/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * Unicode encoding conversion functions among UTF-8, UTF-16, and UTF-32. * (PSARC/2005/446, PSARC/2007/038, PSARC/2007/517) * Man pages: uconv_u16tou32(9F), uconv_u16tou8(9F), uconv_u32tou16(9F), * uconv_u32tou8(9F), uconv_u8tou16(9F), and uconv_u8tou32(9F). See also * the section 3C man pages. * Interface stability: Committed */ #include #ifdef _KERNEL #include #include #include #include #include #include #else #include #endif /* _KERNEL */ #include #include /* * The max and min values of high and low surrogate pairs of UTF-16, * UTF-16 bit shift value, bit mask, and starting value outside of BMP. */ #define UCONV_U16_HI_MIN (0xd800U) #define UCONV_U16_HI_MAX (0xdbffU) #define UCONV_U16_LO_MIN (0xdc00U) #define UCONV_U16_LO_MAX (0xdfffU) #define UCONV_U16_BIT_SHIFT (0x0400U) #define UCONV_U16_BIT_MASK (0x0fffffU) #define UCONV_U16_START (0x010000U) /* The maximum value of Unicode coding space and ASCII coding space. */ #define UCONV_UNICODE_MAX (0x10ffffU) #define UCONV_ASCII_MAX (0x7fU) /* The mask values for input and output endians. */ #define UCONV_IN_ENDIAN_MASKS (UCONV_IN_BIG_ENDIAN | UCONV_IN_LITTLE_ENDIAN) #define UCONV_OUT_ENDIAN_MASKS (UCONV_OUT_BIG_ENDIAN | UCONV_OUT_LITTLE_ENDIAN) /* Native and reversed endian macros. */ #ifdef _BIG_ENDIAN #define UCONV_IN_NAT_ENDIAN UCONV_IN_BIG_ENDIAN #define UCONV_IN_REV_ENDIAN UCONV_IN_LITTLE_ENDIAN #define UCONV_OUT_NAT_ENDIAN UCONV_OUT_BIG_ENDIAN #define UCONV_OUT_REV_ENDIAN UCONV_OUT_LITTLE_ENDIAN #else #define UCONV_IN_NAT_ENDIAN UCONV_IN_LITTLE_ENDIAN #define UCONV_IN_REV_ENDIAN UCONV_IN_BIG_ENDIAN #define UCONV_OUT_NAT_ENDIAN UCONV_OUT_LITTLE_ENDIAN #define UCONV_OUT_REV_ENDIAN UCONV_OUT_BIG_ENDIAN #endif /* _BIG_ENDIAN */ /* The Byte Order Mark (BOM) character in normal and reversed byte orderings. */ #define UCONV_BOM_NORMAL (0xfeffU) #define UCONV_BOM_SWAPPED (0xfffeU) #define UCONV_BOM_SWAPPED_32 (0xfffe0000U) /* UTF-32 boundaries based on UTF-8 character byte lengths. */ #define UCONV_U8_ONE_BYTE (0x7fU) #define UCONV_U8_TWO_BYTES (0x7ffU) #define UCONV_U8_THREE_BYTES (0xffffU) #define UCONV_U8_FOUR_BYTES (0x10ffffU) /* The common minimum and maximum values at the UTF-8 character bytes. */ #define UCONV_U8_BYTE_MIN (0x80U) #define UCONV_U8_BYTE_MAX (0xbfU) /* * The following "6" and "0x3f" came from "10xx xxxx" bit representation of * UTF-8 character bytes. */ #define UCONV_U8_BIT_SHIFT 6 #define UCONV_U8_BIT_MASK 0x3f /* * The following vector shows remaining bytes in a UTF-8 character. * Index will be the first byte of the character. */ static const uchar_t remaining_bytes_tbl[0x100] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF */ 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF */ 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* * The following is a vector of bit-masks to get used bits in * the first byte of a UTF-8 character. Index is remaining bytes at above of * the character. */ #ifdef _KERNEL const uchar_t u8_masks_tbl[6] = { 0x00, 0x1f, 0x0f, 0x07, 0x03, 0x01 }; #else static const uchar_t u8_masks_tbl[6] = { 0x00, 0x1f, 0x0f, 0x07, 0x03, 0x01 }; #endif /* _KERNEL */ /* * The following two vectors are to provide valid minimum and * maximum values for the 2'nd byte of a multibyte UTF-8 character for * better illegal sequence checking. The index value must be the value of * the first byte of the UTF-8 character. */ static const uchar_t valid_min_2nd_byte[0x100] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* C0 C1 C2 C3 C4 C5 C6 C7 */ 0, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, /* C8 C9 CA CB CC CD CE CF */ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, /* D0 D1 D2 D3 D4 D5 D6 D7 */ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, /* D8 D9 DA DB DC DD DE DF */ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, /* E0 E1 E2 E3 E4 E5 E6 E7 */ 0xa0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, /* E8 E9 EA EB EC ED EE EF */ 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, /* F0 F1 F2 F3 F4 F5 F6 F7 */ 0x90, 0x80, 0x80, 0x80, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uchar_t valid_max_2nd_byte[0x100] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* C0 C1 C2 C3 C4 C5 C6 C7 */ 0, 0, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, /* C8 C9 CA CB CC CD CE CF */ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, /* D0 D1 D2 D3 D4 D5 D6 D7 */ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, /* D8 D9 DA DB DC DD DE DF */ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, /* E0 E1 E2 E3 E4 E5 E6 E7 */ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, /* E8 E9 EA EB EC ED EE EF */ 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0x9f, 0xbf, 0xbf, /* F0 F1 F2 F3 F4 F5 F6 F7 */ 0xbf, 0xbf, 0xbf, 0xbf, 0x8f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static int check_endian(int flag, int *in, int *out) { *in = flag & UCONV_IN_ENDIAN_MASKS; /* You cannot have both. */ if (*in == UCONV_IN_ENDIAN_MASKS) return (EBADF); if (*in == 0) *in = UCONV_IN_NAT_ENDIAN; *out = flag & UCONV_OUT_ENDIAN_MASKS; /* You cannot have both. */ if (*out == UCONV_OUT_ENDIAN_MASKS) return (EBADF); if (*out == 0) *out = UCONV_OUT_NAT_ENDIAN; return (0); } static boolean_t check_bom16(const uint16_t *u16s, size_t u16l, int *in) { if (u16l > 0) { if (*u16s == UCONV_BOM_NORMAL) { *in = UCONV_IN_NAT_ENDIAN; return (B_TRUE); } if (*u16s == UCONV_BOM_SWAPPED) { *in = UCONV_IN_REV_ENDIAN; return (B_TRUE); } } return (B_FALSE); } static boolean_t check_bom32(const uint32_t *u32s, size_t u32l, int *in) { if (u32l > 0) { if (*u32s == UCONV_BOM_NORMAL) { *in = UCONV_IN_NAT_ENDIAN; return (B_TRUE); } if (*u32s == UCONV_BOM_SWAPPED_32) { *in = UCONV_IN_REV_ENDIAN; return (B_TRUE); } } return (B_FALSE); } int uconv_u16tou32(const uint16_t *u16s, size_t *utf16len, uint32_t *u32s, size_t *utf32len, int flag) { int inendian; int outendian; size_t u16l; size_t