/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #include "zfs_prop.h" #include "libzfs_impl.h" #include "zfs_deleg.h" static int zvol_create_link_common(libzfs_handle_t *, const char *, int); /* * Given a single type (not a mask of types), return the type in a human * readable form. */ const char * zfs_type_to_name(zfs_type_t type) { switch (type) { case ZFS_TYPE_FILESYSTEM: return (dgettext(TEXT_DOMAIN, "filesystem")); case ZFS_TYPE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "snapshot")); case ZFS_TYPE_VOLUME: return (dgettext(TEXT_DOMAIN, "volume")); default: break; } return (NULL); } /* * Validate a ZFS path. This is used even before trying to open the dataset, to * provide a more meaningful error message. We place a more useful message in * 'buf' detailing exactly why the name was not valid. */ static int zfs_validate_name(libzfs_handle_t *hdl, const char *path, int type, boolean_t modifying) { namecheck_err_t why; char what; if (dataset_namecheck(path, &why, &what) != 0) { if (hdl != NULL) { switch (why) { case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is too long")); break; case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "leading slash in name")); break; case NAME_ERR_EMPTY_COMPONENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "empty component in name")); break; case NAME_ERR_TRAILING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "trailing slash in name")); break; case NAME_ERR_INVALCHAR: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character " "'%c' in name"), what); break; case NAME_ERR_MULTIPLE_AT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "multiple '@' delimiters in name")); break; case NAME_ERR_NOLETTER: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool doesn't begin with a letter")); break; case NAME_ERR_RESERVED: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "name is reserved")); break; case NAME_ERR_DISKLIKE: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "reserved disk name")); break; default: break; } } return (0); } if (!(type & ZFS_TYPE_SNAPSHOT) && strchr(path, '@') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshot delimiter '@' in filesystem name")); return (0); } if (type == ZFS_TYPE_SNAPSHOT && strchr(path, '@') == NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing '@' delimiter in snapshot name")); return (0); } if (modifying && strchr(path, '%') != NULL) { if (hdl != NULL) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid character %c in name"), '%'); return (0); } return (-1); } int zfs_name_valid(const char *name, zfs_type_t type) { if (type == ZFS_TYPE_POOL) return (zpool_name_valid(NULL, B_FALSE, name)); return (zfs_validate_name(NULL, name, type, B_FALSE)); } /* * This function takes the raw DSL properties, and filters out the user-defined * properties into a separate nvlist. */ static nvlist_t * process_user_props(zfs_handle_t *zhp, nvlist_t *props) { libzfs_handle_t *hdl = zhp->zfs_hdl; nvpair_t *elem; nvlist_t *propval; nvlist_t *nvl; if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { if (!zfs_prop_user(nvpair_name(elem))) continue; verify(nvpair_value_nvlist(elem, &propval) == 0); if (nvlist_add_nvlist(nvl, nvpair_name(elem), propval) != 0) { nvlist_free(nvl); (void) no_memory(hdl); return (NULL); } } return (nvl); } static zpool_handle_t * zpool_add_handle(zfs_handle_t *zhp, const char *pool_name) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph; if ((zph = zpool_open_canfail(hdl, pool_name)) != NULL) { if (hdl->libzfs_pool_handles != NULL) zph->zpool_next = hdl->libzfs_pool_handles; hdl->libzfs_pool_handles = zph; } return (zph); } static zpool_handle_t * zpool_find_handle(zfs_handle_t *zhp, const char *pool_name, int len) { libzfs_handle_t *hdl = zhp->zfs_hdl; zpool_handle_t *zph = hdl->libzfs_pool_handles; while ((zph != NULL) && (strncmp(pool_name, zpool_get_name(zph), len) != 0)) zph = zph->zpool_next; return (zph); } /* * Returns a handle to the pool that contains the provided dataset. * If a handle to that pool already exists then that handle is returned. * Otherwise, a new handle is created and added to the list of handles. */ static zpool_handle_t * zpool_handle(zfs_handle_t *zhp) { char *pool_name; int len; zpool_handle_t *zph; len = strcspn(zhp->zfs_name, "/@") + 1; pool_name = zfs_alloc(zhp->zfs_hdl, len); (void) strlcpy(pool_name, zhp->zfs_name, len); zph = zpool_find_handle(zhp, pool_name, len); if (zph == NULL) zph = zpool_add_handle(zhp, pool_name); free(pool_name); return (zph); } void zpool_free_handles(libzfs_handle_t *hdl) { zpool_handle_t *next, *zph = hdl->libzfs_pool_handles; while (zph != NULL) { next = zph->zpool_next; zpool_close(zph); zph = next; } hdl->libzfs_pool_handles = NULL; } /* * Utility function to gather stats (objset and zpl) for the given object. */ static int get_stats_ioctl(zfs_handle_t *zhp, zfs_cmd_t *zc) { libzfs_handle_t *hdl = zhp->zfs_hdl; (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); while (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, zc) != 0) { return (-1); } } else { return (-1); } } return (0); } static int put_stats_zhdl(zfs_handle_t *zhp, zfs_cmd_t *zc) { nvlist_t *allprops, *userprops; zhp->zfs_dmustats = zc->zc_objset_stats; /* structure assignment */ if (zcmd_read_dst_nvlist(zhp->zfs_hdl, zc, &allprops) != 0) { return (-1); } if ((userprops = process_user_props(zhp, allprops)) == NULL) { nvlist_free(allprops); return (-1); } nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); zhp->zfs_props = allprops; zhp->zfs_user_props = userprops; return (0); } static int get_stats(zfs_handle_t *zhp) { int rc = 0; zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); if (get_stats_ioctl(zhp, &zc) != 0) rc = -1; else if (put_stats_zhdl(zhp, &zc) != 0) rc = -1; zcmd_free_nvlists(&zc); return (rc); } /* * Refresh the properties currently stored in the handle. */ void zfs_refresh_properties(zfs_handle_t *zhp) { (void) get_stats(zhp); } /* * Makes a handle from the given dataset name. Used by zfs_open() and * zfs_iter_* to create child handles on the fly. */ static int make_dataset_handle_common(zfs_handle_t *zhp, zfs_cmd_t *zc) { char *logstr; libzfs_handle_t *hdl = zhp->zfs_hdl; /* * Preserve history log string. * any changes performed here will be * logged as an internal event. */ logstr = zhp->zfs_hdl->libzfs_log_str; zhp->zfs_hdl->libzfs_log_str = NULL; top: if (put_stats_zhdl(zhp, zc) != 0) { zhp->zfs_hdl->libzfs_log_str = logstr; return (-1); } if (zhp->zfs_dmustats.dds_inconsistent) { zfs_cmd_t zc2 = { "\0", "\0", "\0", 0 }; /* * If it is dds_inconsistent, then we've caught it in * the middle of a 'zfs receive' or 'zfs destroy', and * it is inconsistent from the ZPL's point of view, so * can't be mounted. However, it could also be that we * have crashed in the middle of one of those * operations, in which case we need to get rid of the * inconsistent state. We do that by either rolling * back to the previous snapshot (which will fail if * there is none), or destroying the filesystem. Note * that if we are still in the middle of an active * 'receive' or 'destroy', then the rollback and destroy * will fail with EBUSY and we will drive on as usual. */ (void) strlcpy(zc2.zc_name, zhp->zfs_name, sizeof (zc2.zc_name)); if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) { (void) zvol_remove_link(hdl, zhp->zfs_name); zc2.zc_objset_type = DMU_OST_ZVOL; } else { zc2.zc_objset_type = DMU_OST_ZFS; } /* * If we can successfully destroy it, pretend that it * never existed. */ if (ioctl(hdl->libzfs_fd, ZFS_IOC_DESTROY, &zc2) == 0) { zhp->zfs_hdl->libzfs_log_str = logstr; errno = ENOENT; return (-1); } /* If we can successfully roll it back, reset the stats */ if (ioctl(hdl->libzfs_fd, ZFS_IOC_ROLLBACK, &zc2) == 0) { if (get_stats_ioctl(zhp, zc) != 0) { zhp->zfs_hdl->libzfs_log_str = logstr; return (-1); } goto top; } } /* * We've managed to open the dataset and gather statistics. Determine * the high-level type. */ if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_head_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_head_type = ZFS_TYPE_FILESYSTEM; else abort(); if (zhp->zfs_dmustats.dds_is_snapshot) zhp->zfs_type = ZFS_TYPE_SNAPSHOT; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZVOL) zhp->zfs_type = ZFS_TYPE_VOLUME; else if (zhp->zfs_dmustats.dds_type == DMU_OST_ZFS) zhp->zfs_type = ZFS_TYPE_FILESYSTEM; else abort(); /* we should never see any other types */ zhp->zfs_hdl->libzfs_log_str = logstr; zhp->zpool_hdl = zpool_handle(zhp); return (0); } zfs_handle_t * make_dataset_handle(libzfs_handle_t *hdl, const char *path) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, path, sizeof (zhp->zfs_name)); if (zcmd_alloc_dst_nvlist(hdl, &zc, 0) != 0) { free(zhp); return (NULL); } if (get_stats_ioctl(zhp, &zc) == -1) { zcmd_free_nvlists(&zc); free(zhp); return (NULL); } if (make_dataset_handle_common(zhp, &zc) == -1) { free(zhp); zhp = NULL; } zcmd_free_nvlists(&zc); return (zhp); } static zfs_handle_t * make_dataset_handle_zc(libzfs_handle_t *hdl, zfs_cmd_t *zc) { zfs_handle_t *zhp = calloc(sizeof (zfs_handle_t), 1); if (zhp == NULL) return (NULL); zhp->zfs_hdl = hdl; (void) strlcpy(zhp->zfs_name, zc->zc_name, sizeof (zhp->zfs_name)); if (make_dataset_handle_common(zhp, zc) == -1) { free(zhp); return (NULL); } return (zhp); } /* * Opens the given snapshot, filesystem, or volume. The 'types' * argument is a mask of acceptable types. The function will print an * appropriate error message and return NULL if it can't be opened. */ zfs_handle_t * zfs_open(libzfs_handle_t *hdl, const char *path, int types) { zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); /* * Validate the name before we even try to open it. */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_DATASET, B_FALSE)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid dataset name")); (void) zfs_error(hdl, EZFS_INVALIDNAME, errbuf); return (NULL); } /* * Try to get stats for the dataset, which will tell us if it exists. */ errno = 0; if ((zhp = make_dataset_handle(hdl, path)) == NULL) { (void) zfs_standard_error(hdl, errno, errbuf); return (NULL); } if (!(types & zhp->zfs_type)) { (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (NULL); } return (zhp); } /* * Release a ZFS handle. Nothing to do but free the associated memory. */ void zfs_close(zfs_handle_t *zhp) { if (zhp->zfs_mntopts) free(zhp->zfs_mntopts); nvlist_free(zhp->zfs_props); nvlist_free(zhp->zfs_user_props); free(zhp); } typedef struct mnttab_node { struct mnttab mtn_mt; avl_node_t mtn_node; } mnttab_node_t; static int libzfs_mnttab_cache_compare(const void *arg1, const void *arg2) { const mnttab_node_t *mtn1 = arg1; const mnttab_node_t *mtn2 = arg2; int rv; rv = strcmp(mtn1->mtn_mt.mnt_special, mtn2->mtn_mt.mnt_special); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } void libzfs_mnttab_init(libzfs_handle_t *hdl) { struct mnttab entry; assert(avl_numnodes(&hdl->libzfs_mnttab_cache) == 0); avl_create(&hdl->libzfs_mnttab_cache, libzfs_mnttab_cache_compare, sizeof (mnttab_node_t), offsetof(mnttab_node_t, mtn_node)); rewind(hdl->libzfs_mnttab); while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { mnttab_node_t *mtn; if (strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) continue; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, entry.mnt_special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, entry.mnt_mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, entry.mnt_fstype); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } } void libzfs_mnttab_fini(libzfs_handle_t *hdl) { void *cookie = NULL; mnttab_node_t *mtn; while ((mtn = avl_destroy_nodes(&hdl->libzfs_mnttab_cache, &cookie))) { free(mtn->mtn_mt.mnt_special); free(mtn->mtn_mt.mnt_mountp); free(mtn->mtn_mt.mnt_fstype); free(mtn->mtn_mt.mnt_mntopts); free(mtn); } avl_destroy(&hdl->libzfs_mnttab_cache); } int libzfs_mnttab_find(libzfs_handle_t *hdl, const char *fsname, struct mnttab *entry) { mnttab_node_t find; mnttab_node_t *mtn; if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) libzfs_mnttab_init(hdl); find.mtn_mt.mnt_special = (char *)fsname; mtn = avl_find(&hdl->libzfs_mnttab_cache, &find, NULL); if (mtn) { *entry = mtn->mtn_mt; return (0); } return (ENOENT); } void libzfs_mnttab_add(libzfs_handle_t *hdl, const char *special, const char *mountp, const char *mntopts) { mnttab_node_t *mtn; if (avl_numnodes(&hdl->libzfs_mnttab_cache) == 0) return; mtn = zfs_alloc(hdl, sizeof (mnttab_node_t)); mtn->mtn_mt.mnt_special = zfs_strdup(hdl, special); mtn->mtn_mt.mnt_mountp = zfs_strdup(hdl, mountp); mtn->mtn_mt.mnt_fstype = zfs_strdup(hdl, MNTTYPE_ZFS); mtn->mtn_mt.mnt_mntopts = zfs_strdup(hdl, mntopts); avl_add(&hdl->libzfs_mnttab_cache, mtn); } void libzfs_mnttab_remove(libzfs_handle_t *hdl, const char *fsname) { mnttab_node_t find; mnttab_node_t *ret; find.mtn_mt.mnt_special = (char *)fsname; if ((ret = avl_find(&hdl->libzfs_mnttab_cache, (void *)&find, NULL))) { avl_remove(&hdl->libzfs_mnttab_cache, ret); free(ret->mtn_mt.mnt_special); free(ret->mtn_mt.mnt_mountp); free(ret->mtn_mt.mnt_fstype); free(ret->mtn_mt.mnt_mntopts); free(ret); } } int zfs_spa_version(zfs_handle_t *zhp, int *version) { zpool_handle_t *handle = zhp->zpool_hdl; if (handle == NULL) return (-1); *version = zpool_get_prop_int(handle, ZPOOL_PROP_VERSION, NULL); return (0); } /* * The choice of reservation property depends on the SPA version. */ static int zfs_which_resv_prop(zfs_handle_t *zhp, zfs_prop_t *resv_prop) { int version; if (zfs_spa_version(zhp, &version) < 0) return (-1); if (version >= SPA_VERSION_REFRESERVATION) *resv_prop = ZFS_PROP_REFRESERVATION; else *resv_prop = ZFS_PROP_RESERVATION; return (0); } /* * Given an nvlist of properties to set, validates that they are correct, and * parses any numeric properties (index, boolean, etc) if they are specified as * strings. */ nvlist_t * zfs_valid_proplist(libzfs_handle_t *hdl, zfs_type_t type, nvlist_t *nvl, uint64_t zoned, zfs_handle_t *zhp, const char *errbuf) { nvpair_t *elem; uint64_t intval; char *strval; zfs_prop_t prop; nvlist_t *ret; int chosen_normal = -1; int chosen_utf = -1; if (nvlist_alloc(&ret, NV_UNIQUE_NAME, 0) != 0) { (void) no_memory(hdl); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(nvl, elem)) != NULL) { const char *propname = nvpair_name(elem); /* * Make sure this property is valid and applies to this type. */ if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) { if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property '%s'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * If this is a user property, make sure it's a * string, and that it's less than ZAP_MAXNAMELEN. */ if (nvpair_type(elem) != DATA_TYPE_STRING) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a string"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (strlen(nvpair_name(elem)) >= ZAP_MAXNAMELEN) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property name '%s' is too long"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } (void) nvpair_value_string(elem, &strval); if (nvlist_add_string(ret, propname, strval) != 0) { (void) no_memory(hdl); goto error; } continue; } if (type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "this property can not be modified for snapshots")); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (!zfs_prop_valid_for_type(prop, type)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' does not " "apply to datasets of this type"), propname); (void) zfs_error(hdl, EZFS_PROPTYPE, errbuf); goto error; } if (zfs_prop_readonly(prop) && (!zfs_prop_setonce(prop) || zhp != NULL)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is readonly"), propname); (void) zfs_error(hdl, EZFS_PROPREADONLY, errbuf); goto error; } if (zprop_parse_value(hdl, elem, prop, type, ret, &strval, &intval, errbuf) != 0) goto error; /* * Perform some additional checks for specific properties. */ switch (prop) { case ZFS_PROP_VERSION: { int version; if (zhp == NULL) break; version = zfs_prop_get_int(zhp, ZFS_PROP_VERSION); if (intval < version) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "Can not downgrade; already at version %u"), version); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; } case ZFS_PROP_RECORDSIZE: case ZFS_PROP_VOLBLOCKSIZE: /* must be power of two within SPA_{MIN,MAX}BLOCKSIZE */ if (intval < SPA_MINBLOCKSIZE || intval > SPA_MAXBLOCKSIZE || !ISP2(intval)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be power of 2 from %u " "to %uk"), propname, (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_SHAREISCSI: if (strcmp(strval, "off") != 0 && strcmp(strval, "on") != 0 && strcmp(strval, "type=disk") != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be 'on', 'off', or 'type=disk'"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_MOUNTPOINT: { namecheck_err_t why; if (strcmp(strval, ZFS_MOUNTPOINT_NONE) == 0 || strcmp(strval, ZFS_MOUNTPOINT_LEGACY) == 0) break; if (mountpoint_namecheck(strval, &why)) { switch (why) { case NAME_ERR_LEADING_SLASH: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be an absolute path, " "'none', or 'legacy'"), propname); break; case NAME_ERR_TOOLONG: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "component of '%s' is too long"), propname); break; default: break; } (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } } /*FALLTHRU*/ #ifdef HAVE_ZPL case ZFS_PROP_SHARESMB: case ZFS_PROP_SHARENFS: /* * For the mountpoint and sharenfs or sharesmb * properties, check if it can be set in a * global/non-global zone based on * the zoned property value: * * global zone non-global zone * -------------------------------------------------- * zoned=on mountpoint (no) mountpoint (yes) * sharenfs (no) sharenfs (no) * sharesmb (no) sharesmb (no) * * zoned=off mountpoint (yes) N/A * sharenfs (yes) * sharesmb (yes) */ if (zoned) { if (getzoneid() == GLOBAL_ZONEID) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set on " "dataset in a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } else if (prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set in " "a non-global zone"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } } else if (getzoneid() != GLOBAL_ZONEID) { /* * If zoned property is 'off', this must be in * a globle zone. If not, something is wrong. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set while dataset " "'zoned' property is set"), propname); (void) zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * At this point, it is legitimate to set the * property. Now we want to make sure that the * property value is valid if it is sharenfs. */ if ((prop == ZFS_PROP_SHARENFS || prop == ZFS_PROP_SHARESMB) && strcmp(strval, "on") != 0 && strcmp(strval, "off") != 0) { zfs_share_proto_t proto; if (prop == ZFS_PROP_SHARESMB) proto = PROTO_SMB; else proto = PROTO_NFS; /* * Must be an valid sharing protocol * option string so init the libshare * in order to enable the parser and * then parse the options. We use the * control API since we don't care about * the current configuration and don't * want the overhead of loading it * until we actually do something. */ if (zfs_init_libshare(hdl, SA_INIT_CONTROL_API) != SA_OK) { /* * An error occurred so we can't do * anything */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set: problem " "in share initialization"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (zfs_parse_options(strval, proto) != SA_OK) { /* * There was an error in parsing so * deal with it by issuing an error * message and leaving after * uninitializing the the libshare * interface. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be set to invalid " "options"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); zfs_uninit_libshare(hdl); goto error; } zfs_uninit_libshare(hdl); } break; #endif /* HAVE_ZPL */ case ZFS_PROP_UTF8ONLY: chosen_utf = (int)intval; break; case ZFS_PROP_NORMALIZE: chosen_normal = (int)intval; break; default: break; } /* * For changes to existing volumes, we have some additional * checks to enforce. */ if (type == ZFS_TYPE_VOLUME && zhp != NULL) { uint64_t volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t blocksize = zfs_prop_get_int(zhp, ZFS_PROP_VOLBLOCKSIZE); char buf[64]; switch (prop) { case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (intval > volsize) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' is greater than current " "volume size"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; case ZFS_PROP_VOLSIZE: if (intval % blocksize != 0) { zfs_nicenum(blocksize, buf, sizeof (buf)); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be a multiple of " "volume block size (%s)"), propname, buf); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } if (intval == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' cannot be zero"), propname); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } break; default: break; } } } /* * If normalization was chosen, but no UTF8 choice was made, * enforce rejection of non-UTF8 names. * * If normalization was chosen, but rejecting non-UTF8 names * was explicitly not chosen, it is an error. */ if (chosen_normal > 0 && chosen_utf < 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(ZFS_PROP_UTF8ONLY), 1) != 0) { (void) no_memory(hdl); goto error; } } else if (chosen_normal > 0 && chosen_utf == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "'%s' must be set 'on' if normalization chosen"), zfs_prop_to_name(ZFS_PROP_UTF8ONLY)); (void) zfs_error(hdl, EZFS_BADPROP, errbuf); goto error; } /* * If this is an existing volume, and someone is setting the volsize, * make sure that it matches the reservation, or add it if necessary. */ if (zhp != NULL && type == ZFS_TYPE_VOLUME && nvlist_lookup_uint64(ret, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &intval) == 0) { uint64_t old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); uint64_t old_reservation; uint64_t new_reservation; zfs_prop_t resv_prop; if (zfs_which_resv_prop(zhp, &resv_prop) < 0) goto error; old_reservation = zfs_prop_get_int(zhp, resv_prop); if (old_volsize == old_reservation && nvlist_lookup_uint64(ret, zfs_prop_to_name(resv_prop), &new_reservation) != 0) { if (nvlist_add_uint64(ret, zfs_prop_to_name(resv_prop), intval) != 0) { (void) no_memory(hdl); goto error; } } } return (ret); error: nvlist_free(ret); return (NULL); } static int zfs_get_perm_who(const char *who, zfs_deleg_who_type_t *who_type, uint64_t *ret_who) { struct passwd *pwd; struct group *grp; uid_t id; if (*who_type == ZFS_DELEG_EVERYONE || *who_type == ZFS_DELEG_CREATE || *who_type == ZFS_DELEG_NAMED_SET) { *ret_who = -1; return (0); } if (who == NULL && !