/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2015 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. * Copyright 2015 RackTop Systems. */ /* * Pool import support functions. * * To import a pool, we rely on reading the configuration information from the * ZFS label of each device. If we successfully read the label, then we * organize the configuration information in the following hierarchy: * * pool guid -> toplevel vdev guid -> label txg * * Duplicate entries matching this same tuple will be discarded. Once we have * examined every device, we pick the best label txg config for each toplevel * vdev. We then arrange these toplevel vdevs into a complete pool config, and * update any paths that have changed. Finally, we attempt to import the pool * using our derived config, and record the results. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_LIBBLKID #include #endif #include "libzfs.h" #include "libzfs_impl.h" /* * Intermediate structures used to gather configuration information. */ typedef struct config_entry { uint64_t ce_txg; nvlist_t *ce_config; struct config_entry *ce_next; } config_entry_t; typedef struct vdev_entry { uint64_t ve_guid; config_entry_t *ve_configs; struct vdev_entry *ve_next; } vdev_entry_t; typedef struct pool_entry { uint64_t pe_guid; vdev_entry_t *pe_vdevs; struct pool_entry *pe_next; } pool_entry_t; typedef struct name_entry { char *ne_name; uint64_t ne_guid; uint64_t ne_order; uint64_t ne_num_labels; struct name_entry *ne_next; } name_entry_t; typedef struct pool_list { pool_entry_t *pools; name_entry_t *names; } pool_list_t; static char * get_devid(const char *path) { int fd; ddi_devid_t devid; char *minor, *ret; if ((fd = open(path, O_RDONLY)) < 0) return (NULL); minor = NULL; ret = NULL; if (devid_get(fd, &devid) == 0) { if (devid_get_minor_name(fd, &minor) == 0) ret = devid_str_encode(devid, minor); if (minor != NULL) devid_str_free(minor); devid_free(devid); } (void) close(fd); return (ret); } /* * Go through and fix up any path and/or devid information for the given vdev * configuration. */ static int fix_paths(nvlist_t *nv, name_entry_t *names) { nvlist_t **child; uint_t c, children; uint64_t guid; name_entry_t *ne, *best; char *path, *devid; if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (fix_paths(child[c], names) != 0) return (-1); return (0); } /* * This is a leaf (file or disk) vdev. In either case, go through * the name list and see if we find a matching guid. If so, replace * the path and see if we can calculate a new devid. * * There may be multiple names associated with a particular guid, in * which case we have overlapping partitions or multiple paths to the * same disk. In this case we prefer to use the path name which * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we * use the lowest order device which corresponds to the first match * while traversing the ZPOOL_IMPORT_PATH search path. */ verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) path = NULL; best = NULL; for (ne = names; ne != NULL; ne = ne->ne_next) { if (ne->ne_guid == guid) { if (path == NULL) { best = ne; break; } if ((strlen(path) == strlen(ne->ne_name)) && strncmp(path, ne->ne_name, strlen(path)) == 0) { best = ne; break; } if (best == NULL) { best = ne; continue; } /* Prefer paths with move vdev labels. */ if (ne->ne_num_labels > best->ne_num_labels) { best = ne; continue; } /* Prefer paths earlier in the search order. */ if (best->ne_num_labels == best->ne_num_labels && ne->ne_order < best->ne_order) { best = ne; continue; } } } if (best == NULL) return (0); if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) return (-1); if ((devid = get_devid(best->ne_name)) == NULL) { (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); } else { if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) { devid_str_free(devid); return (-1); } devid_str_free(devid); } return (0); } /* * Add the given configuration to the list of known devices. */ static int add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, int order, int num_labels, nvlist_t *config) { uint64_t pool_guid, vdev_guid, top_guid, txg, state; pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; name_entry_t *ne; /* * If this is a hot spare not currently in use or level 2 cache * device, add it to the list of names to translate, but don't do * anything else. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state) == 0 && (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_order = order; ne->ne_num_labels = num_labels; ne->ne_next = pl->names; pl->names = ne; return (0); } /* * If we have a valid config but cannot read any of these fields, then * it means we have a half-initialized label. In vdev_label_init() * we write a label with txg == 0 so that we can identify the device * in case the user refers to the same disk later on. If we fail to * create the pool, we'll be left with a label in this state * which should not be considered part of a valid pool. */ if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, &top_guid) != 0 || nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0) { nvlist_free(config); return (0); } /* * First, see if we know about this pool. If not, then add it to the * list of known pools. */ for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { if (pe->pe_guid == pool_guid) break; } if (pe == NULL) { if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { nvlist_free(config); return (-1); } pe->pe_guid = pool_guid; pe->pe_next = pl->pools; pl->pools = pe; } /* * Second, see if we know about this toplevel vdev. Add it if its * missing. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { if (ve->ve_guid == top_guid) break; } if (ve == NULL) { if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { nvlist_free(config); return (-1); } ve->ve_guid = top_guid; ve->ve_next = pe->pe_vdevs; pe->pe_vdevs = ve; } /* * Third, see if we have a config with a matching transaction group. If * so, then we do nothing. Otherwise, add it to the list of known * configs. */ for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg == txg) break; } if (ce == NULL) { if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { nvlist_free(config); return (-1); } ce->ce_txg = txg; ce->ce_config = config; ce->ce_next = ve->ve_configs; ve->ve_configs = ce; } else { nvlist_free(config); } /* * At this point we've successfully added our config to the list of * known configs. The last thing to do is add the vdev guid -> path * mappings so that we can fix up the configuration as necessary before * doing the import. */ if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) return (-1); if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { free(ne); return (-1); } ne->ne_guid = vdev_guid; ne->ne_order = order; ne->ne_num_labels = num_labels; ne->ne_next = pl->names; pl->names = ne; return (0); } /* * Returns true if the named pool matches the given GUID. */ static int pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, boolean_t *isactive) { zpool_handle_t *zhp; uint64_t theguid; if (zpool_open_silent(hdl, name, &zhp) != 0) return (-1); if (zhp == NULL) { *isactive = B_FALSE; return (0); } verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, &theguid) == 0); zpool_close(zhp); *isactive = (theguid == guid); return (0); } static nvlist_t * refresh_config(libzfs_handle_t *hdl, nvlist_t *config) { nvlist_t *nvl; zfs_cmd_t zc = {"\0"}; int err; if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) return (NULL); if (zcmd_alloc_dst_nvlist(hdl, &zc, zc.zc_nvlist_conf_size * 2) != 0) { zcmd_free_nvlists(&zc); return (NULL); } while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, &zc)) != 0 && errno == ENOMEM) { if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { zcmd_free_nvlists(&zc); return (NULL); } } if (err) { zcmd_free_nvlists(&zc); return (NULL); } if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { zcmd_free_nvlists(&zc); return (NULL); } zcmd_free_nvlists(&zc); return (nvl); } /* * Determine if the vdev id is a hole in the namespace. */ boolean_t vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) { int c; for (c = 0; c < holes; c++) { /* Top-level is a hole */ if (hole_array[c] == id) return (B_TRUE); } return (B_FALSE); } /* * Convert our list of pools into the definitive set of configurations. We * start by picking the best config for each toplevel vdev. Once that's done, * we assemble the toplevel vdevs into a full config for the pool. We make a * pass to fix up any incorrect paths, and then add it to the main list to * return to the user. */ static nvlist_t * get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) { pool_entry_t *pe; vdev_entry_t *ve; config_entry_t *ce; nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; nvlist_t **spares, **l2cache; uint_t i, nspares, nl2cache; boolean_t config_seen; uint64_t best_txg; char *name, *hostname = NULL; uint64_t guid; uint_t children = 0; nvlist_t **child = NULL; uint_t holes; uint64_t *hole_array, max_id; uint_t c; boolean_t isactive; uint64_t hostid; nvlist_t *nvl; boolean_t valid_top_config = B_FALSE; if (nvlist_alloc(&ret, 0, 0) != 0) goto nomem; for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { uint64_t id, max_txg = 0; if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) goto nomem; config_seen = B_FALSE; /* * Iterate over all toplevel vdevs. Grab the pool configuration * from the first one we find, and then go through the rest and * add them as necessary to the 'vdevs' member of the config. */ for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { /* * Determine the best configuration for this vdev by * selecting the config with the latest transaction * group. */ best_txg = 0; for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { if (ce->ce_txg > best_txg) { tmp = ce->ce_config; best_txg = ce->ce_txg; } } /* * We