u32l; uint32_t hi; uint32_t lo; boolean_t do_not_ignore_null; /* * Do preliminary validity checks on parameters and collect info on * endians. */ if (u16s == NULL || utf16len == NULL) return (EILSEQ); if (u32s == NULL || utf32len == NULL) return (E2BIG); if (check_endian(flag, &inendian, &outendian) != 0) return (EBADF); /* * Initialize input and output parameter buffer indices and * temporary variables. */ u16l = u32l = 0; hi = 0; do_not_ignore_null = ((flag & UCONV_IGNORE_NULL) == 0); /* * Check on the BOM at the beginning of the input buffer if required * and if there is indeed one, process it. */ if ((flag & UCONV_IN_ACCEPT_BOM) && check_bom16(u16s, *utf16len, &inendian)) u16l++; /* * Reset inendian and outendian so that after this point, those can be * used as condition values. */ inendian &= UCONV_IN_NAT_ENDIAN; outendian &= UCONV_OUT_NAT_ENDIAN; /* * If there is something in the input buffer and if necessary and * requested, save the BOM at the output buffer. */ if (*utf16len > 0 && *utf32len > 0 && (flag & UCONV_OUT_EMIT_BOM)) u32s[u32l++] = (outendian) ? UCONV_BOM_NORMAL : UCONV_BOM_SWAPPED_32; /* * Do conversion; if encounter a surrogate pair, assemble high and * low pair values to form a UTF-32 character. If a half of a pair * exists alone, then, either it is an illegal (EILSEQ) or * invalid (EINVAL) value. */ for (; u16l < *utf16len; u16l++) { if (u16s[u16l] == 0 && do_not_ignore_null) break; lo = (uint32_t)((inendian) ? u16s[u16l] : BSWAP_16(u16s[u16l])); if (lo >= UCONV_U16_HI_MIN && lo <= UCONV_U16_HI_MAX) { if (hi) return (EILSEQ); hi = lo; continue; } else if (lo >= UCONV_U16_LO_MIN && lo <= UCONV_U16_LO_MAX) { if (! hi) return (EILSEQ); lo = (((hi - UCONV_U16_HI_MIN) * UCONV_U16_BIT_SHIFT + lo - UCONV_U16_LO_MIN) & UCONV_U16_BIT_MASK) + UCONV_U16_START; hi = 0; } else if (hi) { return (EILSEQ); } if (u32l >= *utf32len) return (E2BIG); u32s[u32l++] = (outendian) ? lo : BSWAP_32(lo); } /* * If high half didn't see low half, then, it's most likely the input * parameter is incomplete. */ if (hi) return (EINVAL); /* * Save the number of consumed and saved characters. They do not * include terminating NULL character (U+0000) at the end of * the input buffer (even when UCONV_IGNORE_NULL isn't specified and * the input buffer length is big enough to include the terminating * NULL character). */ *utf16len = u16l; *utf32len = u32l; return (0); } int uconv_u16tou8(const uint16_t *u16s, size_t *utf16len, uchar_t *u8s, size_t *utf8len, int flag) { int inendian; int outendian; size_t u16l; size_t u8l; uint32_t hi; uint32_t lo; boolean_t do_not_ignore_null; if (u16s == NULL || utf16len == NULL) return (EILSEQ); if (u8s == NULL || utf8len == NULL) return (E2BIG); if (check_endian(flag, &inendian, &outendian) != 0) return (EBADF); u16l = u8l = 0; hi = 0; do_not_ignore_null = ((flag & UCONV_IGNORE_NULL) == 0); if ((flag & UCONV_IN_ACCEPT_BOM) && check_bom16(u16s, *utf16len, &inendian)) u16l++; inendian &= UCONV_IN_NAT_ENDIAN; for (; u16l < *utf16len; u16l++) { if (u16s[u16l] == 0 && do_not_ignore_null) break; lo = (uint32_t)((inendian) ? u16s[u16l] : BSWAP_16(u16s[u16l])); if (lo >= UCONV_U16_HI_MIN && lo <= UCONV_U16_HI_MAX) { if (hi) return (EILSEQ); hi = lo; continue; } else if (lo >= UCONV_U16_LO_MIN && lo <= UCONV_U16_LO_MAX) { if (! hi) return (EILSEQ); lo = (((hi - UCONV_U16_HI_MIN) * UCONV_U16_BIT_SHIFT + lo - UCONV_U16_LO_MIN) & UCONV_U16_BIT_MASK) + UCONV_U16_START; hi = 0; } else if (hi) { return (EILSEQ); } /* * Now we convert a UTF-32 character into a UTF-8 character. * Unicode coding space is between U+0000 and U+10FFFF; * anything bigger is an illegal character. */ if (lo <= UCONV_U8_ONE_BYTE) { if (u8l >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)lo; } else if (lo <= UCONV_U8_TWO_BYTES) { if ((u8l + 1) >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)(0xc0 | ((lo & 0x07c0) >> 6)); u8s[u8l++] = (uchar_t)(0x80 | (lo & 0x003f)); } else if (lo <= UCONV_U8_THREE_BYTES) { if ((u8l + 2) >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)(0xe0 | ((lo & 0x0f000) >> 12)); u8s[u8l++] = (uchar_t)(0x80 | ((lo & 0x00fc0) >> 6)); u8s[u8l++] = (uchar_t)(0x80 | (lo & 0x0003f)); } else if (lo <= UCONV_U8_FOUR_BYTES) { if ((u8l + 3) >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)(0xf0 | ((lo & 0x01c0000) >> 18)); u8s[u8l++] = (uchar_t)(0x80 | ((lo & 0x003f000) >> 12)); u8s[u8l++] = (uchar_t)(0x80 | ((lo & 0x0000fc0) >> 6)); u8s[u8l++] = (uchar_t)(0x80 | (lo & 0x000003f)); } else { return (EILSEQ); } } if (hi) return (EINVAL); *utf16len = u16l; *utf8len = u8l; return (0); } int uconv_u32tou16(const uint32_t *u32s, size_t *utf32len, uint16_t *u16s, size_t *utf16len, int flag) { int inendian; int outendian; size_t u16l; size_t u32l; uint32_t hi; uint32_t lo; boolean_t do_not_ignore_null; if (u32s == NULL || utf32len == NULL) return (EILSEQ); if (u16s == NULL || utf16len == NULL) return (E2BIG); if (check_endian(flag, &inendian, &outendian) != 0) return (EBADF); u16l = u32l = 0; do_not_ignore_null = ((flag & UCONV_IGNORE_NULL) == 0); if ((flag & UCONV_IN_ACCEPT_BOM) && check_bom32(u32s, *utf32len, &inendian)) u32l++; inendian &= UCONV_IN_NAT_ENDIAN; outendian &= UCONV_OUT_NAT_ENDIAN; if (*utf32len > 0 && *utf16len > 0 && (flag & UCONV_OUT_EMIT_BOM)) u16s[u16l++] = (outendian) ? UCONV_BOM_NORMAL : UCONV_BOM_SWAPPED; for (; u32l < *utf32len; u32l++) { if (u32s[u32l] == 0 && do_not_ignore_null) break; hi = (inendian) ? u32s[u32l] : BSWAP_32(u32s[u32l]); /* * Anything bigger than the Unicode coding space, i.e., * Unicode scalar value bigger than U+10FFFF, is an illegal * character. */ if (hi > UCONV_UNICODE_MAX) return (EILSEQ); /* * Anything bigger than U+FFFF must be converted into * a surrogate pair in UTF-16. */ if (hi >= UCONV_U16_START) { lo = ((hi - UCONV_U16_START) % UCONV_U16_BIT_SHIFT) + UCONV_U16_LO_MIN; hi = ((hi - UCONV_U16_START) / UCONV_U16_BIT_SHIFT) + UCONV_U16_HI_MIN; if ((u16l + 