(*who_type == ZFS_DELEG_EVERYONE)) return (EZFS_BADWHO); if (*who_type == ZFS_DELEG_WHO_UNKNOWN && strcmp(who, "everyone") == 0) { *ret_who = -1; *who_type = ZFS_DELEG_EVERYONE; return (0); } pwd = getpwnam(who); grp = getgrnam(who); if ((*who_type == ZFS_DELEG_USER) && pwd) { *ret_who = pwd->pw_uid; } else if ((*who_type == ZFS_DELEG_GROUP) && grp) { *ret_who = grp->gr_gid; } else if (pwd) { *ret_who = pwd->pw_uid; *who_type = ZFS_DELEG_USER; } else if (grp) { *ret_who = grp->gr_gid; *who_type = ZFS_DELEG_GROUP; } else { char *end; id = strtol(who, &end, 10); if (errno != 0 || *end != '\0') { return (EZFS_BADWHO); } else { *ret_who = id; if (*who_type == ZFS_DELEG_WHO_UNKNOWN) *who_type = ZFS_DELEG_USER; } } return (0); } static void zfs_perms_add_to_nvlist(nvlist_t *who_nvp, char *name, nvlist_t *perms_nvp) { if (perms_nvp != NULL) { verify(nvlist_add_nvlist(who_nvp, name, perms_nvp) == 0); } else { verify(nvlist_add_boolean(who_nvp, name) == 0); } } static void helper(zfs_deleg_who_type_t who_type, uint64_t whoid, char *whostr, zfs_deleg_inherit_t inherit, nvlist_t *who_nvp, nvlist_t *perms_nvp, nvlist_t *sets_nvp) { boolean_t do_perms, do_sets; char name[ZFS_MAX_DELEG_NAME]; do_perms = (nvlist_next_nvpair(perms_nvp, NULL) != NULL); do_sets = (nvlist_next_nvpair(sets_nvp, NULL) != NULL); if (!do_perms && !do_sets) do_perms = do_sets = B_TRUE; if (do_perms) { zfs_deleg_whokey(name, who_type, inherit, (who_type == ZFS_DELEG_NAMED_SET) ? whostr : (void *)&whoid); zfs_perms_add_to_nvlist(who_nvp, name, perms_nvp); } if (do_sets) { zfs_deleg_whokey(name, toupper(who_type), inherit, (who_type == ZFS_DELEG_NAMED_SET) ? whostr : (void *)&whoid); zfs_perms_add_to_nvlist(who_nvp, name, sets_nvp); } } static void zfs_perms_add_who_nvlist(nvlist_t *who_nvp, uint64_t whoid, void *whostr, nvlist_t *perms_nvp, nvlist_t *sets_nvp, zfs_deleg_who_type_t who_type, zfs_deleg_inherit_t inherit) { if (who_type == ZFS_DELEG_NAMED_SET || who_type == ZFS_DELEG_CREATE) { helper(who_type, whoid, whostr, 0, who_nvp, perms_nvp, sets_nvp); } else { if (inherit & ZFS_DELEG_PERM_LOCAL) { helper(who_type, whoid, whostr, ZFS_DELEG_LOCAL, who_nvp, perms_nvp, sets_nvp); } if (inherit & ZFS_DELEG_PERM_DESCENDENT) { helper(who_type, whoid, whostr, ZFS_DELEG_DESCENDENT, who_nvp, perms_nvp, sets_nvp); } } } /* * Construct nvlist to pass down to kernel for setting/removing permissions. * * The nvlist is constructed as a series of nvpairs with an optional embedded * nvlist of permissions to remove or set. The topmost nvpairs are the actual * base attribute named stored in the dsl. * Arguments: * * whostr: is a comma separated list of users, groups, or a single set name. * whostr may be null for everyone or create perms. * who_type: is the type of entry in whostr. Typically this will be * ZFS_DELEG_WHO_UNKNOWN. * perms: common separated list of permissions. May be null if user * is requested to remove permissions by who. * inherit: Specifies the inheritance of the permissions. Will be either * ZFS_DELEG_PERM_LOCAL and/or ZFS_DELEG_PERM_DESCENDENT. * nvp The constructed nvlist to pass to zfs_perm_set(). * The output nvp will look something like this. * ul$1234 -> {create ; destroy } * Ul$1234 -> { @myset } * s-$@myset - { snapshot; checksum; compression } */ int zfs_build_perms(zfs_handle_t *zhp, char *whostr, char *perms, zfs_deleg_who_type_t who_type, zfs_deleg_inherit_t inherit, nvlist_t **nvp) { nvlist_t *who_nvp; nvlist_t *perms_nvp = NULL; nvlist_t *sets_nvp = NULL; char errbuf[1024]; char *who_tok = NULL, *perm; int error; *nvp = NULL; if (perms) { if ((error = nvlist_alloc(&perms_nvp, NV_UNIQUE_NAME, 0)) != 0) { return (1); } if ((error = nvlist_alloc(&sets_nvp, NV_UNIQUE_NAME, 0)) != 0) { nvlist_free(perms_nvp); return (1); } } if ((error = nvlist_alloc(&who_nvp, NV_UNIQUE_NAME, 0)) != 0) { if (perms_nvp) nvlist_free(perms_nvp); if (sets_nvp) nvlist_free(sets_nvp); return (1); } if (who_type == ZFS_DELEG_NAMED_SET) { namecheck_err_t why; char what; if ((error = permset_namecheck(whostr, &why, &what)) != 0) { nvlist_free(who_nvp); if (perms_nvp) nvlist_free(perms_nvp); if (sets_nvp) nvlist_free(sets_nvp); switch (why) { case NAME_ERR_NO_AT: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "set definition must begin with an '@' " "character")); default: break; } return (zfs_error(zhp->zfs_hdl, EZFS_BADPERMSET, whostr)); } } /* * Build up nvlist(s) of permissions. Two nvlists are maintained. * The first nvlist perms_nvp will have normal permissions and the * other sets_nvp will have only permssion set names in it. */ for (perm = strtok(perms, ","); perm; perm = strtok(NULL, ",")) { const char *perm_canonical = zfs_deleg_canonicalize_perm(perm); if (perm_canonical) { verify(nvlist_add_boolean(perms_nvp, perm_canonical) == 0); } else if (perm[0] == '@') { verify(nvlist_add_boolean(sets_nvp, perm) == 0); } else { nvlist_free(who_nvp); nvlist_free(perms_nvp); nvlist_free(sets_nvp); return (zfs_error(zhp->zfs_hdl, EZFS_BADPERM, perm)); } } if (whostr && who_type != ZFS_DELEG_CREATE) { who_tok = strtok(whostr, ","); if (who_tok == NULL) { nvlist_free(who_nvp); if (perms_nvp) nvlist_free(perms_nvp); if (sets_nvp) nvlist_free(sets_nvp); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "Who string is NULL: %s"), whostr); return (zfs_error(zhp->zfs_hdl, EZFS_BADWHO, errbuf)); } } /* * Now create the nvlist(s) */ do { uint64_t who_id; error = zfs_get_perm_who(who_tok, &who_type, &who_id); if (error) { nvlist_free(who_nvp); if (perms_nvp) nvlist_free(perms_nvp); if (sets_nvp) nvlist_free(sets_nvp); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "Unable to determine uid/gid for " "%s "), who_tok); return (zfs_error(zhp->zfs_hdl, EZFS_BADWHO, errbuf)); } /* * add entries for both local and descendent when required */ zfs_perms_add_who_nvlist(who_nvp, who_id, who_tok, perms_nvp, sets_nvp, who_type, inherit); } while ((who_tok = strtok(NULL, ","))); *nvp = who_nvp; return (0); } static int zfs_perm_set_common(zfs_handle_t *zhp, nvlist_t *nvp, boolean_t unset) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int error; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "Cannot update 'allows' for '%s'"), zhp->zfs_name); if (zcmd_write_src_nvlist(zhp->zfs_hdl, &zc, nvp)) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); zc.zc_perm_action = unset; error = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SET_FSACL, &zc); if (error && errno == ENOTSUP) { (void) snprintf(errbuf, sizeof (errbuf), gettext("Pool must be upgraded to use 'allow/unallow'")); zcmd_free_nvlists(&zc); return (zfs_error(zhp->zfs_hdl, EZFS_BADVERSION, errbuf)); } else if (error) { return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } zcmd_free_nvlists(&zc); return (error); } int zfs_perm_set(zfs_handle_t *zhp, nvlist_t *nvp) { return (zfs_perm_set_common(zhp, nvp, B_FALSE)); } int zfs_perm_remove(zfs_handle_t *zhp, nvlist_t *perms) { return (zfs_perm_set_common(zhp, perms, B_TRUE)); } static int perm_compare(const void *arg1, const void *arg2) { const zfs_perm_node_t *node1 = arg1; const zfs_perm_node_t *node2 = arg2; int ret; ret = strcmp(node1->z_pname, node2->z_pname); if (ret > 0) return (1); if (ret < 0) return (-1); else return (0); } static void zfs_destroy_perm_tree(avl_tree_t *tree) { zfs_perm_node_t *permnode; void *cookie = NULL; while ((permnode = avl_destroy_nodes(tree, &cookie)) != NULL) free(permnode); avl_destroy(tree); } static void zfs_destroy_tree(avl_tree_t *tree) { zfs_allow_node_t *allownode; void *cookie = NULL; while ((allownode = avl_destroy_nodes(tree, &cookie)) != NULL) { zfs_destroy_perm_tree(&allownode->z_localdescend); zfs_destroy_perm_tree(&allownode->z_local); zfs_destroy_perm_tree(&allownode->z_descend); free(allownode); } avl_destroy(tree); } void zfs_free_allows(zfs_allow_t *allow) { zfs_allow_t *allownext; zfs_allow_t *freeallow; allownext = allow; while (allownext) { zfs_destroy_tree(&allownext->z_sets); zfs_destroy_tree(&allownext->z_crperms); zfs_destroy_tree(&allownext->z_user); zfs_destroy_tree(&allownext->z_group); zfs_destroy_tree(&allownext->z_everyone); freeallow = allownext; allownext = allownext->z_next; free(freeallow); } } static zfs_allow_t * zfs_alloc_perm_tree(zfs_handle_t *zhp, zfs_allow_t *prev, char *setpoint) { zfs_allow_t *ptree; if ((ptree = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_allow_t))) == NULL) { return (NULL); } (void) strlcpy(ptree->z_setpoint, setpoint, sizeof (ptree->z_setpoint)); avl_create(&ptree->z_sets, perm_compare, sizeof (zfs_allow_node_t), offsetof(zfs_allow_node_t, z_node)); avl_create(&ptree->z_crperms, perm_compare, sizeof (zfs_allow_node_t), offsetof(zfs_allow_node_t, z_node)); avl_create(&ptree->z_user, perm_compare, sizeof (zfs_allow_node_t), offsetof(zfs_allow_node_t, z_node)); avl_create(&ptree->z_group, perm_compare, sizeof (zfs_allow_node_t), offsetof(zfs_allow_node_t, z_node)); avl_create(&ptree->z_everyone, perm_compare, sizeof (zfs_allow_node_t), offsetof(zfs_allow_node_t, z_node)); if (prev) prev->z_next = ptree; ptree->z_next = NULL; return (ptree); } /* * Add permissions to the appropriate AVL permission tree. * The appropriate tree may not be the requested tree. * For example if ld indicates a local permission, but * same permission also exists as a descendent permission * then the permission will be removed from the descendent * tree and add the the local+descendent tree. */ static int zfs_coalesce_perm(zfs_handle_t *zhp, zfs_allow_node_t *allownode, char *perm, char ld) { zfs_perm_node_t pnode, *permnode, *permnode2; zfs_perm_node_t *newnode; avl_index_t where, where2; avl_tree_t *tree, *altree; (void) strlcpy(pnode.z_pname, perm, sizeof (pnode.z_pname)); if (ld == ZFS_DELEG_NA) { tree = &allownode->z_localdescend; altree = &allownode->z_descend; } else if (ld == ZFS_DELEG_LOCAL) { tree = &allownode->z_local; altree = &allownode->z_descend; } else { tree = &allownode->z_descend; altree = &allownode->z_local; } permnode = avl_find(tree, &pnode, &where); permnode2 = avl_find(altree, &pnode, &where2); if (permnode2) { avl_remove(altree, permnode2); free(permnode2); if (permnode == NULL) { tree = &allownode->z_localdescend; } } /* * Now insert new permission in either requested location * local/descendent or into ld when perm will exist in both. */ if (permnode == NULL) { if ((newnode = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_perm_node_t))) == NULL) { return (-1); } *newnode = pnode; avl_add(tree, newnode); } return (0); } /* * Uggh, this is going to be a bit complicated. * we have an nvlist coming out of the kernel that * will indicate where the permission is set and then * it will contain allow of the various "who's", and what * their permissions are. To further complicate this * we will then have to coalesce the local,descendent * and local+descendent permissions where appropriate. * The kernel only knows about a permission as being local * or descendent, but not both. * * In order to make this easier for zfs_main to deal with * a series of AVL trees will be used to maintain * all of this, primarily for sorting purposes as well * as the ability to quickly locate a specific entry. * * What we end up with are tree's for sets, create perms, * user, groups and everyone. With each of those trees * we have subtrees for local, descendent and local+descendent * permissions. */ int zfs_perm_get(zfs_handle_t *zhp, zfs_allow_t **zfs_perms) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int error; nvlist_t *nvlist; nvlist_t *permnv, *sourcenv; nvpair_t *who_pair, *source_pair; nvpair_t *perm_pair; char errbuf[1024]; zfs_allow_t *zallowp, *newallowp; char ld; char *nvpname; uid_t uid; gid_t gid; avl_tree_t *tree = NULL; avl_index_t where; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while (ioctl(zhp->zfs_hdl->libzfs_fd, ZFS_IOC_GET_FSACL, &zc) != 0) { if (errno == ENOMEM) { if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (-1); } } else if (errno == ENOTSUP) { zcmd_free_nvlists(&zc); (void) snprintf(errbuf, sizeof (errbuf), gettext("Pool must be upgraded to use 'allow'")); return (zfs_error(zhp->zfs_hdl, EZFS_BADVERSION, errbuf)); } else { zcmd_free_nvlists(&zc); return (-1); } } if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &nvlist) != 0) { zcmd_free_nvlists(&zc); return (-1); } zcmd_free_nvlists(&zc); source_pair = nvlist_next_nvpair(nvlist, NULL); if (source_pair == NULL) { *zfs_perms = NULL; return (0); } *zfs_perms = zfs_alloc_perm_tree(zhp, NULL, nvpair_name(source_pair)); if (*zfs_perms == NULL) { return (0); } zallowp = *zfs_perms; for (;;) { struct passwd *pwd; struct group *grp; zfs_allow_node_t *allownode; zfs_allow_node_t findallownode; zfs_allow_node_t *newallownode; (void) strlcpy(zallowp->z_setpoint, nvpair_name(source_pair), sizeof (zallowp->z_setpoint)); if ((error = nvpair_value_nvlist(source_pair, &sourcenv)) != 0) goto abort; /* * Make sure nvlist is composed correctly */ if (zfs_deleg_verify_nvlist(sourcenv)) { goto abort; } who_pair = nvlist_next_nvpair(sourcenv, NULL); if (who_pair == NULL) { goto abort; } do { error = nvpair_value_nvlist(who_pair, &permnv); if (error) { goto abort; } /* * First build up the key to use * for looking up in the various * who trees. */ ld = nvpair_name(who_pair)[1]; nvpname = nvpair_name(who_pair); switch (nvpair_name(who_pair)[0]) { case ZFS_DELEG_USER: case ZFS_DELEG_USER_SETS: tree = &zallowp->z_user; uid = atol(&nvpname[3]); pwd = getpwuid(uid); (void) snprintf(findallownode.z_key, sizeof (findallownode.z_key), "user %s", (pwd) ? pwd->pw_name : &nvpair_name(who_pair)[3]); break; case ZFS_DELEG_GROUP: case ZFS_DELEG_GROUP_SETS: tree = &zallowp->z_group; gid = atol(&nvpname[3]); grp = getgrgid(gid); (void) snprintf(findallownode.z_key, sizeof (findallownode.z_key), "group %s", (grp) ? grp->gr_name : &nvpair_name(who_pair)[3]); break; case ZFS_DELEG_CREATE: case ZFS_DELEG_CREATE_SETS: tree = &zallowp->z_crperms; (void) strlcpy(findallownode.z_key, "", sizeof (findallownode.z_key)); break; case ZFS_DELEG_EVERYONE: case ZFS_DELEG_EVERYONE_SETS: (void) snprintf(findallownode.z_key, sizeof (findallownode.z_key), "everyone"); tree = &zallowp->z_everyone; break; case ZFS_DELEG_NAMED_SET: case ZFS_DELEG_NAMED_SET_SETS: (void) snprintf(findallownode.z_key, sizeof (findallownode.z_key), "%s", &nvpair_name(who_pair)[3]); tree = &zallowp->z_sets; break; default: break; } /* * Place who in tree */ allownode = avl_find(tree, &findallownode, &where); if (allownode == NULL) { if ((newallownode = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_allow_node_t))) == NULL) { goto abort; } avl_create(&newallownode->z_localdescend, perm_compare, sizeof (zfs_perm_node_t), offsetof(zfs_perm_node_t, z_node)); avl_create(&newallownode->z_local, perm_compare, sizeof (zfs_perm_node_t), offsetof(zfs_perm_node_t, z_node)); avl_create(&newallownode->z_descend, perm_compare, sizeof (zfs_perm_node_t), offsetof(zfs_perm_node_t, z_node)); (void) strlcpy(newallownode->z_key, findallownode.z_key, sizeof (findallownode.z_key)); avl_insert(tree, newallownode, where); allownode = newallownode; } /* * Now iterate over the permissions and * place them in the appropriate local, * descendent or local+descendent tree. * * The permissions are added to the tree * via zfs_coalesce_perm(). */ perm_pair = nvlist_next_nvpair(permnv, NULL); if (perm_pair == NULL) goto abort; do { if (zfs_coalesce_perm(zhp, allownode, nvpair_name(perm_pair), ld) != 0) goto abort; } while ((perm_pair = nvlist_next_nvpair(permnv, perm_pair))); } while ((who_pair = nvlist_next_nvpair(sourcenv, who_pair))); source_pair = nvlist_next_nvpair(nvlist, source_pair); if (source_pair == NULL) break; /* * allocate another node from the link list of * zfs_allow_t structures */ newallowp = zfs_alloc_perm_tree(zhp, zallowp, nvpair_name(source_pair)); if (newallowp == NULL) { goto abort; } zallowp = newallowp; } nvlist_free(nvlist); return (0); abort: zfs_free_allows(*zfs_perms); nvlist_free(nvlist); return (-1); } static char * zfs_deleg_perm_note(zfs_deleg_note_t note) { /* * Don't put newlines on end of lines */ switch (note) { case ZFS_DELEG_NOTE_CREATE: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount' ability")); case ZFS_DELEG_NOTE_DESTROY: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount' ability")); case ZFS_DELEG_NOTE_SNAPSHOT: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount' ability")); case ZFS_DELEG_NOTE_ROLLBACK: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount' ability")); case ZFS_DELEG_NOTE_CLONE: return (dgettext(TEXT_DOMAIN, "Must also have the 'create' " "ability and 'mount'\n" "\t\t\t\tability in the origin file system")); case ZFS_DELEG_NOTE_PROMOTE: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount'\n" "\t\t\t\tand 'promote' ability in the origin file system")); case ZFS_DELEG_NOTE_RENAME: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount' " "and 'create' \n\t\t\t\tability in the new parent")); case ZFS_DELEG_NOTE_RECEIVE: return (dgettext(TEXT_DOMAIN, "Must also have the 'mount'" " and 'create' ability")); case ZFS_DELEG_NOTE_USERPROP: return (dgettext(TEXT_DOMAIN, "Allows changing any user property")); case ZFS_DELEG_NOTE_ALLOW: return (dgettext(TEXT_DOMAIN, "Must also have the permission that is being\n" "\t\t\t\tallowed")); case ZFS_DELEG_NOTE_MOUNT: return (dgettext(TEXT_DOMAIN, "Allows mount/umount of ZFS datasets")); case ZFS_DELEG_NOTE_SHARE: return (dgettext(TEXT_DOMAIN, "Allows sharing file systems over NFS or SMB\n" "\t\t\t\tprotocols")); case ZFS_DELEG_NOTE_NONE: default: return (dgettext(TEXT_DOMAIN, "")); } } typedef enum { ZFS_DELEG_SUBCOMMAND, ZFS_DELEG_PROP, ZFS_DELEG_OTHER } zfs_deleg_perm_type_t; /* * is the permission a subcommand or other? */ zfs_deleg_perm_type_t zfs_deleg_perm_type(const char *perm) { if (strcmp(perm, "userprop") == 0) return (ZFS_DELEG_OTHER); else return (ZFS_DELEG_SUBCOMMAND); } static char * zfs_deleg_perm_type_str(zfs_deleg_perm_type_t type) { switch (type) { case ZFS_DELEG_SUBCOMMAND: return (dgettext(TEXT_DOMAIN, "subcommand")); case ZFS_DELEG_PROP: return (dgettext(TEXT_DOMAIN, "property")); case ZFS_DELEG_OTHER: return (dgettext(TEXT_DOMAIN, "other")); default: break; } return (""); } /*ARGSUSED*/ static int zfs_deleg_prop_cb(int prop, void *cb) { if (zfs_prop_delegatable(prop)) (void) fprintf(stderr, "%-15s %-15s\n", zfs_prop_to_name(prop), zfs_deleg_perm_type_str(ZFS_DELEG_PROP)); return (ZPROP_CONT); } void zfs_deleg_permissions(void) { int i; (void) fprintf(stderr, "\n%-15s %-15s\t%s\n\n", "NAME", "TYPE", "NOTES"); /* * First print out the subcommands */ for (i = 0; zfs_deleg_perm_tab[i].z_perm != NULL; i++) { (void) fprintf(stderr, "%-15s %-15s\t%s\n", zfs_deleg_perm_tab[i].z_perm, zfs_deleg_perm_type_str( zfs_deleg_perm_type(zfs_deleg_perm_tab[i].z_perm)), zfs_deleg_perm_note(zfs_deleg_perm_tab[i].z_note)); } (void) zprop_iter(zfs_deleg_prop_cb, NULL, B_FALSE, B_TRUE, ZFS_TYPE_DATASET|ZFS_TYPE_VOLUME); } /* * Given a property name and value, set the property for the given dataset. */ int zfs_prop_set(zfs_handle_t *zhp, const char *propname, const char *propval) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int ret = -1; prop_changelist_t *cl = NULL; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; nvlist_t *nvl = NULL, *realprops; zfs_prop_t prop; boolean_t do_prefix; uint64_t idx; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot set property for '%s'"), zhp->zfs_name); if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0) != 0 || nvlist_add_string(nvl, propname, propval) != 0) { (void) no_memory(hdl); goto error; } if ((realprops = zfs_valid_proplist(hdl, zhp->zfs_type, nvl, zfs_prop_get_int(zhp, ZFS_PROP_ZONED), zhp, errbuf)) == NULL) goto error; nvlist_free(nvl); nvl = realprops; prop = zfs_name_to_prop(propname); if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) goto error; if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } /* * If the dataset's canmount property is being set to noauto, * then we want to prevent unmounting & remounting it. */ do_prefix = !((prop == ZFS_PROP_CANMOUNT) && (zprop_string_to_index(prop, propval, &idx, ZFS_TYPE_DATASET) == 0) && (idx == ZFS_CANMOUNT_NOAUTO)); if (do_prefix && (ret = changelist_prefix(cl)) != 0) goto error; /* * Execute the corresponding ioctl() to set this property. */ (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(hdl, &zc, nvl) != 0) goto error; ret = zfs_ioctl(hdl, ZFS_IOC_SET_PROP, &zc); if (ret != 0) { switch (errno) { case ENOSPC: /* * For quotas and reservations, ENOSPC indicates * something different; setting a quota or reservation * doesn't use any disk space. */ switch (prop) { case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is less than current used or " "reserved space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "size is greater than available space")); (void) zfs_error(hdl, EZFS_PROPSPACE, errbuf); break; default: (void) zfs_standard_error(hdl, errno, errbuf); break; } break; case EBUSY: if (prop == ZFS_PROP_VOLBLOCKSIZE) (void) zfs_error(hdl, EZFS_VOLHASDATA, errbuf); else (void) zfs_standard_error(hdl, EBUSY, errbuf); break; case EROFS: (void) zfs_error(hdl, EZFS_DSREADONLY, errbuf); break; case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool and or dataset must be upgraded to set this " "property or value")); (void) zfs_error(hdl, EZFS_BADVERSION, errbuf); break; case ERANGE: if (prop == ZFS_PROP_COMPRESSION) { (void) zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "property setting is not allowed on " "bootable datasets")); (void) zfs_error(hdl, EZFS_NOTSUP, errbuf); } else { (void) zfs_standard_error(hdl, errno, errbuf); } break; case EOVERFLOW: /* * This platform can't address a volume this big. */ #ifdef _ILP32 if (prop == ZFS_PROP_VOLSIZE) { (void) zfs_error(hdl, EZFS_VOLTOOBIG, errbuf); break; } #endif /* FALLTHROUGH */ default: (void) zfs_standard_error(hdl, errno, errbuf); } } else { if (do_prefix) ret = changelist_postfix(cl); /* * Refresh the statistics so the new property value * is reflected. */ if (ret == 0) (void) get_stats(zhp); } error: nvlist_free(nvl); zcmd_free_nvlists(&zc); if (cl) changelist_free(cl); return (ret); } /* * Given a property, inherit the value from the parent dataset. */ int zfs_prop_inherit(zfs_handle_t *zhp, const char *propname) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int ret; prop_changelist_t *cl; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; zfs_prop_t prop; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot inherit %s for '%s'"), propname, zhp->zfs_name); if ((prop = zfs_name_to_prop(propname)) == ZPROP_INVAL) { /* * For user properties, the amount of work we have to do is very * small, so just do it here. */ if (!zfs_prop_user(propname)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "invalid property")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc) != 0) return (zfs_standard_error(hdl, errno, errbuf)); return (0); } /* * Verify that this property is inheritable. */ if (zfs_prop_readonly(prop)) return (zfs_error(hdl, EZFS_PROPREADONLY, errbuf)); if (!zfs_prop_inheritable(prop)) return (zfs_error(hdl, EZFS_PROPNONINHERIT, errbuf)); /* * Check to see if the value applies to this type */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (zfs_error(hdl, EZFS_PROPTYPE, errbuf)); /* * Normalize the name, to get rid of shorthand abbrevations. */ propname = zfs_prop_to_name(prop); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, propname, sizeof (zc.zc_value)); if (prop == ZFS_PROP_MOUNTPOINT && getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } /* * Determine datasets which will be affected by this change, if any. */ if ((cl = changelist_gather(zhp, prop, 0, 0)) == NULL) return (-1); if (prop == ZFS_PROP_MOUNTPOINT && changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); ret = zfs_error(hdl, EZFS_ZONED, errbuf); goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_INHERIT_PROP, &zc)) != 0) { return (zfs_standard_error(hdl, errno, errbuf)); } else { if ((ret = changelist_postfix(cl)) != 0) goto error; /* * Refresh the statistics so the new property is reflected. */ (void) get_stats(zhp); } error: changelist_free(cl); return (ret); } /* * True DSL properties are stored in an nvlist. The following two functions * extract them appropriately. */ static uint64_t getprop_uint64(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; uint64_t value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_uint64(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { value = zfs_prop_default_numeric(prop); *source = ""; } return (value); } static char * getprop_string(zfs_handle_t *zhp, zfs_prop_t prop, char **source) { nvlist_t *nv; char *value; *source = NULL; if (nvlist_lookup_nvlist(zhp->zfs_props, zfs_prop_to_name(prop), &nv) == 0) { verify(nvlist_lookup_string(nv, ZPROP_VALUE, &value) == 0); (void) nvlist_lookup_string(nv, ZPROP_SOURCE, source); } else { if ((value = (char *)zfs_prop_default_string(prop)) == NULL) value = ""; *source = ""; } return (value); } /* * Internal function for getting a numeric property. Both zfs_prop_get() and * zfs_prop_get_int() are built using this interface. * * Certain properties can be overridden using 'mount -o'. In this case, scan * the contents of the /etc/mnttab entry, searching for the appropriate options. * If they differ from the on-disk values, report the current values and mark * the source "temporary". */ static int get_numeric_property(zfs_handle_t *zhp, zfs_prop_t prop, zprop_source_t *src, char **source, uint64_t *val) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; nvlist_t *zplprops = NULL; struct mnttab mnt; char *mntopt_on = NULL; char *mntopt_off = NULL; *source = NULL; switch (prop) { case ZFS_PROP_ATIME: mntopt_on = MNTOPT_ATIME; mntopt_off = MNTOPT_NOATIME; break; case ZFS_PROP_DEVICES: mntopt_on = MNTOPT_DEVICES; mntopt_off = MNTOPT_NODEVICES; break; case ZFS_PROP_EXEC: mntopt_on = MNTOPT_EXEC; mntopt_off = MNTOPT_NOEXEC; break; case ZFS_PROP_READONLY: mntopt_on = MNTOPT_RO; mntopt_off = MNTOPT_RW; break; case ZFS_PROP_SETUID: mntopt_on = MNTOPT_SETUID; mntopt_off = MNTOPT_NOSETUID; break; case ZFS_PROP_XATTR: mntopt_on = MNTOPT_XATTR; mntopt_off = MNTOPT_NOXATTR; break; case ZFS_PROP_NBMAND: mntopt_on = MNTOPT_NBMAND; mntopt_off = MNTOPT_NONBMAND; break; default: break; } /* * Because looking up the mount options is potentially expensive * (iterating over all of /etc/mnttab), we defer its calculation until * we're looking up a property which requires its presence. */ if (!zhp->zfs_mntcheck && (mntopt_on != NULL || prop == ZFS_PROP_MOUNTED)) { libzfs_handle_t *hdl = zhp->zfs_hdl; struct mnttab entry; if (libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0) { zhp->zfs_mntopts = zfs_strdup(hdl, entry.mnt_mntopts); if (zhp->zfs_mntopts == NULL) return (-1); } zhp->zfs_mntcheck = B_TRUE; } if (zhp->zfs_mntopts == NULL) mnt.mnt_mntopts = ""; else mnt.mnt_mntopts = zhp->zfs_mntopts; switch (prop) { case ZFS_PROP_ATIME: case ZFS_PROP_DEVICES: case ZFS_PROP_EXEC: case ZFS_PROP_READONLY: case ZFS_PROP_SETUID: case ZFS_PROP_XATTR: case ZFS_PROP_NBMAND: *val = getprop_uint64(zhp, prop, source); if (hasmntopt(&mnt, mntopt_on) && !