rely on the fact that the max txg for the * pool will contain the most up-to-date information * about the valid top-levels in the vdev namespace. */ if (best_txg > max_txg) { (void) nvlist_remove(config, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOLE_ARRAY, DATA_TYPE_UINT64_ARRAY); max_txg = best_txg; hole_array = NULL; holes = 0; max_id = 0; valid_top_config = B_FALSE; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, max_id) == 0); valid_top_config = B_TRUE; } if (nvlist_lookup_uint64_array(tmp, ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, &holes) == 0) { verify(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, hole_array, holes) == 0); } } if (!config_seen) { /* * Copy the relevant pieces of data to the pool * configuration: * * version * pool guid * name * comment (if available) * pool state * hostid (if available) * hostname (if available) */ uint64_t state, version; char *comment = NULL; version = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_VERSION); fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, version); guid = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_GUID); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, guid); name = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_POOL_NAME); fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, name); if (nvlist_lookup_string(tmp, ZPOOL_CONFIG_COMMENT, &comment) == 0) fnvlist_add_string(config, ZPOOL_CONFIG_COMMENT, comment); state = fnvlist_lookup_uint64(tmp, ZPOOL_CONFIG_POOL_STATE); fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state); hostid = 0; if (nvlist_lookup_uint64(tmp, ZPOOL_CONFIG_HOSTID, &hostid) == 0) { fnvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid); hostname = fnvlist_lookup_string(tmp, ZPOOL_CONFIG_HOSTNAME); fnvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname); } config_seen = B_TRUE; } /* * Add this top-level vdev to the child array. */ verify(nvlist_lookup_nvlist(tmp, ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, &id) == 0); if (id >= children) { nvlist_t **newchild; newchild = zfs_alloc(hdl, (id + 1) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = id + 1; } if (nvlist_dup(nvtop, &child[id], 0) != 0) goto nomem; } /* * If we have information about all the top-levels then * clean up the nvlist which we've constructed. This * means removing any extraneous devices that are * beyond the valid range or adding devices to the end * of our array which appear to be missing. */ if (valid_top_config) { if (max_id < children) { for (c = max_id; c < children; c++) nvlist_free(child[c]); children = max_id; } else if (max_id > children) { nvlist_t **newchild; newchild = zfs_alloc(hdl, (max_id) * sizeof (nvlist_t *)); if (newchild == NULL) goto nomem; for (c = 0; c < children; c++) newchild[c] = child[c]; free(child); child = newchild; children = max_id; } } verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); /* * The vdev namespace may contain holes as a result of * device removal. We must add them back into the vdev * tree before we process any missing devices. */ if (holes > 0) { ASSERT(valid_top_config); for (c = 0; c < children; c++) { nvlist_t *holey; if (child[c] != NULL || !vdev_is_hole(hole_array, holes, c)) continue; if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 0) != 0) goto nomem; /* * Holes in the namespace are treated as * "hole" top-level vdevs and have a * special flag set on them. */ if (nvlist_add_string(holey, ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(holey, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(holey); goto nomem; } child[c] = holey; } } /* * Look for any missing top-level vdevs. If this is the case, * create a faked up 'missing' vdev as a placeholder. We cannot * simply compress the child array, because the kernel performs * certain checks to make sure the vdev IDs match their location * in the configuration. */ for (c = 0; c < children; c++) { if (child[c] == NULL) { nvlist_t *missing; if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(missing, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MISSING) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_ID, c) != 0 || nvlist_add_uint64(missing, ZPOOL_CONFIG_GUID, 0ULL) != 0) { nvlist_free(missing); goto nomem; } child[c] = missing; } } /* * Put all of this pool's top-level vdevs into a root vdev. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) goto nomem; if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, child, children) != 0) { nvlist_free(nvroot); goto nomem; } for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); children = 0; child = NULL; /* * Go through and fix up any paths and/or devids based on our * known list of vdev GUID -> path mappings. */ if (fix_paths(nvroot, pl->names) != 0) { nvlist_free(nvroot); goto nomem; } /* * Add the root vdev to this pool's configuration. */ if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) != 0) { nvlist_free(nvroot); goto nomem; } nvlist_free(nvroot); /* * zdb uses this path to report on active pools that were * imported or created using -R. */ if (active_ok) goto add_pool; /* * Determine if this pool is currently active, in which case we * can't actually import it. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); if (pool_active(hdl, name, guid, &isactive) != 0) goto error; if (isactive) { nvlist_free(config); config = NULL; continue; } if ((nvl = refresh_config(hdl, config)) == NULL) { nvlist_free(config); config = NULL; continue; } nvlist_free(config); config = nvl; /* * Go through and update the paths for spares, now that we have * them. */ verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { for (i = 0; i < nspares; i++) { if (fix_paths(spares[i], pl->names) != 0) goto nomem; } } /* * Update the paths for l2cache devices. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { for (i = 0; i < nl2cache; i++) { if (fix_paths(l2cache[i], pl->names) != 0) goto nomem; } } /* * Restore the original information read from the actual label. */ (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, DATA_TYPE_UINT64); (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, DATA_TYPE_STRING); if (hostid != 0) { verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, hostid) == 0); verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, hostname) == 0); } add_pool: /* * Add this pool to the list of configs. */ verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); if (nvlist_add_nvlist(ret, name, config) != 0) goto nomem; nvlist_free(config); config = NULL; } return (ret); nomem: (void) no_memory(hdl); error: nvlist_free(config); nvlist_free(ret); for (c = 0; c < children; c++) nvlist_free(child[c]); free(child); return (NULL); } /* * Return the offset of the given label. */ static uint64_t label_offset(uint64_t size, int l) { ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); } /* * Given a file descriptor, read the label information and return an nvlist * describing the configuration, if there is one. The number of valid * labels found will be returned in num_labels when non-NULL. */ int zpool_read_label(int fd, nvlist_t **config, int *num_labels) { struct stat64 statbuf; int l, count = 0; vdev_label_t *label; nvlist_t *expected_config = NULL; uint64_t expected_guid = 0, size; *config = NULL; if (fstat64_blk(fd, &statbuf) == -1) return (0); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); if ((label = malloc(sizeof (vdev_label_t))) == NULL) return (-1); for (l = 0; l < VDEV_LABELS; l++) { uint64_t state, guid, txg; if (pread64(fd, label, sizeof (vdev_label_t), label_offset(size, l)) != sizeof (vdev_label_t)) continue; if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) continue; if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, &guid) != 0 || guid == 0) { nvlist_free(*config); continue; } if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, &state) != 0 || state > POOL_STATE_L2CACHE) { nvlist_free(*config); continue; } if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, &txg) != 0 || txg == 0)) { nvlist_free(*config); continue; } if (expected_guid) { if (expected_guid == guid) count++; nvlist_free(*config); } else { expected_config = *config; expected_guid = guid; count++; } } if (num_labels != NULL) *num_labels = count; free(label); *config = expected_config; return (0); } typedef struct rdsk_node { char *rn_name; int rn_num_labels; int rn_dfd; libzfs_handle_t *rn_hdl; nvlist_t *rn_config; avl_tree_t *rn_avl; avl_node_t rn_node; boolean_t rn_nozpool; } rdsk_node_t; static int slice_cache_compare(const void *arg1, const void *arg2) { const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; char *nm1slice, *nm2slice; int rv; /* * partitions one and three (slices zero and two) are the most * likely to provide results, so put those first */ nm1slice = strstr(nm1, "part1"); nm2slice = strstr(nm2, "part1"); if (nm1slice && !nm2slice) { return (-1); } if (!nm1slice && nm2slice) { return (1); } nm1slice = strstr(nm1, "part3"); nm2slice = strstr(nm2, "part3"); if (nm1slice && !nm2slice) { return (-1); } if (!nm1slice && nm2slice) { return (1); } rv = strcmp(nm1, nm2); if (rv == 0) return (0); return (rv > 0 ? 