1) >= *utf16len) return (E2BIG); if (outendian) { u16s[u16l++] = (uint16_t)hi; u16s[u16l++] = (uint16_t)lo; } else { u16s[u16l++] = BSWAP_16(((uint16_t)hi)); u16s[u16l++] = BSWAP_16(((uint16_t)lo)); } } else { if (u16l >= *utf16len) return (E2BIG); u16s[u16l++] = (outendian) ? (uint16_t)hi : BSWAP_16(((uint16_t)hi)); } } *utf16len = u16l; *utf32len = u32l; return (0); } int uconv_u32tou8(const uint32_t *u32s, size_t *utf32len, uchar_t *u8s, size_t *utf8len, int flag) { int inendian; int outendian; size_t u32l; size_t u8l; uint32_t lo; boolean_t do_not_ignore_null; if (u32s == NULL || utf32len == NULL) return (EILSEQ); if (u8s == NULL || utf8len == NULL) return (E2BIG); if (check_endian(flag, &inendian, &outendian) != 0) return (EBADF); u32l = u8l = 0; do_not_ignore_null = ((flag & UCONV_IGNORE_NULL) == 0); if ((flag & UCONV_IN_ACCEPT_BOM) && check_bom32(u32s, *utf32len, &inendian)) u32l++; inendian &= UCONV_IN_NAT_ENDIAN; for (; u32l < *utf32len; u32l++) { if (u32s[u32l] == 0 && do_not_ignore_null) break; lo = (inendian) ? u32s[u32l] : BSWAP_32(u32s[u32l]); if (lo <= UCONV_U8_ONE_BYTE) { if (u8l >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)lo; } else if (lo <= UCONV_U8_TWO_BYTES) { if ((u8l + 1) >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)(0xc0 | ((lo & 0x07c0) >> 6)); u8s[u8l++] = (uchar_t)(0x80 | (lo & 0x003f)); } else if (lo <= UCONV_U8_THREE_BYTES) { if ((u8l + 2) >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)(0xe0 | ((lo & 0x0f000) >> 12)); u8s[u8l++] = (uchar_t)(0x80 | ((lo & 0x00fc0) >> 6)); u8s[u8l++] = (uchar_t)(0x80 | (lo & 0x0003f)); } else if (lo <= UCONV_U8_FOUR_BYTES) { if ((u8l + 3) >= *utf8len) return (E2BIG); u8s[u8l++] = (uchar_t)(0xf0 | ((lo & 0x01c0000) >> 18)); u8s[u8l++] = (uchar_t)(0x80 | ((lo & 0x003f000) >> 12)); u8s[u8l++] = (uchar_t)(0x80 | ((lo & 0x0000fc0) >> 6)); u8s[u8l++] = (uchar_t)(0x80 | (lo & 0x000003f)); } else { return (EILSEQ); } } *utf32len = u32l; *utf8len = u8l; return (0); } int uconv_u8tou16(const uchar_t *u8s, size_t *utf8len, uint16_t *u16s, size_t *utf16len, int flag) { int inendian; int outendian; size_t u16l; size_t u8l; uint32_t hi; uint32_t lo; int remaining_bytes; int first_b; boolean_t do_not_ignore_null; if (u8s == NULL || utf8len == NULL) return (EILSEQ); if (u16s == NULL || utf16len == NULL) return (E2BIG); if (check_endian(flag, &inendian, &outendian) != 0) return (EBADF); u16l = u8l = 0; do_not_ignore_null = ((flag & UCONV_IGNORE_NULL) == 0); outendian &= UCONV_OUT_NAT_ENDIAN; if (*utf8len > 0 && *utf16len > 0 && (flag & UCONV_OUT_EMIT_BOM)) u16s[u16l++] = (outendian) ? UCONV_BOM_NORMAL : UCONV_BOM_SWAPPED; for (; u8l < *utf8len; ) { if (u8s[u8l] == 0 && do_not_ignore_null) break; /* * Collect a UTF-8 character and convert it to a UTF-32 * character. In doing so, we screen out illegally formed * UTF-8 characters and treat such as illegal characters. * The algorithm at below also screens out anything bigger * than the U+10FFFF. * * See