (dump_opt['d'] < 3) { (void) printf("\t%s\n", path); (void) sa_handle_destroy(hdl); return; } z_crtime = (time_t)crtm[0]; z_atime = (time_t)acctm[0]; z_mtime = (time_t)modtm[0]; z_ctime = (time_t)chgtm[0]; (void) printf("\tpath %s\n", path); dump_uidgid(os, uid, gid); (void) printf("\tatime %s", ctime(&z_atime)); (void) printf("\tmtime %s", ctime(&z_mtime)); (void) printf("\tctime %s", ctime(&z_ctime)); (void) printf("\tcrtime %s", ctime(&z_crtime)); (void) printf("\tgen %llu\n", (u_longlong_t)gen); (void) printf("\tmode %llo\n", (u_longlong_t)mode); (void) printf("\tsize %llu\n", (u_longlong_t)fsize); (void) printf("\tparent %llu\n", (u_longlong_t)parent); (void) printf("\tlinks %llu\n", (u_longlong_t)links); (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, sizeof (uint64_t)) == 0) (void) printf("\txattr %llu\n", (u_longlong_t)xattr); if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, sizeof (uint64_t)) == 0) (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); dump_znode_sa_xattr(hdl); sa_handle_destroy(hdl); } /*ARGSUSED*/ static void dump_acl(objset_t *os, uint64_t object, void *data, size_t size) { } /*ARGSUSED*/ static void dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) { } static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { dump_none, /* unallocated */ dump_zap, /* object directory */ dump_uint64, /* object array */ dump_none, /* packed nvlist */ dump_packed_nvlist, /* packed nvlist size */ dump_none, /* bpobj */ dump_bpobj, /* bpobj header */ dump_none, /* SPA space map header */ dump_none, /* SPA space map */ dump_none, /* ZIL intent log */ dump_dnode, /* DMU dnode */ dump_dmu_objset, /* DMU objset */ dump_dsl_dir, /* DSL directory */ dump_zap, /* DSL directory child map */ dump_zap, /* DSL dataset snap map */ dump_zap, /* DSL props */ dump_dsl_dataset, /* DSL dataset */ dump_znode, /* ZFS znode */ dump_acl, /* ZFS V0 ACL */ dump_uint8, /* ZFS plain file */ dump_zpldir, /* ZFS directory */ dump_zap, /* ZFS master node */ dump_zap, /* ZFS delete queue */ dump_uint8, /* zvol object */ dump_zap, /* zvol prop */ dump_uint8, /* other uint8[] */ dump_uint64, /* other uint64[] */ dump_zap, /* other ZAP */ dump_zap, /* persistent error log */ dump_uint8, /* SPA history */ dump_history_offsets, /* SPA history offsets */ dump_zap, /* Pool properties */ dump_zap, /* DSL permissions */ dump_acl, /* ZFS ACL */ dump_uint8, /* ZFS SYSACL */ dump_none, /* FUID nvlist */ dump_packed_nvlist, /* FUID nvlist size */ dump_zap, /* DSL dataset next clones */ dump_zap, /* DSL scrub queue */ dump_zap, /* ZFS user/group used */ dump_zap, /* ZFS user/group quota */ dump_zap, /* snapshot refcount tags */ dump_ddt_zap, /* DDT ZAP object */ dump_zap, /* DDT statistics */ dump_znode, /* SA object */ dump_zap, /* SA Master Node */ dump_sa_attrs, /* SA attribute registration */ dump_sa_layouts, /* SA attribute layouts */ dump_zap, /* DSL scrub translations */ dump_none, /* fake dedup BP */ dump_zap, /* deadlist */ dump_none, /* deadlist hdr */ dump_zap, /* dsl clones */ dump_bpobj_subobjs, /* bpobj subobjs */ dump_unknown, /* Unknown type, must be last */ }; static void dump_object(objset_t *os, uint64_t object, int verbosity, int *print_header) { dmu_buf_t *db = NULL; dmu_object_info_t doi; dnode_t *dn; void *bonus = NULL; size_t bsize = 0; char iblk[32], dblk[32], lsize[32], asize[32], fill[32]; char bonus_size[32]; char aux[50]; int error; if (*print_header) { (void) printf("\n%10s %3s %5s %5s %5s %5s %6s %s\n", "Object", "lvl", "iblk", "dblk", "dsize", "lsize", "%full", "type"); *print_header = 0; } if (object == 0) { dn = DMU_META_DNODE(os); } else { error = dmu_bonus_hold(os, object, FTAG, &db); if (error) fatal("dmu_bonus_hold(%llu) failed, errno %u", object, error); bonus = db->db_data; bsize = db->db_size; dn = DB_DNODE((dmu_buf_impl_t *)db); } dmu_object_info_from_dnode(dn, &doi); zdb_nicenum(doi.doi_metadata_block_size, iblk); zdb_nicenum(doi.doi_data_block_size, dblk); zdb_nicenum(doi.doi_max_offset, lsize); zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize); zdb_nicenum(doi.doi_bonus_size, bonus_size); (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / doi.doi_max_offset); aux[0] = '\0'; if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); } if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { (void) snprintf(aux + strlen(aux), sizeof (aux), " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); } (void) printf("%10lld %3u %5s %5s %5s %5s %6s %s%s\n", (u_longlong_t)object, doi.doi_indirection, iblk, dblk, asize, lsize, fill, ZDB_OT_NAME(doi.doi_type), aux); if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { (void) printf("%10s %3s %5s %5s %5s %5s %6s %s\n", "", "", "", "", "", bonus_size, "bonus", ZDB_OT_NAME(doi.doi_bonus_type)); } if (verbosity >= 4) { (void) printf("\tdnode flags: %s%s%s\n", (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? "USED_BYTES " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? "USERUSED_ACCOUNTED " : "", (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? "SPILL_BLKPTR" : ""); (void) printf("\tdnode maxblkid: %llu\n", (longlong_t)dn->dn_phys->dn_maxblkid); object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, object, bonus, bsize); object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, NULL, 0); *print_header = 1; } if (verbosity >= 5) dump_indirect(dn); if (verbosity >= 5) { /* * Report the list of segments that comprise the object. */ uint64_t start = 0; uint64_t end; uint64_t blkfill = 1; int minlvl = 1; if (dn->dn_type == DMU_OT_DNODE) { minlvl = 0; blkfill = DNODES_PER_BLOCK; } for (;;) { char segsize[32]; error = dnode_next_offset(dn, 0, &start, minlvl, blkfill, 0); if (error) break; end = start; error = dnode_next_offset(dn, DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); zdb_nicenum(end - start, segsize); (void) printf("\t\tsegment [%016llx, %016llx)" " size %5s\n", (u_longlong_t)start, (u_longlong_t)end, segsize); if (error) break; start = end; } } if (db != NULL) dmu_buf_rele(db, FTAG); } static char *objset_types[DMU_OST_NUMTYPES] = { "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; static void dump_dir(objset_t *os) { dmu_objset_stats_t dds; uint64_t object, object_count; uint64_t refdbytes, usedobjs, scratch; char numbuf[32]; char blkbuf[BP_SPRINTF_LEN + 20]; char osname[MAXNAMELEN]; char *type = "UNKNOWN"; int verbosity = dump_opt['d']; int print_header = 1; int i, error; dsl_pool_config_enter(dmu_objset_pool(os), FTAG); dmu_objset_fast_stat(os, &dds); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (dds.dds_type < DMU_OST_NUMTYPES) type = objset_types[dds.dds_type]; if (dds.dds_type == DMU_OST_META) { dds.dds_creation_txg = TXG_INITIAL; usedobjs = BP_GET_FILL(os->os_rootbp); refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> dd_used_bytes; } else { dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); } ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); zdb_nicenum(refdbytes, numbuf); if (verbosity >= 4) { (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); (void) snprintf_blkptr(blkbuf + strlen(blkbuf), sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); } else { blkbuf[0] = '\0'; } dmu_objset_name(os, osname); (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " "%s, %llu objects%s\n", osname, type, (u_longlong_t)dmu_objset_id(os), (u_longlong_t)dds.dds_creation_txg, numbuf, (u_longlong_t)usedobjs, blkbuf); if (zopt_objects != 0) { for (i = 0; i < zopt_objects; i++) dump_object(os, zopt_object[i], verbosity, &print_header); (void) printf("\n"); return; } if (dump_opt['i'] != 0 || verbosity >= 2) dump_intent_log(dmu_objset_zil(os)); if (dmu_objset_ds(os) != NULL) dump_deadlist(&dmu_objset_ds(os)->ds_deadlist); if (verbosity < 2) return; if (BP_IS_HOLE(os->os_rootbp)) return; dump_object(os, 0, verbosity, &print_header); object_count = 0; if (DMU_USERUSED_DNODE(os) != NULL && DMU_USERUSED_DNODE(os)->dn_type != 0) { dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header); dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header); } object = 0; while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { dump_object(os, object, verbosity, &print_header); object_count++; } ASSERT3U(object_count, ==, usedobjs); (void) printf("\n"); if (error != ESRCH) { (void) fprintf(stderr, "dmu_object_next() = %d\n", error); abort(); } } static void dump_uberblock(uberblock_t *ub, const char *header, const char *footer) { time_t timestamp = ub->ub_timestamp; (void) printf("%s", header ? header : ""); (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); (void) printf("\ttimestamp = %llu UTC = %s", (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); if (dump_opt['u'] >= 3) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); (void) printf("\trootbp = %s\n", blkbuf); } (void) printf("%s", footer ? footer : ""); } static void dump_config(spa_t *spa) { dmu_buf_t *db; size_t nvsize = 0; int error = 0; error = dmu_bonus_hold(spa->spa_meta_objset, spa->spa_config_object, FTAG, &db); if (error == 0) { nvsize = *(uint64_t *)db->db_data; dmu_buf_rele(db, FTAG); (void) printf("\nMOS Configuration:\n"); dump_packed_nvlist(spa->spa_meta_objset, spa->spa_config_object, (void *)&nvsize, 1); } else { (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", (u_longlong_t)spa->spa_config_object, error); } } static void dump_cachefile(const char *cachefile) { int fd; struct stat64 statbuf; char *buf; nvlist_t *config; if ((fd = open64(cachefile, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", cachefile, strerror(errno)); exit(1); } if (fstat64(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", cachefile, strerror(errno)); exit(1); } if ((buf = malloc(statbuf.st_size)) == NULL) { (void) fprintf(stderr, "failed to allocate %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) fprintf(stderr, "failed to read %llu bytes\n", (u_longlong_t)statbuf.st_size); exit(1); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { (void) fprintf(stderr, "failed to unpack nvlist\n"); exit(1); } free(buf); dump_nvlist(config, 0); nvlist_free(config); } #define ZDB_MAX_UB_HEADER_SIZE 32 static void dump_label_uberblocks(vdev_label_t *lbl, uint64_t ashift) { vdev_t vd; vdev_t *vdp = &vd; char header[ZDB_MAX_UB_HEADER_SIZE]; int i; vd.vdev_ashift = ashift; vdp->vdev_top = vdp; for (i = 0; i < VDEV_UBERBLOCK_COUNT(vdp); i++) { uint64_t uoff = VDEV_UBERBLOCK_OFFSET(vdp, i); uberblock_t *ub = (void *)((char *)lbl + uoff); if (uberblock_verify(ub)) continue; (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, "Uberblock[%d]\n", i); dump_uberblock(ub, header, ""); } } static void dump_label(const char *dev) { int fd; vdev_label_t label; char *path, *buf = label.vl_vdev_phys.vp_nvlist; size_t buflen = sizeof (label.vl_vdev_phys.vp_nvlist); struct stat64 statbuf; uint64_t psize, ashift; int len = strlen(dev) + 1; int l; if (strncmp(dev, "/dev/dsk/", 9) == 0) { len++; path = malloc(len); (void) snprintf(path, len, "%s%s", "/dev/rdsk/", dev + 9); } else { path = strdup(dev); } if ((fd = open64(path, O_RDONLY)) < 0) { (void) printf("cannot open '%s': %s\n", path, strerror(errno)); free(path); exit(1); } if (fstat64_blk(fd, &statbuf) != 0) { (void) printf("failed to stat '%s': %s\n", path, strerror(errno)); free(path); (void) close(fd); exit(1); } psize = statbuf.st_size; psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); for (l = 0; l < VDEV_LABELS; l++) { nvlist_t *config = NULL; (void) printf("--------------------------------------------\n"); (void) printf("LABEL %d\n", l); (void) printf("--------------------------------------------\n"); if (pread64(fd, &label, sizeof (label), vdev_label_offset(psize, l, 0)) != sizeof (label)) { (void) printf("failed to read