1 : -1); } #ifndef __linux__ static void check_one_slice(avl_tree_t *r, char *diskname, uint_t partno, diskaddr_t size, uint_t blksz) { rdsk_node_t tmpnode; rdsk_node_t *node; char sname[MAXNAMELEN]; tmpnode.rn_name = &sname[0]; (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u", diskname, partno); /* too small to contain a zpool? */ if ((size < (SPA_MINDEVSIZE / blksz)) && (node = avl_find(r, &tmpnode, NULL))) node->rn_nozpool = B_TRUE; } #endif static void nozpool_all_slices(avl_tree_t *r, const char *sname) { #ifndef __linux__ char diskname[MAXNAMELEN]; char *ptr; int i; (void) strncpy(diskname, sname, MAXNAMELEN); if (((ptr = strrchr(diskname, 's')) == NULL) && ((ptr = strrchr(diskname, 'p')) == NULL)) return; ptr[0] = 's'; ptr[1] = '\0'; for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, 0, 1); ptr[0] = 'p'; for (i = 0; i <= FD_NUMPART; i++) check_one_slice(r, diskname, i, 0, 1); #endif } static void check_slices(avl_tree_t *r, int fd, const char *sname) { #ifndef __linux__ struct extvtoc vtoc; struct dk_gpt *gpt; char diskname[MAXNAMELEN]; char *ptr; int i; (void) strncpy(diskname, sname, MAXNAMELEN); if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1])) return; ptr[1] = '\0'; if (read_extvtoc(fd, &vtoc) >= 0) { for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, vtoc.v_part[i].p_size, vtoc.v_sectorsz); } else if (efi_alloc_and_read(fd, &gpt) >= 0) { /* * on x86 we'll still have leftover links that point * to slices s[9-15], so use NDKMAP instead */ for (i = 0; i < NDKMAP; i++) check_one_slice(r, diskname, i, gpt->efi_parts[i].p_size, gpt->efi_lbasize); /* nodes p[1-4] are never used with EFI labels */ ptr[0] = 'p'; for (i = 1; i <= FD_NUMPART; i++) check_one_slice(r, diskname, i, 0, 1); efi_free(gpt); } #endif } static void zpool_open_func(void *arg) { rdsk_node_t *rn = arg; struct stat64 statbuf; nvlist_t *config; int num_labels; int fd; if (rn->rn_nozpool) return; #ifdef __linux__ /* * Skip devices with well known prefixes there can be side effects * when opening devices which need to be avoided. * * core - Symlink to /proc/kcore * fd* - Floppy interface. * fuse - Fuse control device. * hpet - High Precision Event Timer * lp* - Printer interface. * parport* - Parallel port interface. * ppp - Generic PPP driver. * random - Random device * rtc - Real Time Clock * tty* - Generic serial interface. * urandom - Random device. * usbmon* - USB IO monitor. * vcs* - Virtual console memory. * watchdog - Watchdog must be closed in a special way. */ if ((strncmp(rn->rn_name, "core", 4) == 0) || (strncmp(rn->rn_name, "fd", 2) == 0) || (strncmp(rn->rn_name, "fuse", 4) == 0) || (strncmp(rn->rn_name, "hpet", 4) == 0) || (strncmp(rn->rn_name, "lp", 2) == 0) || (strncmp(rn->rn_name, "parport", 7) == 0) || (strncmp(rn->rn_name, "ppp", 3) == 0) || (strncmp(rn->rn_name, "random", 6) == 0) || (strncmp(rn->rn_name, "rtc", 3) == 0) || (strncmp(rn->rn_name, "tty", 3) == 0) || (strncmp(rn->rn_name, "urandom", 7) == 0) || (strncmp(rn->rn_name, "usbmon", 6) == 0) || (strncmp(rn->rn_name, "vcs", 3) == 0) || (strncmp(rn->rn_name, "watchdog", 8) == 0)) return; /* * Ignore failed stats. We only want regular files and block devices. */ if (fstatat64(rn->rn_dfd, rn->rn_name, &statbuf, 0) != 0 || (!S_ISREG(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode))) return; if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { /* symlink to a device that's no longer there */ if (errno == ENOENT) nozpool_all_slices(rn->rn_avl, rn->rn_name); return; } #else if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) { /* symlink to a device that's no longer there */ if (errno == ENOENT) nozpool_all_slices(rn->rn_avl, rn->rn_name); return; } /* * Ignore failed stats. We only want regular * files, character devs and block devs. */ if (fstat64(fd, &statbuf) != 0 || (!S_ISREG(statbuf.st_mode) && !S_ISCHR(statbuf.st_mode) && !S_ISBLK(statbuf.st_mode))) { (void) close(fd); return; } #endif /* this file is too small to hold a zpool */ if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) { (void) close(fd); return; } else if (!S_ISREG(statbuf.st_mode)) { /* * Try to read the disk label first so we don't have to * open a bunch of minor nodes that can't have a zpool. */ check_slices(rn->rn_avl, fd, rn->rn_name); } if ((zpool_read_label(fd, &config, &num_labels)) != 0) { (void) close(fd); (void) no_memory(rn->rn_hdl); return; } if (num_labels == 0) { (void) close(fd); nvlist_free(config); return; } (void) close(fd); rn->rn_config = config; rn->rn_num_labels = num_labels; } /* * Given a file descriptor, clear (zero) the label information. This function * is used in the appliance stack as part of the ZFS sysevent module and * to implement the "zpool labelclear" command. */ int zpool_clear_label(int fd) { struct stat64 statbuf; int l; vdev_label_t *label; uint64_t size; if (fstat64_blk(fd, &statbuf) == -1) return (0); size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) return (-1); for (l = 0; l < VDEV_LABELS; l++) { if (pwrite64(fd, label, sizeof (vdev_label_t), label_offset(size, l)) != sizeof (vdev_label_t)) { free(label); return (-1); } } free(label); return (0); } #ifdef HAVE_LIBBLKID /* * Use libblkid to quickly search for zfs devices */ static int zpool_find_import_blkid(libzfs_handle_t *hdl, pool_list_t *pools) { blkid_cache cache; blkid_dev_iterate iter; blkid_dev dev; const char *devname; nvlist_t *config; int fd, err, num_labels; err = blkid_get_cache(&cache, NULL); if (err != 0) { (void) zfs_error_fmt(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "blkid_get_cache() %d"), err); goto