*val) { *val = B_TRUE; if (src) *src = ZPROP_SRC_TEMPORARY; } else if (hasmntopt(&mnt, mntopt_off) && *val) { *val = B_FALSE; if (src) *src = ZPROP_SRC_TEMPORARY; } break; case ZFS_PROP_CANMOUNT: *val = getprop_uint64(zhp, prop, source); if (*val != ZFS_CANMOUNT_ON) *source = zhp->zfs_name; else *source = ""; /* default */ break; case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: *val = getprop_uint64(zhp, prop, source); if (*val == 0) *source = ""; /* default */ else *source = zhp->zfs_name; break; case ZFS_PROP_MOUNTED: *val = (zhp->zfs_mntopts != NULL); break; case ZFS_PROP_NUMCLONES: *val = zhp->zfs_dmustats.dds_num_clones; break; case ZFS_PROP_VERSION: case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: case ZFS_PROP_CASE: if (!zfs_prop_valid_for_type(prop, zhp->zfs_head_type) || zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_OBJSET_ZPLPROPS, &zc)) { zcmd_free_nvlists(&zc); zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "unable to get %s property"), zfs_prop_to_name(prop)); return (zfs_error(zhp->zfs_hdl, EZFS_BADVERSION, dgettext(TEXT_DOMAIN, "internal error"))); } if (zcmd_read_dst_nvlist(zhp->zfs_hdl, &zc, &zplprops) != 0 || nvlist_lookup_uint64(zplprops, zfs_prop_to_name(prop), val) != 0) { zcmd_free_nvlists(&zc); zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "unable to get %s property"), zfs_prop_to_name(prop)); return (zfs_error(zhp->zfs_hdl, EZFS_NOMEM, dgettext(TEXT_DOMAIN, "internal error"))); } if (zplprops) nvlist_free(zplprops); zcmd_free_nvlists(&zc); break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: case PROP_TYPE_INDEX: *val = getprop_uint64(zhp, prop, source); /* * If we tried to use a defalut value for a * readonly property, it means that it was not * present; return an error. */ if (zfs_prop_readonly(prop) && *source && (*source)[0] == '\0') { return (-1); } break; case PROP_TYPE_STRING: default: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "cannot get non-numeric property")); return (zfs_error(zhp->zfs_hdl, EZFS_BADPROP, dgettext(TEXT_DOMAIN, "internal error"))); } } return (0); } /* * Calculate the source type, given the raw source string. */ static void get_source(zfs_handle_t *zhp, zprop_source_t *srctype, char *source, char *statbuf, size_t statlen) { if (statbuf == NULL || *srctype == ZPROP_SRC_TEMPORARY) return; if (source == NULL) { *srctype = ZPROP_SRC_NONE; } else if (source[0] == '\0') { *srctype = ZPROP_SRC_DEFAULT; } else { if (strcmp(source, zhp->zfs_name) == 0) { *srctype = ZPROP_SRC_LOCAL; } else { (void) strlcpy(statbuf, source, statlen); *srctype = ZPROP_SRC_INHERITED; } } } /* * Retrieve a property from the given object. If 'literal' is specified, then * numbers are left as exact values. Otherwise, numbers are converted to a * human-readable form. * * Returns 0 on success, or -1 on error. */ int zfs_prop_get(zfs_handle_t *zhp, zfs_prop_t prop, char *propbuf, size_t proplen, zprop_source_t *src, char *statbuf, size_t statlen, boolean_t literal) { char *source = NULL; uint64_t val; char *str; const char *strval; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) return (-1); if (src) *src = ZPROP_SRC_NONE; switch (prop) { case ZFS_PROP_CREATION: /* * 'creation' is a time_t stored in the statistics. We convert * this into a string unless 'literal' is specified. */ { val = getprop_uint64(zhp, prop, &source); time_t local_time = (time_t)val; struct tm t; if (literal || localtime_r(&local_time, &t) == NULL || strftime(propbuf, proplen, "%a %b %e %k:%M %Y", &t) == 0) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t) val); } break; case ZFS_PROP_MOUNTPOINT: /* * Getting the precise mountpoint can be tricky. * * - for 'none' or 'legacy', return those values. * - for inherited mountpoints, we want to take everything * after our ancestor and append it to the inherited value. * * If the pool has an alternate root, we want to prepend that * root to any values we return. */ str = getprop_string(zhp, prop, &source); if (str[0] == '/') { char buf[MAXPATHLEN]; char *root = buf; const char *relpath = zhp->zfs_name + strlen(source); if (relpath[0] == '/') relpath++; if ((zpool_get_prop(zhp->zpool_hdl, ZPOOL_PROP_ALTROOT, buf, MAXPATHLEN, NULL)) || (strcmp(root, "-") == 0)) root[0] = '\0'; /* * Special case an alternate root of '/'. This will * avoid having multiple leading slashes in the * mountpoint path. */ if (strcmp(root, "/") == 0) root++; /* * If the mountpoint is '/' then skip over this * if we are obtaining either an alternate root or * an inherited mountpoint. */ if (str[1] == '\0' && (root[0] != '\0' || relpath[0] != '\0')) str++; if (relpath[0] == '\0') (void) snprintf(propbuf, proplen, "%s%s", root, str); else (void) snprintf(propbuf, proplen, "%s%s%s%s", root, str, relpath[0] == '@' ? "" : "/", relpath); } else { /* 'legacy' or 'none' */ (void) strlcpy(propbuf, str, proplen); } break; case ZFS_PROP_ORIGIN: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); /* * If there is no parent at all, return failure to indicate that * it doesn't apply to this dataset. */ if (propbuf[0] == '\0') return (-1); break; case ZFS_PROP_QUOTA: case ZFS_PROP_REFQUOTA: case ZFS_PROP_RESERVATION: case ZFS_PROP_REFRESERVATION: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); /* * If quota or reservation is 0, we translate this into 'none' * (unless literal is set), and indicate that it's the default * value. Otherwise, we print the number nicely and indicate * that its set locally. */ if (val == 0) { if (literal) (void) strlcpy(propbuf, "0", proplen); else (void) strlcpy(propbuf, "none", proplen); } else { if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); } break; case ZFS_PROP_COMPRESSRATIO: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); (void) snprintf(propbuf, proplen, "%lld.%02lldx", (longlong_t) val / 100, (longlong_t)val % 100); break; case ZFS_PROP_TYPE: switch (zhp->zfs_type) { case ZFS_TYPE_FILESYSTEM: str = "filesystem"; break; case ZFS_TYPE_VOLUME: str = "volume"; break; case ZFS_TYPE_SNAPSHOT: str = "snapshot"; break; default: abort(); } (void) snprintf(propbuf, proplen, "%s", str); break; case ZFS_PROP_MOUNTED: /* * The 'mounted' property is a pseudo-property that described * whether the filesystem is currently mounted. Even though * it's a boolean value, the typical values of "on" and "off" * don't make sense, so we translate to "yes" and "no". */ if (get_numeric_property(zhp, ZFS_PROP_MOUNTED, src, &source, &val) != 0) return (-1); if (val) (void) strlcpy(propbuf, "yes", proplen); else (void) strlcpy(propbuf, "no", proplen); break; case ZFS_PROP_NAME: /* * The 'name' property is a pseudo-property derived from the * dataset name. It is presented as a real property to simplify * consumers. */ (void) strlcpy(propbuf, zhp->zfs_name, proplen); break; default: switch (zfs_prop_get_type(prop)) { case PROP_TYPE_NUMBER: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (literal) (void) snprintf(propbuf, proplen, "%llu", (u_longlong_t)val); else zfs_nicenum(val, propbuf, proplen); break; case PROP_TYPE_STRING: (void) strlcpy(propbuf, getprop_string(zhp, prop, &source), proplen); break; case PROP_TYPE_INDEX: if (get_numeric_property(zhp, prop, src, &source, &val) != 0) return (-1); if (zfs_prop_index_to_string(prop, val, &strval) != 0) return (-1); (void) strlcpy(propbuf, strval, proplen); break; default: abort(); } } get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Utility function to get the given numeric property. Does no validation that * the given property is the appropriate type; should only be used with * hard-coded property types. */ uint64_t zfs_prop_get_int(zfs_handle_t *zhp, zfs_prop_t prop) { char *source; uint64_t val; (void) get_numeric_property(zhp, prop, NULL, &source, &val); return (val); } int zfs_prop_set_int(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t val) { char buf[64]; zfs_nicenum(val, buf, sizeof (buf)); return (zfs_prop_set(zhp, zfs_prop_to_name(prop), buf)); } /* * Similar to zfs_prop_get(), but returns the value as an integer. */ int zfs_prop_get_numeric(zfs_handle_t *zhp, zfs_prop_t prop, uint64_t *value, zprop_source_t *src, char *statbuf, size_t statlen) { char *source; /* * Check to see if this property applies to our object */ if (!zfs_prop_valid_for_type(prop, zhp->zfs_type)) { return (zfs_error_fmt(zhp->zfs_hdl, EZFS_PROPTYPE, dgettext(TEXT_DOMAIN, "cannot get property '%s'"), zfs_prop_to_name(prop))); } if (src) *src = ZPROP_SRC_NONE; if (get_numeric_property(zhp, prop, src, &source, value) != 0) return (-1); get_source(zhp, src, source, statbuf, statlen); return (0); } /* * Returns the name of the given zfs handle. */ const char * zfs_get_name(const zfs_handle_t *zhp) { return (zhp->zfs_name); } /* * Returns the type of the given zfs handle. */ zfs_type_t zfs_get_type(const zfs_handle_t *zhp) { return (zhp->zfs_type); } static int zfs_do_list_ioctl(zfs_handle_t *zhp, int arg, zfs_cmd_t *zc) { int rc; uint64_t orig_cookie; orig_cookie = zc->zc_cookie; top: (void) strlcpy(zc->zc_name, zhp->zfs_name, sizeof (zc->zc_name)); rc = ioctl(zhp->zfs_hdl->libzfs_fd, arg, zc); if (rc == -1) { switch (errno) { case ENOMEM: /* expand nvlist memory and try again */ if (zcmd_expand_dst_nvlist(zhp->zfs_hdl, zc) != 0) { zcmd_free_nvlists(zc); return (-1); } zc->zc_cookie = orig_cookie; goto top; /* * An errno value of ESRCH indicates normal completion. * If ENOENT is returned, then the underlying dataset * has been removed since we obtained the handle. */ case ESRCH: case ENOENT: rc = 1; break; default: rc = zfs_standard_error(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot iterate filesystems")); break; } } return (rc); } /* * Iterate over all child filesystems */ int zfs_iter_filesystems(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type != ZFS_TYPE_FILESYSTEM) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_DATASET_LIST_NEXT, &zc)) == 0) { /* * Ignore private dataset names. */ if (dataset_name_hidden(zc.zc_name)) continue; /* * Silently ignore errors, as the only plausible explanation is * that the pool has since been removed. */ if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all snapshots */ int zfs_iter_snapshots(zfs_handle_t *zhp, zfs_iter_f func, void *data) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; zfs_handle_t *nzhp; int ret; if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) return (0); if (zcmd_alloc_dst_nvlist(zhp->zfs_hdl, &zc, 0) != 0) return (-1); while ((ret = zfs_do_list_ioctl(zhp, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc)) == 0) { if ((nzhp = make_dataset_handle_zc(zhp->zfs_hdl, &zc)) == NULL) { continue; } if ((ret = func(nzhp, data)) != 0) { zcmd_free_nvlists(&zc); return (ret); } } zcmd_free_nvlists(&zc); return ((ret < 0) ? ret : 0); } /* * Iterate over all children, snapshots and filesystems */ int zfs_iter_children(zfs_handle_t *zhp, zfs_iter_f func, void *data) { int ret; if ((ret = zfs_iter_filesystems(zhp, func, data)) != 0) return (ret); return (zfs_iter_snapshots(zhp, func, data)); } /* * Given a complete name, return just the portion that refers