label %d\n", l); continue; } if (nvlist_unpack(buf, buflen, &config, 0) != 0) { (void) printf("failed to unpack label %d\n", l); ashift = SPA_MINBLOCKSHIFT; } else { nvlist_t *vdev_tree = NULL; dump_nvlist(config, 4); if ((nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || (nvlist_lookup_uint64(vdev_tree, ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) ashift = SPA_MINBLOCKSHIFT; nvlist_free(config); } if (dump_opt['u']) dump_label_uberblocks(&label, ashift); } free(path); (void) close(fd); } static uint64_t dataset_feature_count[SPA_FEATURES]; /*ARGSUSED*/ static int dump_one_dir(const char *dsname, void *arg) { int error; objset_t *os; spa_feature_t f; error = dmu_objset_own(dsname, DMU_OST_ANY, B_TRUE, FTAG, &os); if (error) { (void) printf("Could not open %s, error %d\n", dsname, error); return (0); } for (f = 0; f < SPA_FEATURES; f++) { if (!dmu_objset_ds(os)->ds_feature_inuse[f]) continue; ASSERT(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET); dataset_feature_count[f]++; } dump_dir(os); dmu_objset_disown(os, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; return (0); } /* * Block statistics. */ #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) typedef struct zdb_blkstats { uint64_t zb_asize; uint64_t zb_lsize; uint64_t zb_psize; uint64_t zb_count; uint64_t zb_gangs; uint64_t zb_ditto_samevdev; uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; } zdb_blkstats_t; /* * Extended object types to report deferred frees and dedup auto-ditto blocks. */ #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) static char *zdb_ot_extname[] = { "deferred free", "dedup ditto", "other", "Total", }; #define ZB_TOTAL DN_MAX_LEVELS typedef struct zdb_cb { zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; uint64_t zcb_dedup_asize; uint64_t zcb_dedup_blocks; uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] [BPE_PAYLOAD_SIZE]; uint64_t zcb_start; uint64_t zcb_lastprint; uint64_t zcb_totalasize; uint64_t zcb_errors[256]; int zcb_readfails; int zcb_haderrors; spa_t *zcb_spa; } zdb_cb_t; static void zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, dmu_object_type_t type) { uint64_t refcnt = 0; int i; ASSERT(type < ZDB_OT_TOTAL); if (zilog && zil_bp_tree_add(zilog, bp) != 0) return; for (i = 0; i < 4; i++) { int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; int t = (i & 1) ? type : ZDB_OT_TOTAL; int equal; zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; zb->zb_asize += BP_GET_ASIZE(bp); zb->zb_lsize += BP_GET_LSIZE(bp); zb->zb_psize += BP_GET_PSIZE(bp); zb->zb_count++; /* * The histogram is only big enough to record blocks up to * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, * "other", bucket. */ int idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); zb->zb_psize_histogram[idx]++; zb->zb_gangs += BP_COUNT_GANG(bp); switch (BP_GET_NDVAS(bp)) { case 2: if (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) zb->zb_ditto_samevdev++; break; case 3: equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[1])) + (DVA_GET_VDEV(&bp->blk_dva[0]) == DVA_GET_VDEV(&bp->blk_dva[2])) + (DVA_GET_VDEV(&bp->blk_dva[1]) == DVA_GET_VDEV(&bp->blk_dva[2])); if (equal != 0) zb->zb_ditto_samevdev++; break; } } if (BP_IS_EMBEDDED(bp)) { zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] [BPE_GET_PSIZE(bp)]++; return; } if (dump_opt['L']) return; if (BP_GET_DEDUP(bp)) { ddt_t *ddt; ddt_entry_t *dde; ddt = ddt_select(zcb->zcb_spa, bp); ddt_enter(ddt); dde = ddt_lookup(ddt, bp, B_FALSE); if (dde == NULL) { refcnt = 0; } else { ddt_phys_t *ddp = ddt_phys_select(dde, bp); ddt_phys_decref(ddp); refcnt = ddp->ddp_refcnt; if (ddt_phys_total_refcnt(dde) == 0) ddt_remove(ddt, dde); } ddt_exit(ddt); } VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, refcnt ? 0 : spa_first_txg(zcb->zcb_spa), bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); } static void zdb_blkptr_done(zio_t *zio) { spa_t *spa = zio->io_spa; blkptr_t *bp = zio->io_bp; int ioerr = zio->io_error; zdb_cb_t *zcb = zio->io_private; zbookmark_phys_t *zb = &zio->io_bookmark; zio_data_buf_free(zio->io_data, zio->io_size); mutex_enter(&spa->spa_scrub_lock); spa->spa_scrub_inflight--; cv_broadcast(&spa->spa_scrub_io_cv); if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { char blkbuf[BP_SPRINTF_LEN]; zcb->zcb_haderrors = 1; zcb->zcb_errors[ioerr]++; if (dump_opt['b'] >= 2) snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); else blkbuf[0] = '\0'; (void) printf("zdb_blkptr_cb: " "Got error %d reading " "<%llu, %llu, %lld, %llx> %s -- skipping\n", ioerr, (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid, blkbuf); } mutex_exit(&spa->spa_scrub_lock); } static int zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { zdb_cb_t *zcb = arg; dmu_object_type_t type; boolean_t is_metadata; if (bp == NULL) return (0); if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("objset %llu object %llu " "level %lld offset 0x%llx %s\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object, (longlong_t)zb->zb_level, (u_longlong_t)blkid2offset(dnp, bp, zb), blkbuf); } if (BP_IS_HOLE(bp)) return (0); type = BP_GET_TYPE(bp); zdb_count_block(zcb, zilog, bp, (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); if (!BP_IS_EMBEDDED(bp) && (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { size_t size = BP_GET_PSIZE(bp); void *data = zio_data_buf_alloc(size); int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; /* If it's an intent log block, failure is expected. */ if (zb->zb_level == ZB_ZIL_LEVEL) flags |= ZIO_FLAG_SPECULATIVE; mutex_enter(&spa->spa_scrub_lock); while (spa->spa_scrub_inflight > max_inflight) cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); spa->spa_scrub_inflight++; mutex_exit(&spa->spa_scrub_lock); zio_nowait(zio_read(NULL, spa, bp, data, size, zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); } zcb->zcb_readfails = 0; /* only call gethrtime() every 100 blocks */ static int iters; if (++iters > 100) iters = 0; else return (0); if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { uint64_t now = gethrtime(); char buf[10]; uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; int kb_per_sec = 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); int sec_remaining = (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; zfs_nicenum(bytes, buf, sizeof (buf)); (void) fprintf(stderr, "\r%5s completed (%4dMB/s) " "estimated time remaining: %uhr %02umin %02usec ", buf, kb_per_sec / 1024, sec_remaining / 60 / 60, sec_remaining / 60 % 60, sec_remaining % 60); zcb->zcb_lastprint = now; } return (0); } static void zdb_leak(void *arg, uint64_t start, uint64_t size) { vdev_t *vd = arg; (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); } static metaslab_ops_t zdb_metaslab_ops = { NULL /* alloc */ }; static void zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) { ddt_bookmark_t ddb = { 0 }; ddt_entry_t dde; int error; int p; while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { blkptr_t blk; ddt_phys_t *ddp = dde.dde_phys; if (ddb.ddb_class == DDT_CLASS_UNIQUE) return; ASSERT(ddt_phys_total_refcnt(&dde) > 1); for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { if (ddp->ddp_phys_birth == 0) continue; ddt_bp_create(ddb.ddb_checksum, &dde.dde_key, ddp, &blk); if (p == DDT_PHYS_DITTO) { zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); } else { zcb->zcb_dedup_asize += BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); zcb->zcb_dedup_blocks++; } } if (!dump_opt['L']) { ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; ddt_enter(ddt); VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); ddt_exit(ddt); } } ASSERT(error == ENOENT); } static void zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) { zcb->zcb_spa = spa; uint64_t c, m; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); metaslab_unload(msp); /* * For leak detection, we overload the metaslab * ms_tree to contain allocated segments * instead of free segments. As a result, * we can't use the normal metaslab_load/unload * interfaces. */ if (msp->ms_sm != NULL) { (void) fprintf(stderr, "\rloading space map for " "vdev %llu of %llu, " "metaslab %llu of %llu ...", (longlong_t)c, (longlong_t)rvd->vdev_children, (longlong_t)m, (longlong_t)vd->vdev_ms_count); msp->ms_ops = &zdb_metaslab_ops; /* * We don't want to spend the CPU * manipulating the size-ordered * tree, so clear the range_tree * ops. */ msp->ms_tree->rt_ops = NULL; VERIFY0(space_map_load(msp->ms_sm, msp->ms_tree, SM_ALLOC)); msp->ms_loaded = B_TRUE; } mutex_exit(&msp->ms_lock); } } (void) fprintf(stderr, "\n"); } spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); zdb_ddt_leak_init(spa, zcb); spa_config_exit(spa, SCL_CONFIG, FTAG); } static void zdb_leak_fini(spa_t *spa) { int c, m; if (!dump_opt['L']) { vdev_t *rvd = spa->spa_root_vdev; for (c = 0; c < rvd->vdev_children; c++) { vdev_t *vd = rvd->vdev_child[c]; for (m = 0; m < vd->vdev_ms_count; m++) { metaslab_t *msp = vd->vdev_ms[m]; mutex_enter(&msp->ms_lock); /* * The ms_tree has been overloaded to * contain allocated segments. Now that we * finished traversing all blocks, any * block that remains in the ms_tree * represents an allocated block that we * did not claim during the traversal. * Claimed blocks would have been removed * from the ms_tree. */ range_tree_vacate(msp->ms_tree, zdb_leak, vd); msp->ms_loaded = B_FALSE; mutex_exit(&msp->ms_lock); } } } } /* ARGSUSED */ static int count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) { zdb_cb_t *zcb = arg; if (dump_opt['b'] >= 5) { char blkbuf[BP_SPRINTF_LEN]; snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("[%s] %s\n", "deferred free", blkbuf); } zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); return (0); } static int dump_block_stats(spa_t *spa) { zdb_cb_t zcb; zdb_blkstats_t *zb, *tzb; uint64_t norm_alloc, norm_space, total_alloc, total_found; int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD; boolean_t leaks = B_FALSE; int e, c; bp_embedded_type_t i; (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", (dump_opt['c'] == 1) ? "metadata " : "", dump_opt['c'] ? "checksums " : "", (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", !dump_opt['L'] ? "nothing leaked " : ""); /* * Load all space maps as SM_ALLOC maps, then traverse the pool * claiming each block we discover. If the pool is perfectly * consistent, the space maps will be empty when we're done. * Anything left over is a leak; any block we can't claim (because * it's not part of any space map) is a double allocation, * reference to a freed block, or an unclaimed log block. */ bzero(&zcb, sizeof (zdb_cb_t)); zdb_leak_init(spa, &zcb); /* * If there's a deferred-free bplist, process that first. */ (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, count_block_cb, &zcb, NULL); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, count_block_cb, &zcb, NULL); } if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, &zcb, NULL)); } if (dump_opt['c'] > 1) flags |= TRAVERSE_PREFETCH_DATA; zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); zcb.zcb_start = zcb.zcb_lastprint = gethrtime(); zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); /* * If we've traversed the data blocks then we need to wait for those * I/Os to complete. We leverage "The Godfather" zio to wait on * all async I/Os to complete. */ if (dump_opt['c']) { for (c = 0; c < max_ncpus; c++) { (void) zio_wait(spa->spa_async_zio_root[c]); spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); } } if (zcb.zcb_haderrors) { (void) printf("\nError counts:\n\n"); (void) printf("\t%5s %s\n", "errno", "count"); for (e = 0; e < 256; e++) { if (zcb.zcb_errors[e] != 0) { (void) printf("\t%5d %llu\n", e, (u_longlong_t)zcb.zcb_errors[e]); } } } /* * Report any leaked segments. */ zdb_leak_fini(spa); tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); norm_space = metaslab_class_get_space(spa_normal_class(spa)); total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa)); total_found = tzb->zb_asize - zcb.zcb_dedup_asize; if (total_found == total_alloc) { if (!dump_opt['L']) (void) printf("\n\tNo leaks (block sum matches space" " maps exactly)\n"); } else { (void) printf("block traversal size %llu != alloc %llu " "(%s %lld)\n", (u_longlong_t)total_found, (u_longlong_t)total_alloc, (dump_opt['L']) ? "unreachable" : "leaked", (longlong_t)(total_alloc - total_found)); leaks = B_TRUE; } if (tzb->zb_count == 0) return (2); (void) printf("\n"); (void) printf("\tbp count: %10llu\n", (u_longlong_t)tzb->zb_count); (void) printf("\tganged count: %10llu\n", (longlong_t)tzb->zb_gangs); (void) printf("\tbp logical: %10llu avg: %6llu\n", (u_longlong_t)tzb->zb_lsize, (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); (void) printf("\tbp physical: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_psize, (u_longlong_t)(tzb->zb_psize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_psize); (void) printf("\tbp allocated: %10llu avg:" " %6llu compression: %6.2f\n", (u_longlong_t)tzb->zb_asize, (u_longlong_t)(tzb->zb_asize / tzb->zb_count), (double)tzb->zb_lsize / tzb->zb_asize); (void) printf("\tbp deduped: %10llu ref>1:" " %6llu deduplication: %6.2f\n", (u_longlong_t)zcb.zcb_dedup_asize, (u_longlong_t)zcb.zcb_dedup_blocks, (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); (void) printf("\tSPA allocated: %10llu used: %5.2f%%\n", (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { if (zcb.zcb_embedded_blocks[i] == 0) continue; (void) printf("\n"); (void) printf("\tadditional, non-pointer bps of type %u: " "%10llu\n", i, (u_longlong_t)zcb.zcb_embedded_blocks[i]); if (dump_opt['b'] >= 3) { (void) printf("\t number of (compressed) bytes: " "number of bps\n"); dump_histogram(zcb.zcb_embedded_histogram[i], sizeof (zcb.zcb_embedded_histogram[i]) / sizeof (zcb.zcb_embedded_histogram[i][0]), 0); } } if (tzb->zb_ditto_samevdev != 0) { (void) printf("\tDittoed blocks on same vdev: %llu\n", (longlong_t)tzb->zb_ditto_samevdev); } if (dump_opt['b'] >= 2) { int l, t, level; (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); for (t = 0; t <= ZDB_OT_TOTAL; t++) { char csize[32], lsize[32], psize[32], asize[32]; char avg[32], gang[32]; char *typename; if (t < DMU_OT_NUMTYPES) typename = dmu_ot[t].ot_name; else typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { (void) printf("%6s\t%5s\t%5s\t%5s" "\t%5s\t%5s\t%6s\t%s\n", "-", "-", "-", "-", "-", "-", "-", typename); continue; } for (l = ZB_TOTAL - 1; l >= -1; l--) { level = (l == -1 ? ZB_TOTAL : l); zb = &zcb.zcb_type[level][t]; if (zb->zb_asize == 0) continue; if (dump_opt['b'] < 3 && level != ZB_TOTAL) continue; if (level == 0 && zb->zb_asize == zcb.zcb_type[ZB_TOTAL][t].zb_asize) continue; zdb_nicenum(zb->zb_count, csize); zdb_nicenum(zb->zb_lsize, lsize); zdb_nicenum(zb->zb_psize, psize); zdb_nicenum(zb->zb_asize, asize); zdb_nicenum(zb->zb_asize / zb->zb_count, avg); zdb_nicenum(zb->zb_gangs, gang); (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5.2f\t%6.2f\t", csize, lsize, psize, asize, avg, (double)zb->zb_lsize / zb->zb_psize, 100.0 * zb->zb_asize / tzb->zb_asize); if (level == ZB_TOTAL) (void) printf("%s\n", typename); else (void) printf(" L%d %s\n", level, typename); if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { (void) printf("\t number of ganged " "blocks: %s\n", gang); } if (dump_opt['b'] >= 4) { (void) printf("psize " "(in 512-byte sectors): " "number of blocks\n"); dump_histogram(zb->zb_psize_histogram, PSIZE_HISTO_SIZE, 0); } } } } (void) printf("\n"); if (leaks) return (2); if (zcb.zcb_haderrors) return (3); return (0); } typedef struct zdb_ddt_entry { ddt_key_t zdde_key; uint64_t zdde_ref_blocks; uint64_t zdde_ref_lsize; uint64_t zdde_ref_psize; uint64_t zdde_ref_dsize; avl_node_t zdde_node; } zdb_ddt_entry_t; /* ARGSUSED */ static int zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) { avl_tree_t *t = arg; avl_index_t where; zdb_ddt_entry_t *zdde, zdde_search; if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) return (0); if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { (void) printf("traversing objset %llu, %llu objects, " "%lu blocks so far\n", (u_longlong_t)zb->zb_objset, (u_longlong_t)BP_GET_FILL(bp), avl_numnodes(t)); } if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) return (0); ddt_key_fill(&zdde_search.zdde_key, bp); zdde = avl_find(t, &zdde_search, &where); if (zdde == NULL) { zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); zdde->zdde_key = zdde_search.zdde_key; avl_insert(t, zdde, where); } zdde->zdde_ref_blocks += 1; zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); zdde->zdde_ref_psize += BP_GET_PSIZE(bp); zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); return (0); } static void dump_simulated_ddt(spa_t *spa) { avl_tree_t t; void *cookie = NULL; zdb_ddt_entry_t *zdde; ddt_histogram_t ddh_total; ddt_stat_t dds_total; bzero(&ddh_total, sizeof (ddt_histogram_t)); bzero(&dds_total, sizeof (ddt_stat_t)); avl_create(&t, ddt_entry_compare, sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zdb_ddt_add_cb, &t); spa_config_exit(spa, SCL_CONFIG, FTAG); while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { ddt_stat_t dds; uint64_t refcnt = zdde->zdde_ref_blocks; ASSERT(refcnt != 0); dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; dds.dds_psize = zdde->zdde_ref_psize / refcnt; dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; dds.dds_ref_blocks = zdde->zdde_ref_blocks; dds.dds_ref_lsize = zdde->zdde_ref_lsize; dds.dds_ref_psize = zdde->zdde_ref_psize; dds.dds_ref_dsize = zdde->zdde_ref_dsize; ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], &dds, 0); umem_free(zdde, sizeof (*zdde)); } avl_destroy(&t); ddt_histogram_stat(&dds_total, &ddh_total); (void) printf("Simulated DDT histogram:\n"); zpool_dump_ddt(&dds_total, &ddh_total); dump_dedup_ratio(&dds_total); } static void dump_zpool(spa_t *spa) { dsl_pool_t *dp = spa_get_dsl(spa); int rc = 0; if (dump_opt['S']) { dump_simulated_ddt(spa); return; } if (!dump_opt['e'] && dump_opt['C'] > 1) { (void) printf("\nCached configuration:\n"); dump_nvlist(spa->spa_config, 8); } if (dump_opt['C']) dump_config(spa); if (dump_opt['u']) dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); if (dump_opt['D']) dump_all_ddts(spa); if (dump_opt['d'] > 2 || dump_opt['m']) dump_metaslabs(spa); if (dump_opt['M']) dump_metaslab_groups(spa); if (dump_opt['d'] || dump_opt['i']) { spa_feature_t f; dump_dir(dp->dp_meta_objset); if (dump_opt['d'] >= 3) { dump_full_bpobj(&spa->spa_deferred_bpobj, "Deferred frees", 0); if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { dump_full_bpobj( &spa->spa_dsl_pool->dp_free_bpobj, "Pool snapshot frees", 0); } if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { dump_bptree(spa->spa_meta_objset, spa->spa_dsl_pool->dp_bptree_obj, "Pool dataset frees"); } dump_dtl(spa->spa_root_vdev, 0); } (void) dmu_objset_find(spa_name(spa), dump_one_dir, NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); for (f = 0; f < SPA_FEATURES; f++) { uint64_t refcount; if (!(spa_feature_table[f].fi_flags & ZFEATURE_FLAG_PER_DATASET)) { ASSERT0(dataset_feature_count[f]); continue; } if (feature_get_refcount(spa, &spa_feature_table[f], &refcount) == ENOTSUP) continue; if (dataset_feature_count[f] != refcount) { (void) printf("%s feature refcount mismatch: " "%lld datasets != %lld refcount\n", spa_feature_table[f].fi_uname, (longlong_t)dataset_feature_count[f], (longlong_t)refcount); rc = 2; } else { (void) printf("Verified %s feature refcount " "of %llu is correct\n", spa_feature_table[f].fi_uname, (longlong_t)refcount); } } } if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) rc = dump_block_stats(spa); if (rc == 0) rc = verify_spacemap_refcounts(spa); if (dump_opt['s']) show_pool_stats(spa); if (dump_opt['h']) dump_history(spa); if (rc != 0) exit(rc); } #define ZDB_FLAG_CHECKSUM 0x0001 #define ZDB_FLAG_DECOMPRESS 0x0002 #define ZDB_FLAG_BSWAP 0x0004 #define ZDB_FLAG_GBH 0x0008 #define ZDB_FLAG_INDIRECT 0x0010 #define ZDB_FLAG_PHYS 0x0020 #define ZDB_FLAG_RAW 0x0040 #define ZDB_FLAG_PRINT_BLKPTR 0x0080 int flagbits[256]; static void zdb_print_blkptr(blkptr_t *bp, int flags) { char blkbuf[BP_SPRINTF_LEN]; if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); (void) printf("%s\n", blkbuf); } static void zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) { int i; for (i = 0; i < nbps; i++) zdb_print_blkptr(&bp[i], flags); } static void zdb_dump_gbh(void *buf, int flags) { zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); } static void zdb_dump_block_raw(void *buf, uint64_t size, int flags) { if (flags & ZDB_FLAG_BSWAP) byteswap_uint64_array(buf, size); VERIFY(write(fileno(stdout), buf, size) == size); } static void zdb_dump_block(char *label, void *buf, uint64_t size, int flags) { uint64_t *d = (uint64_t *)buf; int nwords = size / sizeof (uint64_t); int do_bswap = !!(flags & ZDB_FLAG_BSWAP); int i, j; char *hdr, *c; if (do_bswap) hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; else hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); #ifdef _LITTLE_ENDIAN /* correct the endianess */ do_bswap = !do_bswap; #endif for (i = 0; i < nwords; i += 2) { (void) printf("%06llx: %016llx %016llx ", (u_longlong_t)(i * sizeof (uint64_t)), (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); c = (char *)&d[i]; for (j = 0; j < 2 * sizeof (uint64_t); j++) (void) printf("%c", isprint(c[j]) ? c[j] : '.'); (void) printf("\n"); } } /* * There are two acceptable formats: * leaf_name - For example: c1t0d0 or /tmp/ztest.0a * child[.child]* - For example: 0.1.1 * * The second form can be used to specify arbitrary vdevs anywhere * in the heirarchy. For example, in a pool with a mirror of * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . */ static vdev_t * zdb_vdev_lookup(vdev_t *vdev, char *path) { char *s, *p, *q; int i; if (vdev == NULL) return (NULL); /* First, assume the x.x.x.x format */ i = (int)strtoul(path, &s, 10); if (s == path || (s && *s != '.' && *s != '\0')) goto name; if (i < 0 || i >= vdev->vdev_children) return (NULL); vdev = vdev->vdev_child[i]; if (*s == '\0') return (vdev); return (zdb_vdev_lookup(vdev, s+1)); name: for (i = 0; i < vdev->vdev_children; i++) { vdev_t *vc = vdev->vdev_child[i]; if (vc->vdev_path == NULL) { vc = zdb_vdev_lookup(vc, path); if (vc == NULL) continue; else return (vc); } p = strrchr(vc->vdev_path, '/'); p = p ? p + 1 : vc->vdev_path; q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; if (strcmp(vc->vdev_path, path) == 0) return (vc); if (strcmp(p, path) == 0) return (vc); if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) return (vc); } return (NULL); } /* * Read a block from a pool and print it out. The syntax of the * block descriptor is: * * pool:vdev_specifier:offset:size[:flags] * * pool - The name of the pool you wish to read from * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) * offset - offset, in hex, in bytes * size - Amount of data to read, in hex, in bytes * flags - A string of characters specifying options * b: Decode a blkptr at given offset within block * *c: Calculate and display checksums * d: Decompress data before dumping * e: Byteswap data before dumping * g: Display data as a gang block header * i: Display as an indirect block * p: Do I/O to physical offset * r: Dump raw data to stdout * * * = not yet implemented */ static void zdb_read_block(char *thing, spa_t *spa) { blkptr_t blk, *bp = &blk; dva_t *dva = bp->blk_dva; int flags = 0; uint64_t offset = 0, size = 0, psize = 0, lsize = 0, blkptr_offset = 0; zio_t *zio; vdev_t *vd; void *pbuf, *lbuf, *buf; char *s, *p, *dup, *vdev, *flagstr; int i, error; dup = strdup(thing); s = strtok(dup, ":"); vdev = s ? s : ""; s = strtok(NULL, ":"); offset = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); size = strtoull(s ? s : "", NULL, 16); s = strtok(NULL, ":"); flagstr = s ? s : ""; s = NULL; if (size == 0) s = "size must not be zero"; if (!IS_P2ALIGNED(size, DEV_BSIZE)) s = "size must be a multiple of sector size"; if (!IS_P2ALIGNED(offset, DEV_BSIZE)) s = "offset must be a multiple of sector size"; if (s) { (void) printf("Invalid block specifier: %s - %s\n", thing, s); free(dup); return; } for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { for (i = 0; flagstr[i]; i++) { int bit = flagbits[(uchar_t)flagstr[i]]; if (bit == 0) { (void) printf("***Invalid flag: %c\n", flagstr[i]); continue; } flags |= bit; /* If it's not something with an argument, keep going */ if ((bit & (ZDB_FLAG_CHECKSUM | ZDB_FLAG_PRINT_BLKPTR)) == 0) continue; p = &flagstr[i + 1]; if (bit == ZDB_FLAG_PRINT_BLKPTR) { blkptr_offset = strtoull(p, &p, 16); i = p - &flagstr[i + 1]; } if (*p != ':' && *p != '\0') { (void) printf("***Invalid flag arg: '%s'\n", s); free(dup); return; } } } vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); if (vd == NULL) { (void) printf("***Invalid vdev: %s\n", vdev); free(dup); return; } else { if (vd->vdev_path) (void) fprintf(stderr, "Found vdev: %s\n", vd->vdev_path); else (void) fprintf(stderr, "Found vdev type: %s\n", vd->vdev_ops->vdev_op_type); } psize = size; lsize = size; pbuf = umem_alloc_aligned(SPA_MAXBLOCKSIZE, 512, UMEM_NOFAIL); lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); BP_ZERO(bp); DVA_SET_VDEV(&dva[0], vd->vdev_id); DVA_SET_OFFSET(&dva[0], offset); DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); BP_SET_LSIZE(bp, lsize); BP_SET_PSIZE(bp, psize); BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); BP_SET_TYPE(bp, DMU_OT_NONE); BP_SET_LEVEL(bp, 0); BP_SET_DEDUP(bp, 0); BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); zio = zio_root(spa, NULL, NULL, 0); if (vd == vd->vdev_top) { /* * Treat this as a normal block read. */ zio_nowait(zio_read(zio, spa, bp, pbuf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); } else { /* * Treat this as a vdev child I/O. */ zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pbuf, psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL, NULL)); } error = zio_wait(zio); spa_config_exit(spa, SCL_STATE, FTAG); if (error) { (void) printf("Read of %s failed, error: %d\n", thing, error); goto out; } if (flags & ZDB_FLAG_DECOMPRESS) { /* * We don't know how the data was compressed, so just try * every decompress function at every inflated blocksize. */ enum zio_compress c; void *pbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); bcopy(pbuf, pbuf2, psize); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf + psize, SPA_MAXBLOCKSIZE - psize) == 0); VERIFY(random_get_pseudo_bytes((uint8_t *)pbuf2 + psize, SPA_MAXBLOCKSIZE - psize) == 0); for (lsize = SPA_MAXBLOCKSIZE; lsize > psize; lsize -= SPA_MINBLOCKSIZE) { for (c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) { if (zio_decompress_data(c, pbuf, lbuf, psize, lsize) == 0 && zio_decompress_data(c, pbuf2, lbuf2, psize, lsize) == 0 && bcmp(lbuf, lbuf2, lsize) == 0) break; } if (c != ZIO_COMPRESS_FUNCTIONS) break; lsize -= SPA_MINBLOCKSIZE; } umem_free(pbuf2, SPA_MAXBLOCKSIZE); umem_free(lbuf2, SPA_MAXBLOCKSIZE); if (lsize <= psize) { (void) printf("Decompress of %s failed\n", thing); goto out; } buf = lbuf; size = lsize; } else { buf = pbuf; size = psize; } if (flags & ZDB_FLAG_PRINT_BLKPTR) zdb_print_blkptr((blkptr_t *)(void *) ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); else if (flags & ZDB_FLAG_RAW) zdb_dump_block_raw(buf, size, flags); else if (flags & ZDB_FLAG_INDIRECT) zdb_dump_indirect((blkptr_t *)buf, size / sizeof (blkptr_t), flags); else if (flags & ZDB_FLAG_GBH) zdb_dump_gbh(buf, flags); else zdb_dump_block(thing, buf, size, flags); out: umem_free(pbuf, SPA_MAXBLOCKSIZE); umem_free(lbuf, SPA_MAXBLOCKSIZE); free(dup); } static boolean_t pool_match(nvlist_t *cfg, char *tgt) { uint64_t v, guid = strtoull(tgt, NULL, 0); char *s; if (guid != 0) { if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) return (v == guid); } else { if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) return (strcmp(s, tgt) == 0); } return (B_FALSE); } static char * find_zpool(char **target, nvlist_t **configp, int dirc, char **dirv) { nvlist_t *pools; nvlist_t *match = NULL; char *name = NULL; char *sepp = NULL; char sep = 0; int count = 0; importargs_t args = { 0 }; args.paths = dirc; args.path = dirv; args.can_be_active = B_TRUE; if ((sepp = strpbrk(*target, "/@")) != NULL) { sep = *sepp; *sepp = '\0'; } pools = zpool_search_import(g_zfs, &args); if (pools != NULL) { nvpair_t *elem = NULL; while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { verify(nvpair_value_nvlist(elem, configp) == 0); if (pool_match(*configp, *target)) { count++; if (match != NULL) { /* print previously found config */ if (name != NULL) { (void) printf("%s\n", name); dump_nvlist(match, 8); name = NULL; } (void) printf("%s\n", nvpair_name(elem)); dump_nvlist(*configp, 8); } else { match = *configp; name = nvpair_name(elem); } } } } if (count > 1) (void) fatal("\tMatched %d pools - use pool GUID " "instead of pool name or \n" "\tpool name part of a dataset name to select pool", count); if (sepp) *sepp = sep; /* * If pool GUID was specified for pool id, replace it with pool name */ if (name && (strstr(*target, name) != *target)) { int sz = 1 + strlen(name) + ((sepp) ? strlen(sepp) : 0); *target = umem_alloc(sz, UMEM_NOFAIL); (void) snprintf(*target, sz, "%s%s", name, sepp ? sepp : ""); } *configp = name ? match : NULL; return (name); } int main(int argc, char **argv) { int i, c; struct rlimit rl = { 1024, 1024 }; spa_t *spa = NULL; objset_t *os = NULL; int dump_all = 1; int verbose = 0; int error = 0; char **searchdirs = NULL; int nsearch = 0; char *target; nvlist_t *policy = NULL; uint64_t max_txg = UINT64_MAX; int flags = ZFS_IMPORT_MISSING_LOG; int rewind = ZPOOL_NEVER_REWIND; char *spa_config_path_env; boolean_t target_is_spa = B_TRUE; (void) setrlimit(RLIMIT_NOFILE, &rl); (void) enable_extended_FILE_stdio(-1, -1); dprintf_setup(&argc, argv); /* * If there is an environment variable SPA_CONFIG_PATH it overrides * default spa_config_path setting. If -U flag is specified it will * override this environment variable settings once again. */ spa_config_path_env = getenv("SPA_CONFIG_PATH"); if (spa_config_path_env != NULL) spa_config_path = spa_config_path_env; while ((c = getopt(argc, argv, "bcdhilmMI:suCDRSAFLXx:evp:t:U:PV")) != -1) { switch (c) { case 'b': case 'c': case 'd': case 'h': case 'i': case 'l': case 'm': case 's': case 'u': case 'C': case 'D': case 'M': case 'R': case 'S': dump_opt[c]++; dump_all = 0; break; case 'A': case 'F': case 'L': case 'X': case 'e': case 'P': dump_opt[c]++; break; case 'V': flags |= ZFS_IMPORT_VERBATIM; break; case 'I': max_inflight = strtoull(optarg, NULL, 0); if (max_inflight == 0) { (void) fprintf(stderr, "maximum number " "of inflight I/Os must be greater " "than 0\n"); usage(); } break; case 'p': if (searchdirs == NULL) { searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); } else { char **tmp = umem_alloc((nsearch + 1) * sizeof (char *), UMEM_NOFAIL); bcopy(searchdirs, tmp, nsearch * sizeof (char *)); umem_free(searchdirs, nsearch * sizeof (char *)); searchdirs = tmp; } searchdirs[nsearch++] = optarg; break; case 'x': vn_dumpdir = optarg; break; case 't': max_txg = strtoull(optarg, NULL, 0); if (max_txg < TXG_INITIAL) { (void) fprintf(stderr, "incorrect txg " "specified: %s\n", optarg); usage(); } break; case 'U': spa_config_path = optarg; break; case 'v': verbose++; break; default: usage(); break; } } if (!dump_opt['e'] && searchdirs != NULL) { (void) fprintf(stderr, "-p option requires use of -e\n"); usage(); } #if defined(_LP64) /* * ZDB does not typically re-read blocks; therefore limit the ARC * to 256 MB, which can be used entirely for metadata. */ zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; #endif /* * "zdb -c" uses checksum-verifying scrub i/os which are async reads. * "zdb -b" uses traversal prefetch which uses async reads. * For good performance, let several of them be active at once. */ zfs_vdev_async_read_max_active = 10; kernel_init(FREAD); if ((g_zfs = libzfs_init()) == NULL) { (void) fprintf(stderr, "%s", libzfs_error_init(errno)); return (1); } if (dump_all) verbose = MAX(verbose, 1); for (c = 0; c < 256; c++) { if (dump_all && !strchr("elAFLRSXP", c)) dump_opt[c] = 1; if (dump_opt[c]) dump_opt[c] += verbose; } aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); zfs_recover = (dump_opt['A'] > 1); argc -= optind; argv += optind; if (argc < 2 && dump_opt['R']) usage(); if (argc < 1) { if (!dump_opt['e'] && dump_opt['C']) { dump_cachefile(spa_config_path); return (0); } usage(); } if (dump_opt['l']) { dump_label(argv[0]); return (0); } if (dump_opt['X'] || dump_opt['F']) rewind = ZPOOL_DO_REWIND | (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || nvlist_add_uint64(policy, ZPOOL_REWIND_REQUEST_TXG, max_txg) != 0 || nvlist_add_uint32(policy, ZPOOL_REWIND_REQUEST, rewind) != 0) fatal("internal error: %s", strerror(ENOMEM)); error = 0; target = argv[0]; if (dump_opt['e']) { nvlist_t *cfg = NULL; char *name = find_zpool(&target, &cfg, nsearch, searchdirs); error = ENOENT; if (name) { if (dump_opt['C'] > 1) { (void) printf("\nConfiguration for import:\n"); dump_nvlist(cfg, 8); } if (nvlist_add_nvlist(cfg, ZPOOL_REWIND_POLICY, policy) != 0) { fatal("can't open '%s': %s", target, strerror(ENOMEM)); } error = spa_import(name, cfg, NULL, flags); } } if (strpbrk(target, "/@") != NULL) { size_t targetlen; target_is_spa = B_FALSE; targetlen = strlen(target); if (targetlen && target[targetlen - 1] == '/') target[targetlen - 1] = '\0'; } if (error == 0) { if (target_is_spa || dump_opt['R']) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); if (error) { /* * If we're missing the log device then * try opening the pool after clearing the * log state. */ mutex_enter(&spa_namespace_lock); if ((spa = spa_lookup(target)) != NULL && spa->spa_log_state == SPA_LOG_MISSING) { spa->spa_log_state = SPA_LOG_CLEAR; error = 0; } mutex_exit(&spa_namespace_lock); if (!error) { error = spa_open_rewind(target, &spa, FTAG, policy, NULL); } } } else { error = dmu_objset_own(target, DMU_OST_ANY, B_TRUE, FTAG, &os); } } nvlist_free(policy); if (error) fatal("can't open '%s': %s", target, strerror(error)); argv++; argc--; if (!dump_opt['R']) { if (argc > 0) { zopt_objects = argc; zopt_object = calloc(zopt_objects, sizeof (uint64_t)); for (i = 0; i < zopt_objects; i++) { errno = 0; zopt_object[i] = strtoull(argv[i], NULL, 0); if (zopt_object[i] == 0 && errno != 0) fatal("bad number %s: %s", argv[i], strerror(errno)); } } if (os != NULL) { dump_dir(os); } else if (zopt_objects > 0 && !dump_opt['m']) { dump_dir(spa->spa_meta_objset); } else { dump_zpool(spa); } } else { flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; flagbits['c'] = ZDB_FLAG_CHECKSUM; flagbits['d'] = ZDB_FLAG_DECOMPRESS; flagbits['e'] = ZDB_FLAG_BSWAP; flagbits['g'] = ZDB_FLAG_GBH; flagbits['i'] = ZDB_FLAG_INDIRECT; flagbits['p'] = ZDB_FLAG_PHYS; flagbits['r'] = ZDB_FLAG_RAW; for (i = 0; i < argc; i++) zdb_read_block(argv[i], spa); } (os != NULL) ? dmu_objset_disown(os, FTAG) : spa_close(spa, FTAG); fuid_table_destroy(); sa_loaded = B_FALSE; libzfs_fini(g_zfs); kernel_fini(); return (0); }