err_blkid1; } err = blkid_probe_all(cache); if (err != 0) { (void) zfs_error_fmt(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "blkid_probe_all() %d"), err); goto err_blkid2; } iter = blkid_dev_iterate_begin(cache); if (iter == NULL) { (void) zfs_error_fmt(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "blkid_dev_iterate_begin()")); goto err_blkid2; } err = blkid_dev_set_search(iter, "TYPE", "zfs_member"); if (err != 0) { (void) zfs_error_fmt(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "blkid_dev_set_search() %d"), err); goto err_blkid3; } while (blkid_dev_next(iter, &dev) == 0) { devname = blkid_dev_devname(dev); if ((fd = open64(devname, O_RDONLY)) < 0) continue; err = zpool_read_label(fd, &config, &num_labels); (void) close(fd); if (err != 0) { (void) no_memory(hdl); goto err_blkid3; } if (config != NULL) { err = add_config(hdl, pools, devname, 0, num_labels, config); if (err != 0) goto err_blkid3; } } err_blkid3: blkid_dev_iterate_end(iter); err_blkid2: blkid_put_cache(cache); err_blkid1: return (err); } #endif /* HAVE_LIBBLKID */ char * zpool_default_import_path[DEFAULT_IMPORT_PATH_SIZE] = { "/dev/disk/by-vdev", /* Custom rules, use first if they exist */ "/dev/mapper", /* Use multipath devices before components */ "/dev/disk/by-uuid", /* Single unique entry and persistent */ "/dev/disk/by-id", /* May be multiple entries and persistent */ "/dev/disk/by-path", /* Encodes physical location and persistent */ "/dev/disk/by-label", /* Custom persistent labels */ "/dev" /* UNSAFE device names will change */ }; /* * Given a list of directories to search, find all pools stored on disk. This * includes partial pools which are not available to import. If no args are * given (argc is 0), then the default directory (/dev/dsk) is searched. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ static nvlist_t * zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) { int i, dirs = iarg->paths; struct dirent64 *dp; char path[MAXPATHLEN]; char *end, **dir = iarg->path; size_t pathleft; nvlist_t *ret = NULL; pool_list_t pools = { 0 }; pool_entry_t *pe, *penext; vdev_entry_t *ve, *venext; config_entry_t *ce, *cenext; name_entry_t *ne, *nenext; avl_tree_t slice_cache; rdsk_node_t *slice; void *cookie; verify(iarg->poolname == NULL || iarg->guid == 0); if (dirs == 0) { #ifdef HAVE_LIBBLKID /* Use libblkid to scan all device for their type */ if (zpool_find_import_blkid(hdl, &pools) == 0) goto skip_scanning; (void) zfs_error_fmt(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "blkid failure falling back " "to manual probing")); #endif /* HAVE_LIBBLKID */ dir = zpool_default_import_path; dirs = DEFAULT_IMPORT_PATH_SIZE; } /* * Go through and read the label configuration information from every * possible device, organizing the information according to pool GUID * and toplevel GUID. */ for (i = 0; i < dirs; i++) { taskq_t *t; char *rdsk; int dfd; boolean_t config_failed = B_FALSE; DIR *dirp; /* use realpath to normalize the path */ if (realpath(dir[i], path) == 0) { /* it is safe to skip missing search paths */ if (errno == ENOENT) continue; zfs_error_aux(hdl, strerror(errno)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); goto error; } end = &path[strlen(path)]; *end++ = '/'; *end = 0; pathleft = &path[sizeof (path)] - end; /* * Using raw devices instead of block devices when we're * reading the labels skips a bunch of slow operations during * close(2) processing, so we replace /dev/dsk with /dev/rdsk. */ if (strcmp(path, "/dev/dsk/") == 0) rdsk = "/dev/rdsk/"; else rdsk = path; if ((dfd = open64(rdsk, O_RDONLY)) < 0 || (dirp = fdopendir(dfd)) == NULL) { if (dfd >= 0) (void) close(dfd); zfs_error_aux(hdl, strerror(errno)); (void) zfs_error_fmt(hdl, EZFS_BADPATH, dgettext(TEXT_DOMAIN, "cannot open '%s'"), rdsk); goto error; } avl_create(&slice_cache, slice_cache_compare, sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node)); /* * This is not MT-safe, but we have no MT consumers of libzfs */ while ((dp = readdir64(dirp)) != NULL) { const char *name = dp->d_name; if (name[0] == '.' && (name[1] == 0 || (name[1] == '.' && name[2] == 0))) continue; slice = zfs_alloc(hdl, sizeof (rdsk_node_t)); slice->rn_name = zfs_strdup(hdl, name); slice->rn_avl = &slice_cache; slice->rn_dfd = dfd; slice->rn_hdl = hdl; slice->rn_nozpool = B_FALSE; avl_add(&slice_cache, slice); } /* * create a thread pool to do all of this in parallel; * rn_nozpool is not protected, so this is racy in that * multiple tasks could decide that the same slice can * not hold a zpool, which is benign. Also choose * double the number of processors; we hold a lot of * locks in the kernel, so going beyond this doesn't * buy us much. */ thread_init(); t = taskq_create("z_import", 2 * boot_ncpus, defclsyspri, 2 * boot_ncpus, INT_MAX, TASKQ_PREPOPULATE); for (slice = avl_first(&slice_cache); slice; (slice = avl_walk(&slice_cache, slice, AVL_AFTER))) (void) taskq_dispatch(t, zpool_open_func, slice, TQ_SLEEP); taskq_wait(t); taskq_destroy(t); thread_fini(); cookie = NULL; while ((slice = avl_destroy_nodes(&slice_cache, &cookie)) != NULL) { if (slice->rn_config != NULL && !config_failed) { nvlist_t *config = slice->rn_config; boolean_t matched = B_TRUE; if (iarg->poolname != NULL) { char *pname; matched = nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && strcmp(iarg->poolname, pname) == 0; } else if (iarg->guid != 0) { uint64_t this_guid; matched = nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && iarg->guid == this_guid; } if (!matched) { nvlist_free(config); } else { /* * use the non-raw path for the config */ (void) strlcpy(end, slice->rn_name, pathleft); if (add_config(hdl, &pools, path, i+1, slice->rn_num_labels, config) != 0) config_failed = B_TRUE; } } free(slice->rn_name); free(slice); } avl_destroy(&slice_cache); (void) closedir(dirp); if (config_failed) goto error; } #ifdef HAVE_LIBBLKID skip_scanning: #endif ret = get_configs(hdl, &pools, iarg->can_be_active); error: for (pe = pools.pools; pe != NULL; pe = penext) { penext = pe->pe_next; for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { venext = ve->ve_next; for (ce = ve->ve_configs; ce != NULL; ce = cenext) { cenext = ce->ce_next; if (ce->ce_config) nvlist_free(ce->ce_config); free(ce); } free(ve); } free(pe); } for (ne = pools.names; ne != NULL; ne = nenext) { nenext = ne->ne_next; free(ne->ne_name); free(ne); } return (ret); } nvlist_t * zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) { importargs_t iarg = { 0 }; iarg.paths = argc; iarg.path = argv; return (zpool_find_import_impl(hdl, &iarg)); } /* * Given a cache file, return the contents as a list of importable pools. * poolname or guid (but not both) are provided by the caller when trying * to import a specific pool. */ nvlist_t * zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, char *poolname, uint64_t guid) { char *buf; int fd; struct stat64 statbuf; nvlist_t *raw, *src, *dst; nvlist_t *pools; nvpair_t *elem; char *name; uint64_t this_guid; boolean_t active; verify(poolname == NULL || guid == 0); if ((fd = open(cachefile, O_RDONLY)) < 0) { zfs_error_aux(hdl, "%s", strerror(errno)); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to open cache file")); return (NULL); } if (fstat64(fd, &statbuf) != 0) { zfs_error_aux(hdl, "%s", strerror(errno)); (void) close(fd); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to get size of cache file")); return (NULL); } if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { (void) close(fd); return (NULL); } if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { (void) close(fd); free(buf); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "failed to read cache file contents")); return (NULL); } (void) close(fd); if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { free(buf); (void) zfs_error(hdl, EZFS_BADCACHE, dgettext(TEXT_DOMAIN, "invalid or corrupt cache file contents")); return (NULL); } free(buf); /* * Go through and get the current state of the pools and refresh their * state. */ if (nvlist_alloc(&pools, 0, 0) != 0) { (void) no_memory(hdl); nvlist_free(raw); return (NULL); } elem = NULL; while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { src = fnvpair_value_nvlist(elem); name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); if (poolname != NULL && strcmp(poolname, name) != 0) continue; this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); if (guid != 0 && guid != this_guid) continue; if (pool_active(hdl, name, this_guid, &active) != 0) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (active) continue; if ((dst = refresh_config(hdl, src)) == NULL) { nvlist_free(raw); nvlist_free(pools); return (NULL); } if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { (void) no_memory(hdl); nvlist_free(dst); nvlist_free(raw); nvlist_free(pools); return (NULL); } nvlist_free(dst); } nvlist_free(raw); return (pools); } static int name_or_guid_exists(zpool_handle_t *zhp, void *data) { importargs_t *import = data; int found = 0; if (import->poolname != NULL) { char *pool_name; verify(nvlist_lookup_string(zhp->zpool_config, ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); if (strcmp(pool_name, import->poolname) == 0) found = 1; } else { uint64_t pool_guid; verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); if (pool_guid == import->guid) found = 1; } zpool_close(zhp); return (found); } nvlist_t * zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) { verify(import->poolname == NULL || import->guid == 0); if (import->unique) import->exists = zpool_iter(hdl, name_or_guid_exists, import); if (import->cachefile != NULL) return (zpool_find_import_cached(hdl, import->cachefile, import->poolname, import->guid)); return (zpool_find_import_impl(hdl, import)); } boolean_t find_guid(nvlist_t *nv, uint64_t guid) { uint64_t