to the parent. * Can return NULL if this is a pool. */ static int parent_name(const char *path, char *buf, size_t buflen) { char *loc; if ((loc = strrchr(path, '/')) == NULL) return (-1); (void) strncpy(buf, path, MIN(buflen, loc - path)); buf[loc - path] = '\0'; return (0); } /* * If accept_ancestor is false, then check to make sure that the given path has * a parent, and that it exists. If accept_ancestor is true, then find the * closest existing ancestor for the given path. In prefixlen return the * length of already existing prefix of the given path. We also fetch the * 'zoned' property, which is used to validate property settings when creating * new datasets. */ static int check_parents(libzfs_handle_t *hdl, const char *path, uint64_t *zoned, boolean_t accept_ancestor, int *prefixlen) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; char parent[ZFS_MAXNAMELEN]; char *slash; zfs_handle_t *zhp; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* get parent, and check to see if this is just a pool */ if (parent_name(path, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } /* check to see if the pool exists */ if ((slash = strchr(parent, '/')) == NULL) slash = parent + strlen(parent); (void) strncpy(zc.zc_name, parent, slash - parent); zc.zc_name[slash - parent] = '\0'; if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0 && errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } /* check to see if the parent dataset exists */ while ((zhp = make_dataset_handle(hdl, parent)) == NULL) { if (errno == ENOENT && accept_ancestor) { /* * Go deeper to find an ancestor, give up on top level. */ if (parent_name(parent, parent, sizeof (parent)) != 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such pool '%s'"), zc.zc_name); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } } else if (errno == ENOENT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent does not exist")); return (zfs_error(hdl, EZFS_NOENT, errbuf)); } else return (zfs_standard_error(hdl, errno, errbuf)); } *zoned = zfs_prop_get_int(zhp, ZFS_PROP_ZONED); /* we are in a non-global zone, but parent is in the global zone */ if (getzoneid() != GLOBAL_ZONEID && !(*zoned)) { (void) zfs_standard_error(hdl, EPERM, errbuf); zfs_close(zhp); return (-1); } /* make sure parent is a filesystem */ if (zfs_get_type(zhp) != ZFS_TYPE_FILESYSTEM) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent is not a filesystem")); (void) zfs_error(hdl, EZFS_BADTYPE, errbuf); zfs_close(zhp); return (-1); } zfs_close(zhp); if (prefixlen != NULL) *prefixlen = strlen(parent); return (0); } /* * Finds whether the dataset of the given type(s) exists. */ boolean_t zfs_dataset_exists(libzfs_handle_t *hdl, const char *path, zfs_type_t types) { zfs_handle_t *zhp; if (!zfs_validate_name(hdl, path, types, B_FALSE)) return (B_FALSE); /* * Try to get stats for the dataset, which will tell us if it exists. */ if ((zhp = make_dataset_handle(hdl, path)) != NULL) { int ds_type = zhp->zfs_type; zfs_close(zhp); if (types & ds_type) return (B_TRUE); } return (B_FALSE); } /* * Given a path to 'target', create all the ancestors between * the prefixlen portion of the path, and the target itself. * Fail if the initial prefixlen-ancestor does not already exist. */ int create_parents(libzfs_handle_t *hdl, char *target, int prefixlen) { zfs_handle_t *h; char *cp; const char *opname; /* make sure prefix exists */ cp = target + prefixlen; if (*cp != '/') { assert(strchr(cp, '/') == NULL); h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); } else { *cp = '\0'; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); *cp = '/'; } if (h == NULL) return (-1); zfs_close(h); /* * Attempt to create, mount, and share any ancestor filesystems, * up to the prefixlen-long one. */ for (cp = target + prefixlen + 1; (cp = strchr(cp, '/')); *cp = '/', cp++) { char *logstr; *cp = '\0'; h = make_dataset_handle(hdl, target); if (h) { /* it already exists, nothing to do here */ zfs_close(h); continue; } logstr = hdl->libzfs_log_str; hdl->libzfs_log_str = NULL; if (zfs_create(hdl, target, ZFS_TYPE_FILESYSTEM, NULL) != 0) { hdl->libzfs_log_str = logstr; opname = dgettext(TEXT_DOMAIN, "create"); goto ancestorerr; } hdl->libzfs_log_str = logstr; h = zfs_open(hdl, target, ZFS_TYPE_FILESYSTEM); if (h == NULL) { opname = dgettext(TEXT_DOMAIN, "open"); goto ancestorerr; } #ifdef HAVE_ZPL if (zfs_mount(h, NULL, 0) != 0) { opname = dgettext(TEXT_DOMAIN, "mount"); goto ancestorerr; } if (zfs_share(h) != 0) { opname = dgettext(TEXT_DOMAIN, "share"); goto ancestorerr; } #endif /* HAVE_ZPL */ zfs_close(h); } return (0); ancestorerr: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "failed to %s ancestor '%s'"), opname, target); return (-1); } /* * Creates non-existing ancestors of the given path. */ int zfs_create_ancestors(libzfs_handle_t *hdl, const char *path) { int prefix; uint64_t zoned; char *path_copy; int rc; if (check_parents(hdl, path, &zoned, B_TRUE, &prefix) != 0) return (-1); if ((path_copy = strdup(path)) != NULL) { rc = create_parents(hdl, path_copy, prefix); free(path_copy); } if (path_copy == NULL || rc != 0) return (-1); return (0); } /* * Create a new filesystem or volume. */ int zfs_create(libzfs_handle_t *hdl, const char *path, zfs_type_t type, nvlist_t *props) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int ret; uint64_t size = 0; uint64_t blocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); char errbuf[1024]; uint64_t zoned; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), path); /* validate the path, taking care to note the extended error message */ if (!zfs_validate_name(hdl, path, type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, path, &zoned, B_FALSE, NULL) != 0) return (-1); /* * The failure modes when creating a dataset of a different type over * one that already exists is a little strange. In particular, if you * try to create a dataset on top of an existing dataset, the ioctl() * will return ENOENT, not EEXIST. To prevent this from happening, we * first try to see if the dataset exists. */ (void) strlcpy(zc.zc_name, path, sizeof (zc.zc_name)); if (zfs_dataset_exists(hdl, zc.zc_name, ZFS_TYPE_DATASET)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset already exists")); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); } if (type == ZFS_TYPE_VOLUME) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; if (props && (props = zfs_valid_proplist(hdl, type, props, zoned, NULL, errbuf)) == 0) return (-1); if (type == ZFS_TYPE_VOLUME) { /* * If we are creating a volume, the size and block size must * satisfy a few restraints. First, the blocksize must be a * valid block size between SPA_{MIN,MAX}BLOCKSIZE. Second, the * volsize must be a multiple of the block size, and cannot be * zero. */ if (props == NULL || nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &size) != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if ((ret = nvlist_lookup_uint64(props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &blocksize)) != 0) { if (ret == ENOENT) { blocksize = zfs_prop_default_numeric( ZFS_PROP_VOLBLOCKSIZE); } else { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "missing volume block size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (size == 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size cannot be zero")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } if (size % blocksize != 0) { nvlist_free(props); zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume size must be a multiple of volume block " "size")); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); } } if (props && zcmd_write_src_nvlist(hdl, &zc, props) != 0) return (-1); nvlist_free(props); /* create the dataset */ ret = zfs_ioctl(hdl, ZFS_IOC_CREATE, &zc); if (ret == 0 && type == ZFS_TYPE_VOLUME) { ret = zvol_create_link(hdl, path); if (ret) { (void) zfs_standard_error(hdl, errno, dgettext(TEXT_DOMAIN, "Volume successfully created, but device links " "were not created")); zcmd_free_nvlists(&zc); return (-1); } } zcmd_free_nvlists(&zc); /* check for failure */ if (ret != 0) { char parent[ZFS_MAXNAMELEN]; (void) parent_name(path, parent, sizeof (parent)); switch (errno) { case ENOENT: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(hdl, EZFS_NOENT, errbuf)); case EINVAL: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "parent '%s' is not a filesystem"), parent); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); case EDOM: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "volume block size must be power of 2 from " "%u to %uk"), (uint_t)SPA_MINBLOCKSIZE, (uint_t)SPA_MAXBLOCKSIZE >> 10); return (zfs_error(hdl, EZFS_BADPROP, errbuf)); case ENOTSUP: zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "pool must be upgraded to set this " "property or value")); return (zfs_error(hdl, EZFS_BADVERSION, errbuf)); #ifdef _ILP32 case EOVERFLOW: /* * This platform can't address a volume this big. */ if (type == ZFS_TYPE_VOLUME) return (zfs_error(hdl, EZFS_VOLTOOBIG, errbuf)); #endif /* FALLTHROUGH */ default: return (zfs_standard_error(hdl, errno, errbuf)); } } return (0); } /* * Destroys the given dataset. The caller must make sure that the filesystem * isn't mounted, and that there are no active dependents. */ int zfs_destroy(zfs_handle_t *zhp) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) { /* * If user doesn't have permissions to unshare volume, then * abort the request. This would only happen for a * non-privileged user. */ #ifdef HAVE_ZPL if (zfs_unshare_iscsi(zhp) != 0) { return (-1); } #endif if (zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name) != 0) return (-1); zc.zc_objset_type = DMU_OST_ZVOL; } else { zc.zc_objset_type = DMU_OST_ZFS; } if (zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY, &zc) != 0) { return (zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot destroy '%s'"), zhp->zfs_name)); } remove_mountpoint(zhp); return (0); } struct destroydata { char *snapname; boolean_t gotone; boolean_t closezhp; }; static int zfs_remove_link_cb(zfs_handle_t *zhp, void *arg) { struct destroydata *dd = arg; zfs_handle_t *szhp; char name[ZFS_MAXNAMELEN]; boolean_t closezhp = dd->closezhp; int rv; (void) strlcpy(name, zhp->zfs_name, sizeof (name)); (void) strlcat(name, "@", sizeof (name)); (void) strlcat(name, dd->snapname, sizeof (name)); szhp = make_dataset_handle(zhp->zfs_hdl, name); if (szhp) { dd->gotone = B_TRUE; zfs_close(szhp); } if (zhp->zfs_type == ZFS_TYPE_VOLUME) { (void) zvol_remove_link(zhp->zfs_hdl, name); /* * NB: this is simply a best-effort. We don't want to * return an error, because then we wouldn't visit all * the volumes. */ } dd->closezhp = B_TRUE; rv = zfs_iter_filesystems(zhp, zfs_remove_link_cb, arg); if (closezhp) zfs_close(zhp); return (rv); } /* * Destroys all snapshots with the given name in zhp & descendants. */ int zfs_destroy_snaps(zfs_handle_t *zhp, char *snapname) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int ret; struct destroydata dd = { 0 }; dd.snapname = snapname; (void) zfs_remove_link_cb(zhp, &dd); if (!dd.gotone) { return (zfs_standard_error_fmt(zhp->zfs_hdl, ENOENT, dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zhp->zfs_name, snapname)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, snapname, sizeof (zc.zc_value)); ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_DESTROY_SNAPS, &zc); if (ret != 0) { char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot destroy '%s@%s'"), zc.zc_name, snapname); switch (errno) { case EEXIST: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "snapshot is cloned")); return (zfs_error(zhp->zfs_hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } return (0); } /* * Clones the given dataset. The target must be of the same type as the source. */ int zfs_clone(zfs_handle_t *zhp, const char *target, nvlist_t *props) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; char parent[ZFS_MAXNAMELEN]; int ret; char errbuf[1024]; libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_type_t type; uint64_t zoned; assert(zhp->zfs_type == ZFS_TYPE_SNAPSHOT); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create '%s'"), target); /* validate the