Unicode 3.1 UTF-8 Corrigendum and Unicode 3.2 for * more details on the illegal values of UTF-8 character * bytes. */ hi = (uint32_t)u8s[u8l++]; if (hi > UCONV_ASCII_MAX) { if ((remaining_bytes = remaining_bytes_tbl[hi]) == 0) return (EILSEQ); first_b = hi; hi = hi & u8_masks_tbl[remaining_bytes]; for (; remaining_bytes > 0; remaining_bytes--) { /* * If we have no more bytes, the current * UTF-8 character is incomplete. */ if (u8l >= *utf8len) return (EINVAL); lo = (uint32_t)u8s[u8l++]; if (first_b) { if (lo < valid_min_2nd_byte[first_b] || lo > valid_max_2nd_byte[first_b]) return (EILSEQ); first_b = 0; } else if (lo < UCONV_U8_BYTE_MIN || lo > UCONV_U8_BYTE_MAX) { return (EILSEQ); } hi = (hi << UCONV_U8_BIT_SHIFT) | (lo & UCONV_U8_BIT_MASK); } } if (hi >= UCONV_U16_START) { lo = ((hi - UCONV_U16_START) % UCONV_U16_BIT_SHIFT) + UCONV_U16_LO_MIN; hi = ((hi - UCONV_U16_START) / UCONV_U16_BIT_SHIFT) + UCONV_U16_HI_MIN; if ((u16l + 1) >= *utf16len) return (E2BIG); if (outendian) { u16s[u16l++] = (uint16_t)hi; u16s[u16l++] = (uint16_t)lo; } else { u16s[u16l++] = BSWAP_16(((uint16_t)hi)); u16s[u16l++] = BSWAP_16(((uint16_t)lo)); } } else { if (u16l >= *utf16len) return (E2BIG); u16s[u16l++] = (outendian) ? (uint16_t)hi : BSWAP_16(((uint16_t)hi)); } } *utf16len = u16l; *utf8len = u8l; return (0); } int uconv_u8tou32(const uchar_t *u8s, size_t *utf8len, uint32_t *u32s, size_t *utf32len, int flag) { int inendian; int outendian; size_t u32l; size_t u8l; uint32_t hi; uint32_t c; int remaining_bytes; int first_b; boolean_t do_not_ignore_null; if (u8s == NULL || utf8len == NULL) return (EILSEQ); if (u32s == NULL || utf32len == NULL) return (E2BIG); if (check_endian(flag, &inendian, &outendian) != 0) return (EBADF); u32l = u8l = 0; do_not_ignore_null = ((flag & UCONV_IGNORE_NULL) == 0); outendian &= UCONV_OUT_NAT_ENDIAN; if (*utf8len > 0 && *utf32len > 0 && (flag & UCONV_OUT_EMIT_BOM)) u32s[u32l++] = (outendian) ? UCONV_BOM_NORMAL : UCONV_BOM_SWAPPED_32; for (; u8l < *utf8len; ) { if (u8s[u8l] == 0 && do_not_ignore_null) break; hi = (uint32_t)u8s[u8l++]; if (hi > UCONV_ASCII_MAX) { if ((remaining_bytes = remaining_bytes_tbl[hi]) == 0) return (EILSEQ); first_b = hi; hi = hi & u8_masks_tbl[remaining_bytes]; for (; remaining_bytes > 0; remaining_bytes--) { if (u8l >= *utf8len) return (EINVAL); c = (uint32_t)u8s[u8l++]; if (first_b) { if (c < valid_min_2nd_byte[first_b] || c > valid_max_2nd_byte[first_b]) return (EILSEQ); first_b = 0; } else if (c < UCONV_U8_BYTE_MIN || c > UCONV_U8_BYTE_MAX) { return (EILSEQ); } hi = (hi << UCONV_U8_BIT_SHIFT) | (c & UCONV_U8_BIT_MASK); } } if (u32l >= *utf32len) return (E2BIG); u32s[u32l++] = (outendian) ? hi : BSWAP_32(hi); } *utf32len = u32l; *utf8len = u8l; return (0); } #if defined(_KERNEL) && defined(HAVE_SPL) EXPORT_SYMBOL(uconv_u16tou32); EXPORT_SYMBOL(uconv_u16tou8); EXPORT_SYMBOL(uconv_u32tou16); EXPORT_SYMBOL(uconv_u32tou8); EXPORT_SYMBOL(uconv_u8tou16); EXPORT_SYMBOL(uconv_u8tou32); #endif