/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016 Actifio, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Emulation of kernel services in userland. */ int aok; uint64_t physmem; vnode_t *rootdir = (vnode_t *)0xabcd1234; char hw_serial[HW_HOSTID_LEN]; struct utsname hw_utsname; vmem_t *zio_arena = NULL; /* If set, all blocks read will be copied to the specified directory. */ char *vn_dumpdir = NULL; /* this only exists to have its address taken */ struct proc p0; /* * ========================================================================= * threads * ========================================================================= */ pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER; pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER; pthread_key_t kthread_key; int kthread_nr = 0; void thread_init(void) { kthread_t *kt; VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0); /* Create entry for primary kthread */ kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL); kt->t_tid = pthread_self(); kt->t_func = NULL; VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0); /* Only the main thread should be running at the moment */ ASSERT3S(kthread_nr, ==, 0); kthread_nr = 1; } void thread_fini(void) { kthread_t *kt = curthread; ASSERT(pthread_equal(kt->t_tid, pthread_self())); ASSERT3P(kt->t_func, ==, NULL); umem_free(kt, sizeof (kthread_t)); /* Wait for all threads to exit via thread_exit() */ VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); kthread_nr--; /* Main thread is exiting */ while (kthread_nr > 0) VERIFY0(pthread_cond_wait(&kthread_cond, &kthread_lock)); ASSERT3S(kthread_nr, ==, 0); VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); VERIFY3S(pthread_key_delete(kthread_key), ==, 0); } kthread_t * zk_thread_current(void) { kthread_t *kt = pthread_getspecific(kthread_key); ASSERT3P(kt, !=, NULL); return (kt); } void * zk_thread_helper(void *arg) { kthread_t *kt = (kthread_t *)arg; VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0); VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); kthread_nr++; VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); (void) setpriority(PRIO_PROCESS, 0, kt->t_pri); kt->t_tid = pthread_self(); ((thread_func_arg_t)kt->t_func)(kt->t_arg); /* Unreachable, thread must exit with thread_exit() */ abort(); return (NULL); } kthread_t * zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg, uint64_t len, proc_t *pp, int state, pri_t pri, int detachstate) { kthread_t *kt; pthread_attr_t attr; char *stkstr; ASSERT0(state & ~TS_RUN); ASSERT0(len); kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL); kt->t_func = func; kt->t_arg = arg; kt->t_pri = pri; VERIFY0(pthread_attr_init(&attr)); VERIFY0(pthread_attr_setdetachstate(&attr, detachstate)); /* * We allow the default stack size in user space to be specified by * setting the ZFS_STACK_SIZE environment variable. This allows us * the convenience of observing and debugging stack overruns in * user space. Explicitly specified stack sizes will be honored. * The usage of ZFS_STACK_SIZE is discussed further in the * ENVIRONMENT VARIABLES sections of the ztest(1) man page. */ if (stksize == 0) { stkstr = getenv("ZFS_STACK_SIZE"); if (stkstr == NULL) stksize = TS_STACK_MAX; else stksize = MAX(atoi(stkstr), TS_STACK_MIN); } VERIFY3S(stksize, >, 0); stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE); /* * If this ever fails, it may be because the stack size is not a * multiple of system page size. */ VERIFY0(pthread_attr_setstacksize(&attr, stksize)); VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE)); VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt)); VERIFY0(pthread_attr_destroy(&attr)); return (kt); } void zk_thread_exit(void) { kthread_t *kt = curthread; ASSERT(pthread_equal(kt->t_tid, pthread_self())); umem_free(kt, sizeof (kthread_t)); VERIFY0(pthread_mutex_lock(&kthread_lock)); kthread_nr--; VERIFY0(pthread_mutex_unlock(&kthread_lock)); VERIFY0(pthread_cond_broadcast(&kthread_cond)); pthread_exit((void *)TS_MAGIC); } void zk_thread_join(kt_did_t tid) { void *ret; pthread_join((pthread_t)tid, &ret); VERIFY3P(ret, ==, (void *)TS_MAGIC); } /* * ========================================================================= * kstats * ========================================================================= */ /*ARGSUSED*/ kstat_t * kstat_create(const char *module, int instance, const char *name, const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) { return (NULL); } /*ARGSUSED*/ void kstat_install(kstat_t *ksp) {} /*ARGSUSED*/ void kstat_delete(kstat_t *ksp) {} /*ARGSUSED*/ void kstat_waitq_enter(kstat_io_t *kiop) {} /*ARGSUSED*/ void kstat_waitq_exit(kstat_io_t *kiop) {} /*ARGSUSED*/ void kstat_runq_enter(kstat_io_t *kiop) {} /*ARGSUSED*/ void kstat_runq_exit(kstat_io_t *kiop) {} /*ARGSUSED*/ void kstat_waitq_to_runq(kstat_io_t *kiop) {} /*ARGSUSED*/ void kstat_runq_back_to_waitq(kstat_io_t *kiop) {} void kstat_set_raw_ops(kstat_t *ksp, int (*headers)(char *buf, size_t size), int (*data)(char *buf, size_t size, void *data), void *(*addr)(kstat_t *ksp, loff_t index)) {} /* * ========================================================================= * mutexes * ========================================================================= */ void mutex_init(kmutex_t *mp, char *name, int type, void *cookie) { ASSERT3S(type, ==, MUTEX_DEFAULT); ASSERT3P(cookie, ==, NULL); mp->m_owner = MTX_INIT; mp->m_magic = MTX_MAGIC; VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0); } void mutex_destroy(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mp->m_owner, ==, MTX_INIT); ASSERT0(pthread_mutex_destroy(&(mp)->m_lock)); mp->m_owner = MTX_DEST; mp->m_magic = 0; } void mutex_enter(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mp->m_owner, !=, MTX_DEST); ASSERT3P(mp->m_owner, !=, curthread); VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0); ASSERT3P(mp->m_owner, ==, MTX_INIT); mp->m_owner = curthread; } int mutex_tryenter(kmutex_t *mp) { int err; ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mp->m_owner, !=, MTX_DEST); if (0 == (err = pthread_mutex_trylock(&mp->m_lock))) { ASSERT3P(mp->m_owner, ==, MTX_INIT); mp->m_owner = curthread; return (1); } else { VERIFY3S(err, ==, EBUSY); return (0); } } void mutex_exit(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mutex_owner(mp), ==, curthread); mp->m_owner = MTX_INIT; VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0); } void * mutex_owner(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); return (mp->m_owner); } int mutex_held(kmutex_t *mp) { return (mp->m_owner == curthread); } /* * ========================================================================= * rwlocks * ========================================================================= */ void rw_init(krwlock_t *rwlp, char *name, int type, void *arg) { ASSERT3S(type, ==, RW_DEFAULT); ASSERT3P(arg, ==, NULL); VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0); rwlp->rw_owner = RW_INIT; rwlp->rw_wr_owner = RW_INIT; rwlp->rw_readers = 0; rwlp->rw_magic = RW_MAGIC; } void rw_destroy(krwlock_t *rwlp) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT); VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0); rwlp->rw_magic = 0; } void rw_enter(krwlock_t *rwlp, krw_t rw) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); ASSERT3P(rwlp->rw_owner, !=, curthread); ASSERT3P(rwlp->rw_wr_owner, !