target name */ if (!zfs_validate_name(hdl, target, ZFS_TYPE_FILESYSTEM, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); /* validate parents exist */ if (check_parents(hdl, target, &zoned, B_FALSE, NULL) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* do the clone */ if (ZFS_IS_VOLUME(zhp)) { zc.zc_objset_type = DMU_OST_ZVOL; type = ZFS_TYPE_VOLUME; } else { zc.zc_objset_type = DMU_OST_ZFS; type = ZFS_TYPE_FILESYSTEM; } if (props) { if ((props = zfs_valid_proplist(hdl, type, props, zoned, zhp, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } (void) strlcpy(zc.zc_name, target, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, zhp->zfs_name, sizeof (zc.zc_value)); ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_CREATE, &zc); zcmd_free_nvlists(&zc); if (ret != 0) { switch (errno) { case ENOENT: /* * The parent doesn't exist. We should have caught this * above, but there may a race condition that has since * destroyed the parent. * * At this point, we don't know whether it's the source * that doesn't exist anymore, or whether the target * dataset doesn't exist. */ zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "no such parent '%s'"), parent); return (zfs_error(zhp->zfs_hdl, EZFS_NOENT, errbuf)); case EXDEV: zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "source and target pools differ")); return (zfs_error(zhp->zfs_hdl, EZFS_CROSSTARGET, errbuf)); default: return (zfs_standard_error(zhp->zfs_hdl, errno, errbuf)); } } else if (ZFS_IS_VOLUME(zhp)) { ret = zvol_create_link(zhp->zfs_hdl, target); } return (ret); } typedef struct promote_data { char cb_mountpoint[MAXPATHLEN]; const char *cb_target; const char *cb_errbuf; uint64_t cb_pivot_txg; } promote_data_t; static int promote_snap_cb(zfs_handle_t *zhp, void *data) { promote_data_t *pd = data; zfs_handle_t *szhp; char snapname[MAXPATHLEN]; int rv = 0; /* We don't care about snapshots after the pivot point */ if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > pd->cb_pivot_txg) { zfs_close(zhp); return (0); } /* Remove the device link if it's a zvol. */ if (ZFS_IS_VOLUME(zhp)) (void) zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name); /* Check for conflicting names */ (void) strlcpy(snapname, pd->cb_target, sizeof (snapname)); (void) strlcat(snapname, strchr(zhp->zfs_name, '@'), sizeof (snapname)); szhp = make_dataset_handle(zhp->zfs_hdl, snapname); if (szhp != NULL) { zfs_close(szhp); zfs_error_aux(zhp->zfs_hdl, dgettext(TEXT_DOMAIN, "snapshot name '%s' from origin \n" "conflicts with '%s' from target"), zhp->zfs_name, snapname); rv = zfs_error(zhp->zfs_hdl, EZFS_EXISTS, pd->cb_errbuf); } zfs_close(zhp); return (rv); } static int promote_snap_done_cb(zfs_handle_t *zhp, void *data) { promote_data_t *pd = data; /* We don't care about snapshots after the pivot point */ if (zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) <= pd->cb_pivot_txg) { /* Create the device link if it's a zvol. */ if (ZFS_IS_VOLUME(zhp)) (void) zvol_create_link(zhp->zfs_hdl, zhp->zfs_name); } zfs_close(zhp); return (0); } /* * Promotes the given clone fs to be the clone parent. */ int zfs_promote(zfs_handle_t *zhp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; char parent[MAXPATHLEN]; char *cp; int ret; zfs_handle_t *pzhp; promote_data_t pd; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot promote '%s'"), zhp->zfs_name); if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots can not be promoted")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } (void) strlcpy(parent, zhp->zfs_dmustats.dds_origin, sizeof (parent)); if (parent[0] == '\0') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "not a cloned filesystem")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } cp = strchr(parent, '@'); *cp = '\0'; /* Walk the snapshots we will be moving */ pzhp = zfs_open(hdl, zhp->zfs_dmustats.dds_origin, ZFS_TYPE_SNAPSHOT); if (pzhp == NULL) return (-1); pd.cb_pivot_txg = zfs_prop_get_int(pzhp, ZFS_PROP_CREATETXG); zfs_close(pzhp); pd.cb_target = zhp->zfs_name; pd.cb_errbuf = errbuf; pzhp = zfs_open(hdl, parent, ZFS_TYPE_DATASET); if (pzhp == NULL) return (-1); (void) zfs_prop_get(pzhp, ZFS_PROP_MOUNTPOINT, pd.cb_mountpoint, sizeof (pd.cb_mountpoint), NULL, NULL, 0, FALSE); ret = zfs_iter_snapshots(pzhp, promote_snap_cb, &pd); if (ret != 0) { zfs_close(pzhp); return (-1); } /* issue the ioctl */ (void) strlcpy(zc.zc_value, zhp->zfs_dmustats.dds_origin, sizeof (zc.zc_value)); (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); ret = zfs_ioctl(hdl, ZFS_IOC_PROMOTE, &zc); if (ret != 0) { int save_errno = errno; (void) zfs_iter_snapshots(pzhp, promote_snap_done_cb, &pd); zfs_close(pzhp); switch (save_errno) { case EEXIST: /* * There is a conflicting snapshot name. We * should have caught this above, but they could * have renamed something in the mean time. */ zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "conflicting snapshot name from parent '%s'"), parent); return (zfs_error(hdl, EZFS_EXISTS, errbuf)); default: return (zfs_standard_error(hdl, save_errno, errbuf)); } } else { (void) zfs_iter_snapshots(zhp, promote_snap_done_cb, &pd); } zfs_close(pzhp); return (ret); } struct createdata { const char *cd_snapname; int cd_ifexists; }; static int zfs_create_link_cb(zfs_handle_t *zhp, void *arg) { struct createdata *cd = arg; int ret; if (zhp->zfs_type == ZFS_TYPE_VOLUME) { char name[MAXPATHLEN]; (void) strlcpy(name, zhp->zfs_name, sizeof (name)); (void) strlcat(name, "@", sizeof (name)); (void) strlcat(name, cd->cd_snapname, sizeof (name)); (void) zvol_create_link_common(zhp->zfs_hdl, name, cd->cd_ifexists); /* * NB: this is simply a best-effort. We don't want to * return an error, because then we wouldn't visit all * the volumes. */ } ret = zfs_iter_filesystems(zhp, zfs_create_link_cb, cd); zfs_close(zhp); return (ret); } /* * Takes a snapshot of the given dataset. */ int zfs_snapshot(libzfs_handle_t *hdl, const char *path, boolean_t recursive, nvlist_t *props) { const char *delim; char parent[ZFS_MAXNAMELEN]; zfs_handle_t *zhp; zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int ret; char errbuf[1024]; (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot snapshot '%s'"), path); /* validate the target name */ if (!zfs_validate_name(hdl, path, ZFS_TYPE_SNAPSHOT, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); if (props) { if ((props = zfs_valid_proplist(hdl, ZFS_TYPE_SNAPSHOT, props, B_FALSE, NULL, errbuf)) == NULL) return (-1); if (zcmd_write_src_nvlist(hdl, &zc, props) != 0) { nvlist_free(props); return (-1); } nvlist_free(props); } /* make sure the parent exists and is of the appropriate type */ delim = strchr(path, '@'); (void) strncpy(parent, path, delim - path); parent[delim - path] = '\0'; if ((zhp = zfs_open(hdl, parent, ZFS_TYPE_FILESYSTEM | ZFS_TYPE_VOLUME)) == NULL) { zcmd_free_nvlists(&zc); return (-1); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, delim+1, sizeof (zc.zc_value)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; zc.zc_cookie = recursive; ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_SNAPSHOT, &zc); zcmd_free_nvlists(&zc); /* * if it was recursive, the one that actually failed will be in * zc.zc_name. */ if (ret != 0) (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot create snapshot '%s@%s'"), zc.zc_name, zc.zc_value); if (ret == 0 && recursive) { struct createdata cd; cd.cd_snapname = delim + 1; cd.cd_ifexists = B_FALSE; (void) zfs_iter_filesystems(zhp, zfs_create_link_cb, &cd); } if (ret == 0 && zhp->zfs_type == ZFS_TYPE_VOLUME) { ret = zvol_create_link(zhp->zfs_hdl, path); if (ret != 0) { (void) zfs_standard_error(hdl, errno, dgettext(TEXT_DOMAIN, "Volume successfully snapshotted, but device links " "were not created")); zfs_close(zhp); return (-1); } } if (ret != 0) (void) zfs_standard_error(hdl, errno, errbuf); zfs_close(zhp); return (ret); } /* * Destroy any more recent snapshots. We invoke this callback on any dependents * of the snapshot first. If the 'cb_dependent' member is non-zero, then this * is a dependent and we should just destroy it without checking the transaction * group. */ typedef struct rollback_data { const char *cb_target; /* the snapshot */ uint64_t cb_create; /* creation time reference */ boolean_t cb_error; boolean_t cb_dependent; boolean_t cb_force; } rollback_data_t; static int rollback_destroy(zfs_handle_t *zhp, void *data) { rollback_data_t *cbp = data; if (!cbp->cb_dependent) { if (strcmp(zhp->zfs_name, cbp->cb_target) != 0 && zfs_get_type(zhp) == ZFS_TYPE_SNAPSHOT && zfs_prop_get_int(zhp, ZFS_PROP_CREATETXG) > cbp->cb_create) { char *logstr; cbp->cb_dependent = B_TRUE; cbp->cb_error |= zfs_iter_dependents(zhp, B_FALSE, rollback_destroy, cbp); cbp->cb_dependent = B_FALSE; logstr = zhp->zfs_hdl->libzfs_log_str; zhp->zfs_hdl->libzfs_log_str = NULL; cbp->cb_error |= zfs_destroy(zhp); zhp->zfs_hdl->libzfs_log_str = logstr; } } else { /* We must destroy this clone; first unmount it */ prop_changelist_t *clp; clp = changelist_gather(zhp, ZFS_PROP_NAME, 0, cbp->cb_force ? MS_FORCE: 0); if (clp == NULL || changelist_prefix(clp) != 0) { cbp->cb_error = B_TRUE; zfs_close(zhp); return (0); } if (zfs_destroy(zhp) != 0) cbp->cb_error = B_TRUE; else changelist_remove(clp, zhp->zfs_name); (void) changelist_postfix(clp); changelist_free(clp); } zfs_close(zhp); return (0); } /* * Given a dataset, rollback to a specific snapshot, discarding any * data changes since then and making it the active dataset. * * Any snapshots more recent than the target are destroyed, along with * their dependents. */ int zfs_rollback(zfs_handle_t *zhp, zfs_handle_t *snap, boolean_t force) { rollback_data_t cb = { 0 }; int err; zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; boolean_t restore_resv = 0; uint64_t old_volsize = 0, new_volsize; zfs_prop_t resv_prop = { 0 }; assert(zhp->zfs_type == ZFS_TYPE_FILESYSTEM || zhp->zfs_type == ZFS_TYPE_VOLUME); /* * Destroy all recent snapshots and its dependends. */ cb.cb_force = force; cb.cb_target = snap->zfs_name; cb.cb_create = zfs_prop_get_int(snap, ZFS_PROP_CREATETXG); (void) zfs_iter_children(zhp, rollback_destroy, &cb); if (cb.cb_error) return (-1); /* * Now that we have verified that the snapshot is the latest, * rollback to the given snapshot. */ if (zhp->zfs_type == ZFS_TYPE_VOLUME) { if (zvol_remove_link(zhp->zfs_hdl, zhp->zfs_name) != 0) return (-1); if (zfs_which_resv_prop(zhp, &resv_prop) < 0) return (-1); old_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); restore_resv = (old_volsize == zfs_prop_get_int(zhp, resv_prop)); } (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; /* * We rely on zfs_iter_children() to verify that there are no * newer snapshots for the given dataset. Therefore, we can * simply pass the name on to the ioctl() call. There is still * an unlikely race condition where the user has taken a * snapshot since we verified that this was the most recent. * */ if ((err = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_ROLLBACK, &zc)) != 0) { (void) zfs_standard_error_fmt(zhp->zfs_hdl, errno, dgettext(TEXT_DOMAIN, "cannot rollback '%s'"), zhp->zfs_name); return (err); } /* * For volumes, if the pre-rollback volsize matched the pre- * rollback reservation and the volsize has changed then set * the reservation property to the post-rollback volsize. * Make a new handle since the rollback closed the dataset. */ if ((zhp->zfs_type == ZFS_TYPE_VOLUME) && (zhp = make_dataset_handle(zhp->zfs_hdl, zhp->zfs_name))) { if ((err = zvol_create_link(zhp->zfs_hdl, zhp->zfs_name))) { zfs_close(zhp); return (err); } if (restore_resv) { new_volsize = zfs_prop_get_int(zhp, ZFS_PROP_VOLSIZE); if (old_volsize != new_volsize) err = zfs_prop_set_int(zhp, resv_prop, new_volsize); } zfs_close(zhp); } return (err); } /* * Iterate over all dependents for a given dataset. This includes both * hierarchical dependents (children) and data dependents (snapshots and * clones). The bulk of the processing occurs in get_dependents() in * libzfs_graph.c. */ int zfs_iter_dependents(zfs_handle_t *zhp, boolean_t allowrecursion, zfs_iter_f func, void *data) { char **dependents; size_t count; int i; zfs_handle_t *child; int ret = 0; if (get_dependents(zhp->zfs_hdl, allowrecursion, zhp->zfs_name, &dependents, &count) != 0) return (-1); for (i = 0; i < count; i++) { if ((child = make_dataset_handle(zhp->zfs_hdl, dependents[i])) == NULL) continue; if ((ret = func(child, data)) != 0) break; } for (i = 0; i < count; i++) free(dependents[i]); free(dependents); return (ret); } /* * Renames the given dataset. */ int zfs_rename(zfs_handle_t *zhp, const char *target, boolean_t recursive) { int ret; zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; char *delim; prop_changelist_t *cl = NULL; zfs_handle_t *zhrp = NULL; char *parentname = NULL; char parent[ZFS_MAXNAMELEN]; libzfs_handle_t *hdl = zhp->zfs_hdl; char errbuf[1024]; /* if we have the same exact name, just return success */ if (strcmp(zhp->zfs_name, target) == 0) return (0); (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename to '%s'"), target); /* * Make sure the target name is valid */ if (zhp->zfs_type == ZFS_TYPE_SNAPSHOT) { if ((strchr(target, '@') == NULL) || *target == '@') { /* * Snapshot target name is abbreviated, * reconstruct full dataset name */ (void) strlcpy(parent, zhp->zfs_name, sizeof (parent)); delim = strchr(parent, '@'); if (strchr(target, '@') == NULL) *(++delim) = '\0'; else *delim = '\0'; (void) strlcat(parent, target, sizeof (parent)); target = parent; } else { /* * Make sure we're renaming within the same dataset. */ delim = strchr(target, '@'); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '@') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "snapshots must be part of same " "dataset")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } else { if (recursive) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "recursive rename must be a snapshot")); return (zfs_error(hdl, EZFS_BADTYPE, errbuf)); } if (!zfs_validate_name(hdl, target, zhp->zfs_type, B_TRUE)) return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); uint64_t unused; /* validate parents */ if (check_parents(hdl, target, &unused, B_FALSE, NULL) != 0) return (-1); (void) parent_name(target, parent, sizeof (parent)); /* make sure we're in the same pool */ verify((delim = strchr(target, '/')) != NULL); if (strncmp(zhp->zfs_name, target, delim - target) != 0 || zhp->zfs_name[delim - target] != '/') { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "datasets must be within same pool")); return (zfs_error(hdl, EZFS_CROSSTARGET, errbuf)); } /* new name cannot be a child of the current dataset name */ if (strncmp(parent, zhp->zfs_name, strlen(zhp->zfs_name)) == 0) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "New dataset name cannot be a descendent of " "current dataset name")); return (zfs_error(hdl, EZFS_INVALIDNAME, errbuf)); } } (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zhp->zfs_name); if (getzoneid() == GLOBAL_ZONEID && zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "dataset is used in a non-global zone")); return (zfs_error(hdl, EZFS_ZONED, errbuf)); } if (recursive) { struct destroydata dd; parentname = zfs_strdup(zhp->zfs_hdl, zhp->zfs_name); if (parentname == NULL) { ret = -1; goto error; } delim = strchr(parentname, '@'); *delim = '\0'; zhrp = zfs_open(zhp->zfs_hdl, parentname, ZFS_TYPE_DATASET); if (zhrp == NULL) { ret = -1; goto error; } dd.snapname = delim + 1; dd.gotone = B_FALSE; dd.closezhp = B_TRUE; /* We remove any zvol links prior to renaming them */ ret = zfs_iter_filesystems(zhrp, zfs_remove_link_cb, &dd); if (ret) { goto error; } } else { if ((cl = changelist_gather(zhp, ZFS_PROP_NAME, 0, 0)) == NULL) return (-1); if (changelist_haszonedchild(cl)) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "child dataset with inherited mountpoint is used " "in a non-global zone")); (void) zfs_error(hdl, EZFS_ZONED, errbuf); ret = -1; goto error; } if ((ret = changelist_prefix(cl)) != 0) goto error; } if (ZFS_IS_VOLUME(zhp)) zc.zc_objset_type = DMU_OST_ZVOL; else zc.zc_objset_type = DMU_OST_ZFS; (void) strlcpy(zc.zc_name, zhp->zfs_name, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, target, sizeof (zc.zc_value)); zc.zc_cookie = recursive; if ((ret = zfs_ioctl(zhp->zfs_hdl, ZFS_IOC_RENAME, &zc)) != 0) { /* * if it was recursive, the one that actually failed will * be in zc.zc_name */ (void) snprintf(errbuf, sizeof (errbuf), dgettext(TEXT_DOMAIN, "cannot rename '%s'"), zc.zc_name); if (recursive && errno == EEXIST) { zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, "a child dataset already has a snapshot " "with the new name")); (void) zfs_error(hdl, EZFS_EXISTS, errbuf); } else { (void) zfs_standard_error(zhp->zfs_hdl, errno, errbuf); } /* * On failure, we still want to remount any filesystems that * were previously mounted, so we don't alter the system state. */ if (recursive) { struct createdata cd; /* only create links for datasets that had existed */ cd.cd_snapname = delim + 1; cd.cd_ifexists = B_TRUE; (void) zfs_iter_filesystems(zhrp, zfs_create_link_cb, &cd); } else { (void) changelist_postfix(cl); } } else { if (recursive) { struct createdata cd; /* only create links for datasets that had existed */ cd.cd_snapname = strchr(target, '@') + 1; cd.cd_ifexists = B_TRUE; ret = zfs_iter_filesystems(zhrp, zfs_create_link_cb, &cd); } else { changelist_rename(cl, zfs_get_name(zhp), target); ret = changelist_postfix(cl); } } error: if (parentname) { free(parentname); } if (zhrp) { zfs_close(zhrp); } if (cl) { changelist_free(cl); } return (ret); } /* * Given a zvol dataset, issue the ioctl to create the appropriate minor node, * poke devfsadm to create the /dev link, and then wait for the link to appear. */ int zvol_create_link(libzfs_handle_t *hdl, const char *dataset) { return (zvol_create_link_common(hdl, dataset, B_FALSE)); } static int zvol_create_link_common(libzfs_handle_t *hdl, const char *dataset, int ifexists) { zfs_cmd_t zc = { 0 }; di_devlink_handle_t dhdl; priv_set_t *priv_effective; int privileged; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); /* * Issue the appropriate ioctl. */ if (ioctl(hdl->libzfs_fd, ZFS_IOC_CREATE_MINOR, &zc) != 0) { switch (errno) { case EEXIST: /* * Silently ignore the case where the link already * exists. This allows 'zfs volinit' to be run multiple * times without errors. */ return (0); case ENOENT: /* * Dataset does not exist in the kernel. If we * don't care (see zfs_rename), then ignore the * error quietly. */ if (ifexists) { return (0); } /* FALLTHROUGH */ default: return (zfs_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot create device links " "for '%s'"), dataset)); } } /* * If privileged call devfsadm and wait for the links to * magically appear. * Otherwise, print out an informational message. */ priv_effective = priv_allocset(); (void) getppriv(PRIV_EFFECTIVE, priv_effective); privileged = (priv_isfullset(priv_effective) == B_TRUE); priv_freeset(priv_effective); if (privileged) { if ((dhdl = di_devlink_init(ZFS_DRIVER, DI_MAKE_LINK)) == NULL) { zfs_error_aux(hdl, strerror(errno)); (void) zfs_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot create device links " "for '%s'"), dataset); (void) ioctl(hdl->libzfs_fd, ZFS_IOC_REMOVE_MINOR, &zc); return (-1); } else { (void) di_devlink_fini(&dhdl); } } else { char pathname[MAXPATHLEN]; struct stat64 statbuf; int i; #define MAX_WAIT 10 /* * This is the poor mans way of waiting for the link * to show up. If after 10 seconds we still don't * have it, then print out a message. */ (void) snprintf(pathname, sizeof (pathname), "/dev/zvol/dsk/%s", dataset); for (i = 0; i != MAX_WAIT; i++) { if (stat64(pathname, &statbuf) == 0) break; (void) sleep(1); } if (i == MAX_WAIT) (void) printf(gettext("%s may not be immediately " "available\n"), pathname); } return (0); } /* * Remove a minor node for the given zvol and the associated /dev links. */ int zvol_remove_link(libzfs_handle_t *hdl, const char *dataset) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); if (ioctl(hdl->libzfs_fd, ZFS_IOC_REMOVE_MINOR, &zc) != 0) { switch (errno) { case ENXIO: /* * Silently ignore the case where the link no longer * exists, so that 'zfs volfini' can be run multiple * times without errors. */ return (0); default: return (zfs_standard_error_fmt(hdl, errno, dgettext(TEXT_DOMAIN, "cannot remove device " "links for '%s'"), dataset)); } } return (0); } nvlist_t * zfs_get_user_props(zfs_handle_t *zhp) { return (zhp->zfs_user_props); } /* * This function is used by 'zfs list' to determine the exact set of columns to * display, and their maximum widths. This does two main things: * * - If this is a list of all properties, then expand the list to include * all native properties, and set a flag so that for each dataset we look * for new unique user properties and add them to the list. * * - For non fixed-width properties, keep track of the maximum width seen * so that we can size the column appropriately. */ int zfs_expand_proplist(zfs_handle_t *zhp, zprop_list_t **plp) { libzfs_handle_t *hdl = zhp->zfs_hdl; zprop_list_t *entry; zprop_list_t **last, **start; nvlist_t *userprops, *propval; nvpair_t *elem; char *strval; char buf[ZFS_MAXPROPLEN]; if (zprop_expand_list(hdl, plp, ZFS_TYPE_DATASET) != 0) return (-1); userprops = zfs_get_user_props(zhp); entry = *plp; if (entry->pl_all && nvlist_next_nvpair(userprops, NULL) != NULL) { /* * Go through and add any user properties as necessary. We * start by incrementing our list pointer to the first * non-native property. */ start = plp; while (*start != NULL) { if ((*start)->pl_prop == ZPROP_INVAL) break; start = &(*start)->pl_next; } elem = NULL; while ((elem = nvlist_next_nvpair(userprops, elem)) != NULL) { /* * See if we've already found this property in our list. */ for (last = start; *last != NULL; last = &(*last)->pl_next) { if (strcmp((*last)->pl_user_prop, nvpair_name(elem)) == 0) break; } if (*last == NULL) { if ((entry = zfs_alloc(hdl, sizeof (zprop_list_t))) == NULL || ((entry->pl_user_prop = zfs_strdup(hdl, nvpair_name(elem)))) == NULL) { free(entry); return (-1); } entry->pl_prop = ZPROP_INVAL; entry->pl_width = strlen(nvpair_name(elem)); entry->pl_all = B_TRUE; *last = entry; } } } /* * Now go through and check the width of any non-fixed columns */ for (entry = *plp; entry != NULL; entry = entry->pl_next) { if (entry->pl_fixed) continue; if (entry->pl_prop != ZPROP_INVAL) { if (zfs_prop_get(zhp, entry->pl_prop, buf, sizeof (buf), NULL, NULL, 0, B_FALSE) == 0) { if (strlen(buf) > entry->pl_width) entry->pl_width = strlen(buf); } } else if (nvlist_lookup_nvlist(userprops, entry->pl_user_prop, &propval) == 0) { verify(nvlist_lookup_string(propval, ZPROP_VALUE, &strval) == 0); if (strlen(strval) > entry->pl_width) entry->pl_width = strlen(strval); } } return (0); } int zfs_iscsi_perm_check(libzfs_handle_t *hdl, char *dataset, ucred_t *cred) { zfs_cmd_t zc = { 0 }; nvlist_t *nvp; gid_t gid; uid_t uid; const gid_t *groups; int group_cnt; int error; if (nvlist_alloc(&nvp, NV_UNIQUE_NAME, 0) != 0) return (no_memory(hdl)); uid = ucred_geteuid(cred); gid = ucred_getegid(cred); group_cnt = ucred_getgroups(cred, &groups); if (uid == (uid_t)-1 || gid == (uid_t)-1 || group_cnt == (uid_t)-1) return (1); if (nvlist_add_uint32(nvp, ZFS_DELEG_PERM_UID, uid) != 0) { nvlist_free(nvp); return (1); } if (nvlist_add_uint32(nvp, ZFS_DELEG_PERM_GID, gid) != 0) { nvlist_free(nvp); return (1); } if (nvlist_add_uint32_array(nvp, ZFS_DELEG_PERM_GROUPS, (uint32_t *)groups, group_cnt) != 0) { nvlist_free(nvp); return (1); } (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); if (zcmd_write_src_nvlist(hdl, &zc, nvp)) return (-1); error = ioctl(hdl->libzfs_fd, ZFS_IOC_ISCSI_PERM_CHECK, &zc); nvlist_free(nvp); return (error); } int zfs_deleg_share_nfs(libzfs_handle_t *hdl, char *dataset, char *path, void *export, void *sharetab, int sharemax, zfs_share_op_t operation) { zfs_cmd_t zc = { "\0", "\0", "\0", 0 }; int error; (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); (void) strlcpy(zc.zc_value, path, sizeof (zc.zc_value)); zc.zc_share.z_sharedata = (uint64_t)(uintptr_t)sharetab; zc.zc_share.z_exportdata = (uint64_t)(uintptr_t)export; zc.zc_share.z_sharetype = operation; zc.zc_share.z_sharemax = sharemax; error = ioctl(hdl->libzfs_fd, ZFS_IOC_SHARE, &zc); return (error); }