tmp; nvlist_t **child; uint_t c, children; verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); if (tmp == guid) return (B_TRUE); if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) if (find_guid(child[c], guid)) return (B_TRUE); } return (B_FALSE); } typedef struct aux_cbdata { const char *cb_type; uint64_t cb_guid; zpool_handle_t *cb_zhp; } aux_cbdata_t; static int find_aux(zpool_handle_t *zhp, void *data) { aux_cbdata_t *cbp = data; nvlist_t **list; uint_t i, count; uint64_t guid; nvlist_t *nvroot; verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, &list, &count) == 0) { for (i = 0; i < count; i++) { verify(nvlist_lookup_uint64(list[i], ZPOOL_CONFIG_GUID, &guid) == 0); if (guid == cbp->cb_guid) { cbp->cb_zhp = zhp; return (1); } } } zpool_close(zhp); return (0); } /* * Determines if the pool is in use. If so, it returns true and the state of * the pool as well as the name of the pool. Both strings are allocated and * must be freed by the caller. */ int zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, boolean_t *inuse) { nvlist_t *config; char *name; boolean_t ret; uint64_t guid, vdev_guid; zpool_handle_t *zhp; nvlist_t *pool_config; uint64_t stateval, isspare; aux_cbdata_t cb = { 0 }; boolean_t isactive; *inuse = B_FALSE; if (zpool_read_label(fd, &config, NULL) != 0) { (void) no_memory(hdl); return (-1); } if (config == NULL) return (0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &stateval) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0); if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, &name) == 0); verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &guid) == 0); } switch (stateval) { case POOL_STATE_EXPORTED: /* * A pool with an exported state may in fact be imported * read-only, so check the in-core state to see if it's * active and imported read-only. If it is, set * its state to active. */ if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && (zhp = zpool_open_canfail(hdl, name)) != NULL) { if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) stateval = POOL_STATE_ACTIVE; /* * All we needed the zpool handle for is the * readonly prop check. */ zpool_close(zhp); } ret = B_TRUE; break; case POOL_STATE_ACTIVE: /* * For an active pool, we have to determine if it's really part * of a currently active pool (in which case the pool will exist * and the guid will be the same), or whether it's part of an * active pool that was disconnected without being explicitly * exported. */ if (pool_active(hdl, name, guid, &isactive) != 0) { nvlist_free(config); return (-1); } if (isactive) { /* * Because the device may have been removed while * offlined, we only report it as active if the vdev is * still present in the config. Otherwise, pretend like * it's not in use. */ if ((zhp = zpool_open_canfail(hdl, name)) != NULL && (pool_config = zpool_get_config(zhp, NULL)) != NULL) { nvlist_t *nvroot; verify(nvlist_lookup_nvlist(pool_config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); ret = find_guid(nvroot, vdev_guid); } else { ret = B_FALSE; } /* * If this is an active spare within another pool, we * treat it like an unused hot spare. This allows the * user to create a pool with a hot spare that currently * in use within another pool. Since we return B_TRUE, * libdiskmgt will continue to prevent generic consumers * from using the device. */ if (ret && nvlist_lookup_uint64(config, ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) stateval = POOL_STATE_SPARE; if (zhp != NULL) zpool_close(zhp); } else { stateval = POOL_STATE_POTENTIALLY_ACTIVE; ret = B_TRUE; } break; case POOL_STATE_SPARE: /* * For a hot spare, it can be either definitively in use, or * potentially active. To determine if it's in use, we iterate * over all pools in the system and search for one with a spare * with a matching guid. * * Due to the shared nature of spares, we don't actually report * the potentially active case as in use. This means the user * can freely create pools on the hot spares of exported pools, * but to do otherwise makes the resulting code complicated, and * we end up having to deal with this case anyway. */ cb.cb_zhp = NULL; cb.cb_guid = vdev_guid; cb.cb_type = ZPOOL_CONFIG_SPARES; if (zpool_iter(hdl, find_aux, &cb) == 1) { name = (char *)zpool_get_name(cb.cb_zhp); ret = B_TRUE; } else { ret = B_FALSE; } break; case POOL_STATE_L2CACHE: /* * Check if any pool is currently using this l2cache device. */ cb.cb_zhp = NULL; cb.cb_guid = vdev_guid; cb.cb_type = ZPOOL_CONFIG_L2CACHE; if (zpool_iter(hdl, find_aux, &cb) == 1) { name = (char *)zpool_get_name(cb.cb_zhp); ret = B_TRUE; } else { ret = B_FALSE; } break; default: ret = B_FALSE; } if (ret) { if ((*namestr = zfs_strdup(hdl, name)) == NULL) { if (cb.cb_zhp) zpool_close(cb.cb_zhp); nvlist_free(config); return (-1); } *state = (pool_state_t)stateval; } if (cb.cb_zhp) zpool_close(cb.cb_zhp); nvlist_free(config); *inuse = ret; return (0); }