=, curthread); if (rw == RW_READER) { VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0); ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT); atomic_inc_uint(&rwlp->rw_readers); } else { VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0); ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT); ASSERT3U(rwlp->rw_readers, ==, 0); rwlp->rw_wr_owner = curthread; } rwlp->rw_owner = curthread; } void rw_exit(krwlock_t *rwlp) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); ASSERT(RW_LOCK_HELD(rwlp)); if (RW_READ_HELD(rwlp)) atomic_dec_uint(&rwlp->rw_readers); else rwlp->rw_wr_owner = RW_INIT; rwlp->rw_owner = RW_INIT; VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0); } int rw_tryenter(krwlock_t *rwlp, krw_t rw) { int rv; ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); if (rw == RW_READER) rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock); else rv = pthread_rwlock_trywrlock(&rwlp->rw_lock); if (rv == 0) { ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT); if (rw == RW_READER) atomic_inc_uint(&rwlp->rw_readers); else { ASSERT3U(rwlp->rw_readers, ==, 0); rwlp->rw_wr_owner = curthread; } rwlp->rw_owner = curthread; return (1); } VERIFY3S(rv, ==, EBUSY); return (0); } int rw_tryupgrade(krwlock_t *rwlp) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); return (0); } /* * ========================================================================= * condition variables * ========================================================================= */ void cv_init(kcondvar_t *cv, char *name, int type, void *arg) { ASSERT3S(type, ==, CV_DEFAULT); cv->cv_magic = CV_MAGIC; VERIFY0(pthread_cond_init(&cv->cv, NULL)); } void cv_destroy(kcondvar_t *cv) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); VERIFY0(pthread_cond_destroy(&cv->cv)); cv->cv_magic = 0; } void cv_wait(kcondvar_t *cv, kmutex_t *mp) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); ASSERT3P(mutex_owner(mp), ==, curthread); mp->m_owner = MTX_INIT; VERIFY0(pthread_cond_wait(&cv->cv, &mp->m_lock)); mp->m_owner = curthread; } clock_t cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) { int error; struct timeval tv; timestruc_t ts; clock_t delta; ASSERT3U(cv->cv_magic, ==, CV_MAGIC); delta = abstime - ddi_get_lbolt(); if (delta <= 0) return (-1); VERIFY(gettimeofday(&tv, NULL) == 0); ts.tv_sec = tv.tv_sec + delta / hz; ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz); if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } ASSERT3P(mutex_owner(mp), ==, curthread); mp->m_owner = MTX_INIT; error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts); mp->m_owner = curthread; if (error == ETIMEDOUT) return (-1); VERIFY0(error); return (1); } /*ARGSUSED*/ clock_t cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res, int flag) { int error; struct timeval tv; timestruc_t ts; hrtime_t delta; ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE); delta = tim; if (flag & CALLOUT_FLAG_ABSOLUTE) delta -= gethrtime(); if (delta <= 0) return (-1); VERIFY(gettimeofday(&tv, NULL) == 0); ts.tv_sec = tv.tv_sec + delta / NANOSEC; ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC); if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } ASSERT(mutex_owner(mp) == curthread); mp->m_owner = MTX_INIT; error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts); mp->m_owner = curthread; if (error == ETIMEDOUT) return (-1); VERIFY0(error); return (1); } void cv_signal(kcondvar_t *cv) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); VERIFY0(pthread_cond_signal(&cv->cv)); } void cv_broadcast(kcondvar_t *cv) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); VERIFY0(pthread_cond_broadcast(&cv->cv)); } /* * ========================================================================= * vnode operations * ========================================================================= */ /* * Note: for the xxxat() versions of these functions, we assume that the * starting vp is always rootdir (which is true for spa_directory.c, the only * ZFS consumer of these interfaces). We assert this is true, and then emulate * them by adding '/' in front of the path. */ /*ARGSUSED*/ int vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) { int fd = -1; int dump_fd = -1; vnode_t *vp; int old_umask = 0; char *realpath; struct stat64 st; int err; realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); /* * If we're accessing a real disk from userland, we need to use * the character interface to avoid caching. This is particularly * important if we're trying to look at a real in-kernel storage * pool from userland, e.g. via zdb, because otherwise we won't * see the changes occurring under the segmap cache. * On the other hand, the stupid character device returns zero * for its size. So -- gag -- we open the block device to get * its size, and remember it for subsequent VOP_GETATTR(). */ #if defined(__sun__) || defined(__sun) if (strncmp(path, "/dev/", 5) == 0) { #else if (0) { #endif char *dsk; fd = open64(path, O_RDONLY); if (fd == -1) { err = errno; free(realpath); return (err); } if (fstat64(fd, &st) == -1) { err = errno; close(fd); free(realpath); return (err); } close(fd); (void) sprintf(realpath, "%s", path); dsk = strstr(path, "/dsk/"); if (dsk != NULL) (void) sprintf(realpath + (dsk - path) + 1, "r%s", dsk + 1); } else { (void) sprintf(realpath, "%s", path); if (!(flags & FCREAT) && stat64(realpath, &st) == -1) { err = errno; free(realpath); return (err); } } if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) { #ifdef __linux__ flags |= O_DIRECT; #endif /* We shouldn't be writing to block devices in userspace */ VERIFY(!(flags & FWRITE)); } if (flags & FCREAT) old_umask = umask(0); /* * The construct 'flags - FREAD' conveniently maps combinations of * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. */ fd = open64(realpath, flags - FREAD, mode); if (fd == -1) { err = errno; free(realpath); return (err); } if (flags & FCREAT) (void) umask(old_umask); if (vn_dumpdir != NULL) { char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL); (void) snprintf(dumppath, MAXPATHLEN, "%s/%s", vn_dumpdir, basename(realpath)); dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666); umem_free(dumppath, MAXPATHLEN); if (dump_fd == -1) { err = errno; free(realpath); close(fd); return (err); } } else { dump_fd = -1; } free(realpath); if (fstat64_blk(fd, &st) == -1) { err = errno; close(fd); if (dump_fd != -1) close(dump_fd); return (err); } (void) fcntl(fd, F_SETFD, FD_CLOEXEC); *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); vp->v_fd = fd; vp->v_size = st.st_size; vp->v_path = spa_strdup(path); vp->v_dump_fd = dump_fd; return (0); } /*ARGSUSED*/ int vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3, vnode_t *startvp, int fd) { char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); int ret; ASSERT(startvp == rootdir); (void) sprintf(realpath, "/%s", path); /* fd ignored for now, need if want to simulate nbmand support */ ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3); umem_free(realpath, strlen(path) + 2); return (ret); } /*ARGSUSED*/ int vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) { ssize_t rc, done = 0, split; if (uio == UIO_READ) { rc = pread64(vp->v_fd, addr, len, offset); if (vp->v_dump_fd != -1 && rc != -1) { int status; status = pwrite64(vp->v_dump_fd, addr, rc, offset); ASSERT(status != -1); } } else { /* * To simulate partial disk writes, we split writes into two * system calls so that the process can be killed in between. */ int sectors = len >> SPA_MINBLOCKSHIFT; split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT; rc = pwrite64(vp->v_fd, addr, split, offset); if (rc != -1) { done = rc; rc = pwrite64(vp->v_fd, (char *)addr + split, len - split, offset + split); } } #ifdef __linux__ if (rc == -1 && errno == EINVAL) { /* * Under Linux, this most likely means an alignment issue * (memory or disk) due to O_DIRECT, so we abort() in order to * catch the offender. */ abort(); } #endif if (rc == -1) return (errno); done += rc; if (residp) *residp = len - done; else if (done != len) return (EIO); return (0); } void vn_close(vnode_t *vp) { close(vp->v_fd); if (vp->v_dump_fd != -1) close(vp->v_dump_fd); spa_strfree(vp->v_path); umem_free(vp, sizeof (vnode_t)); } /* * At a minimum we need to update the size since vdev_reopen() * will no longer call vn_openat(). */ int fop_getattr(vnode_t *vp, vattr_t *vap) { struct stat64 st; int err; if (fstat64_blk(vp->v_fd, &st) == -1) { err = errno; close(vp->v_fd); return (err); } vap->va_size = st.st_size; return (0); } /* * ========================================================================= * Figure out which debugging statements to print * ========================================================================= */ static char *dprintf_string; static int dprintf_print_all; int dprintf_find_string(const char *string) { char *tmp_str = dprintf_string; int len = strlen(string); /* * Find out if this is a string we want to print. * String format: file1.c,function_name1,file2.c,file3.c */ while (tmp_str != NULL) { if (strncmp(tmp_str, string, len) == 0 && (tmp_str[len] == ',' || tmp_str[len] == '\0')) return (1); tmp_str = strchr(tmp_str, ','); if (tmp_str != NULL) tmp_str++; /* Get rid of , */ } return (0); } void dprintf_setup(int *argc, char **argv) { int i, j; /* * Debugging can be specified two ways: by setting the * environment variable ZFS_DEBUG, or by including a * "debug=..." argument on the command line. The command * line setting overrides the environment variable. */ for (i = 1; i < *argc; i++) { int len = strlen("debug="); /* First look for a command line argument */ if (strncmp("debug=", argv[i], len) == 0) { dprintf_string = argv[i] + len; /* Remove from args */ for (j = i; j < *argc; j++) argv[j] = argv[j+1]; argv[j] = NULL; (*argc)--; } } if (dprintf_string == NULL) { /* Look for ZFS_DEBUG environment variable */ dprintf_string = getenv("ZFS_DEBUG"); } /* * Are we just turning on all debugging? */ if (dprintf_find_string("on")) dprintf_print_all = 1; if (dprintf_string != NULL) zfs_flags |= ZFS_DEBUG_DPRINTF; } /* * ========================================================================= * debug printfs * ========================================================================= */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } if (dprintf_print_all || dprintf_find_string(newfile) || dprintf_find_string(func)) { /* Print out just the function name if requested */ flockfile(stdout); if (dprintf_find_string("pid")) (void) printf("%d ", getpid()); if (dprintf_find_string("tid")) (void) printf("%u ", (uint_t)pthread_self()); if (dprintf_find_string("cpu")) (void) printf("%u ", getcpuid()); if (dprintf_find_string("time")) (void) printf("%llu ", gethrtime()); if (dprintf_find_string("long")) (void) printf("%s, line %d: ", newfile, line); (void) printf("%s: ", func); va_start(adx, fmt); (void) vprintf(fmt, adx); va_end(adx); funlockfile(stdout); } } /* * ========================================================================= * cmn_err() and panic() * ========================================================================= */ static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; void vpanic(const char *fmt, va_list adx) { (void) fprintf(stderr, "error: "); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "\n"); abort(); /* think of it as a "user-level crash dump" */ } void panic(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vpanic(fmt, adx); va_end(adx); } void vcmn_err(int ce, const char *fmt, va_list adx) { if (ce == CE_PANIC) vpanic(fmt, adx); if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ (void) fprintf(stderr, "%s", ce_prefix[ce]); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "%s", ce_suffix[ce]); } } /*PRINTFLIKE2*/ void cmn_err(int ce, const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(ce, fmt, adx); va_end(adx); } /* * ========================================================================= * kobj interfaces * ========================================================================= */ struct _buf * kobj_open_file(char *name) { struct _buf *file; vnode_t *vp; /* set vp as the _fd field of the file */ if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, -1) != 0) return ((void *)-1UL); file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); file->_fd = (intptr_t)vp; return (file); } int kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) { ssize_t resid = 0; if (vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, UIO_SYSSPACE, 0, 0, 0, &resid) != 0) return (-1); return (size - resid); } void kobj_close_file(struct _buf *file) { vn_close((vnode_t *)file->_fd); umem_free(file, sizeof (struct _buf)); } int kobj_get_filesize(struct _buf *file, uint64_t *size) { struct stat64 st; vnode_t *vp = (vnode_t *)file->_fd; if (fstat64(vp->v_fd, &st) == -1) { vn_close(vp); return (errno); } *size = st.st_size; return (0); } /* * ========================================================================= * misc routines * ========================================================================= */ void delay(clock_t ticks) { (void) poll(0, 0, ticks * (1000 / hz)); } /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. * High order bit is 31 (or 63 in _LP64 kernel). */ int highbit64(uint64_t i) { register int h = 1; if (i == 0) return (0); if (i & 0xffffffff00000000ULL) { h += 32; i >>= 32; } if (i & 0xffff0000) { h += 16; i >>= 16; } if (i & 0xff00) { h += 8; i >>= 8; } if (i & 0xf0) { h += 4; i >>= 4; } if (i & 0xc) { h += 2; i >>= 2; } if (i & 0x2) { h += 1; } return (h); } /* * Find lowest one bit set. * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. * This is basically a reimplementation of ffsll(), which is GNU specific. */ int lowbit64(uint64_t i) { register int h = 64; if (i == 0) return (0); if (i & 0x00000000ffffffffULL) h -= 32; else i >>= 32; if (i & 0x0000ffff) h -= 16; else i >>= 16; if (i & 0x00ff) h -= 8; else i >>= 8; if (i & 0x0f) h -= 4; else i >>= 4; if (i & 0x3) h -= 2; else i >>= 2; if (i & 0x1) h -= 1; return (h); } /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. * High order bit is 31 (or 63 in _LP64 kernel). */ int highbit(ulong_t i) { register int h = 1; if (i == 0) return (0); #ifdef _LP64 if (i & 0xffffffff00000000ul) { h += 32; i >>= 32; } #endif if (i & 0xffff0000) { h += 16; i >>= 16; } if (i & 0xff00) { h += 8; i >>= 8; } if (i & 0xf0) { h += 4; i >>= 4; } if (i & 0xc) { h += 2; i >>= 2; } if (i & 0x2) { h += 1; } return (h); } /* * Find lowest one bit set. * Returns bit number + 1 of lowest bit that is set, otherwise returns 0. * Low order bit is 0. */ int lowbit(ulong_t i) { register int h = 1; if (i == 0) return (0); #ifdef _LP64 if (!(i & 0xffffffff)) { h += 32; i >>= 32; } #endif if (!(i & 0xffff)) { h += 16; i >>= 16; } if (!(i & 0xff)) { h += 8; i >>= 8; } if (!(i & 0xf)) { h += 4; i >>= 4; } if (!(i & 0x3)) { h += 2; i >>= 2; } if (!(i & 0x1)) { h += 1; } return (h); } static int random_fd = -1, urandom_fd = -1; void random_init(void) { VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); } void random_fini(void) { close(random_fd); close(urandom_fd); random_fd = -1; urandom_fd = -1; } static int random_get_bytes_common(uint8_t *ptr, size_t len, int fd) { size_t resid = len; ssize_t bytes; ASSERT(fd != -1); while (resid != 0) { bytes = read(fd, ptr, resid); ASSERT3S(bytes, >=, 0); ptr += bytes; resid -= bytes; } return (0); } int random_get_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, random_fd)); } int random_get_pseudo_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, urandom_fd)); } int ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result) { char *end; *result = strtoul(hw_serial, &end, base); if (*result == 0) return (errno); return (0); } int ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result) { char *end; *result = strtoull(str, &end, base); if (*result == 0) return (errno); return (0); } utsname_t * utsname(void) { return (&hw_utsname); } /* * ========================================================================= * kernel emulation setup & teardown * ========================================================================= */ static int umem_out_of_memory(void) { char errmsg[] = "out of memory -- generating core dump\n"; (void) fprintf(stderr, "%s", errmsg); abort(); return (0); } #define HOSTID_MASK 0xffffffff static unsigned long get_spl_hostid(void) { FILE *f; unsigned long hostid; char *env; /* * Allow the hostid to be subverted for testing. */ env = getenv("ZFS_HOSTID"); if (env) { hostid = strtoull(env, NULL, 0); return (hostid & HOSTID_MASK); } f = fopen("/sys/module/spl/parameters/spl_hostid", "r"); if (!f) return (0); if (fscanf(f, "%lu", &hostid) != 1) hostid = 0; fclose(f); return (hostid & HOSTID_MASK); } unsigned long get_system_hostid(void) { unsigned long system_hostid = get_spl_hostid(); /* * We do not use the library call gethostid() because * it generates a hostid value that the kernel is * unaware of, if the spl_hostid module parameter has not * been set and there is no system hostid file (e.g. * /etc/hostid). The kernel and userspace must agree. * See comments above hostid_read() in the SPL. */ if (system_hostid == 0) { int fd, rc; unsigned long hostid; int hostid_size = 4; /* 4 bytes regardless of arch */ fd = open("/etc/hostid", O_RDONLY); if (fd >= 0) { rc = read(fd, &hostid, hostid_size); if (rc > 0) system_hostid = (hostid & HOSTID_MASK); close(fd); } } return (system_hostid); } void kernel_init(int mode) { extern uint_t rrw_tsd_key; umem_nofail_callback(umem_out_of_memory); physmem = sysconf(_SC_PHYS_PAGES); dprintf("physmem = %llu pages (%.2f GB)\n", physmem, (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", (mode & FWRITE) ? get_system_hostid() : 0); random_init(); VERIFY0(uname(&hw_utsname)); thread_init(); system_taskq_init(); icp_init(); spa_init(mode); fletcher_4_init(); tsd_create(&rrw_tsd_key, rrw_tsd_destroy); } void kernel_fini(void) { fletcher_4_fini(); spa_fini(); icp_fini(); system_taskq_fini(); thread_fini(); random_fini(); } uid_t crgetuid(cred_t *cr) { return (0); } uid_t crgetruid(cred_t *cr) { return (0); } gid_t crgetgid(cred_t *cr) { return (0); } int crgetngroups(cred_t *cr) { return (0); } gid_t * crgetgroups(cred_t *cr) { return (NULL); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (0); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { return (0); } int secpolicy_zfs(const cred_t *cr) { return (0); } ksiddomain_t * ksid_lookupdomain(const char *dom) { ksiddomain_t *kd; kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); kd->kd_name = spa_strdup(dom); return (kd); } void ksiddomain_rele(ksiddomain_t *ksid) { spa_strfree(ksid->kd_name); umem_free(ksid, sizeof (ksiddomain_t)); } char * kmem_vasprintf(const char *fmt, va_list adx) { char *buf = NULL; va_list adx_copy; va_copy(adx_copy, adx); VERIFY(vasprintf(&buf, fmt, adx_copy) != -1); va_end(adx_copy); return (buf); } char * kmem_asprintf(const char *fmt, ...) { char *buf = NULL; va_list adx; va_start(adx, fmt); VERIFY(vasprintf(&buf, fmt, adx) != -1); va_end(adx); return (buf); } /* ARGSUSED */ int zfs_onexit_fd_hold(int fd, minor_t *minorp) { *minorp = 0; return (0); } /* ARGSUSED */ void zfs_onexit_fd_rele(int fd) { } /* ARGSUSED */ int zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data, uint64_t *action_handle) { return (0); } /* ARGSUSED */ int zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire) { return (0); } /* ARGSUSED */ int zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data) { return (0); } fstrans_cookie_t spl_fstrans_mark(void) { return ((fstrans_cookie_t)0); } void spl_fstrans_unmark(fstrans_cookie_t cookie) { } int __spl_pf_fstrans_check(void) { return (0); } void *zvol_tag = "zvol_tag"; void zvol_create_minors(spa_t *spa, const char *name, boolean_t async) { } void zvol_remove_minor(spa_t *spa, const char *name, boolean_t async) { } void zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) { } void zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname, boolean_t async) { }