/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include <sys/zfs_context.h> #include <sys/crypto/common.h> #include <sys/crypto/api.h> #include <sys/crypto/impl.h> #include <sys/modhash.h> /* Cryptographic mechanisms tables and their access functions */ /* * Internal numbers assigned to mechanisms are coded as follows: * * +----------------+----------------+ * | mech. class | mech. index | * <--- 32-bits --->+<--- 32-bits ---> * * the mech_class identifies the table the mechanism belongs to. * mech_index is the index for that mechanism in the table. * A mechanism belongs to exactly 1 table. * The tables are: * . digest_mechs_tab[] for the msg digest mechs. * . cipher_mechs_tab[] for encrypt/decrypt and wrap/unwrap mechs. * . mac_mechs_tab[] for MAC mechs. * . sign_mechs_tab[] for sign & verify mechs. * . keyops_mechs_tab[] for key/key pair generation, and key derivation. * . misc_mechs_tab[] for mechs that don't belong to any of the above. * * There are no holes in the tables. */ /* * Locking conventions: * -------------------- * A global mutex, kcf_mech_tabs_lock, serializes writes to the * mechanism table via kcf_create_mech_entry(). * * A mutex is associated with every entry of the tables. * The mutex is acquired whenever the entry is accessed for * 1) retrieving the mech_id (comparing the mech name) * 2) finding a provider for an xxx_init() or atomic operation. * 3) altering the mechs entry to add or remove a provider. * * In 2), after a provider is chosen, its prov_desc is held and the * entry's mutex must be dropped. The provider's working function (SPI) is * called outside the mech_entry's mutex. * * The number of providers for a particular mechanism is not expected to be * long enough to justify the cost of using rwlocks, so the per-mechanism * entry mutex won't be very *hot*. * * When both kcf_mech_tabs_lock and a mech_entry mutex need to be held, * kcf_mech_tabs_lock must always be acquired first. * */ /* Mechanisms tables */ /* RFE 4687834 Will deal with the extensibility of these tables later */ kcf_mech_entry_t kcf_digest_mechs_tab[KCF_MAXDIGEST]; kcf_mech_entry_t kcf_cipher_mechs_tab[KCF_MAXCIPHER]; kcf_mech_entry_t kcf_mac_mechs_tab[KCF_MAXMAC]; kcf_mech_entry_t kcf_sign_mechs_tab[KCF_MAXSIGN]; kcf_mech_entry_t kcf_keyops_mechs_tab[KCF_MAXKEYOPS]; kcf_mech_entry_t kcf_misc_mechs_tab[KCF_MAXMISC]; kcf_mech_entry_tab_t kcf_mech_tabs_tab[KCF_LAST_OPSCLASS + 1] = { {0, NULL}, /* No class zero */ {KCF_MAXDIGEST, kcf_digest_mechs_tab}, {KCF_MAXCIPHER, kcf_cipher_mechs_tab}, {KCF_MAXMAC, kcf_mac_mechs_tab}, {KCF_MAXSIGN, kcf_sign_mechs_tab}, {KCF_MAXKEYOPS, kcf_keyops_mechs_tab}, {KCF_MAXMISC, kcf_misc_mechs_tab} }; /* * Per-algorithm internal thresholds for the minimum input size of before * offloading to hardware provider. * Dispatching a crypto operation to a hardware provider entails paying the * cost of an additional context switch. Measurments with Sun Accelerator 4000 * shows that 512-byte jobs or smaller are better handled in software. * There is room for refinement here. * */ int kcf_md5_threshold = 512; int kcf_sha1_threshold = 512; int kcf_des_threshold = 512; int kcf_des3_threshold = 512; int kcf_aes_threshold = 512; int kcf_bf_threshold = 512; int kcf_rc4_threshold = 512; kmutex_t kcf_mech_tabs_lock; static uint32_t kcf_gen_swprov = 0; int kcf_mech_hash_size = 256; mod_hash_t *kcf_mech_hash; /* mech name to id hash */ static crypto_mech_type_t kcf_mech_hash_find(char *mechname) { mod_hash_val_t hv; crypto_mech_type_t mt; mt = CRYPTO_MECH_INVALID; if (mod_hash_find(kcf_mech_hash, (mod_hash_key_t)mechname, &hv) == 0) { mt = *(crypto_mech_type_t *)hv; ASSERT(mt != CRYPTO_MECH_INVALID); } return (mt); } void kcf_destroy_mech_tabs(void) { int i, max; kcf_ops_class_t class; kcf_mech_entry_t *me_tab; if (kcf_mech_hash) mod_hash_destroy_hash(kcf_mech_hash); mutex_destroy(&kcf_mech_tabs_lock); for (class = KCF_FIRST_OPSCLASS; class <= KCF_LAST_OPSCLASS; class++) { max = kcf_mech_tabs_tab[class].met_size; me_tab = kcf_mech_tabs_tab[class].met_tab; for (i = 0; i < max; i++) mutex_destroy(&(me_tab[i].me_mutex)); } } /* * kcf_init_mech_tabs() * * Called by the misc/kcf's _init() routine to initialize the tables * of mech_entry's. */ void kcf_init_mech_tabs(void) { int i, max; kcf_ops_class_t class; kcf_mech_entry_t *me_tab; /* Initializes the mutex locks. */ mutex_init(&kcf_mech_tabs_lock, NULL, MUTEX_DEFAULT, NULL); /* Then the pre-defined mechanism entries */ /* Two digests */ (void) strncpy(kcf_digest_mechs_tab[0].me_name, SUN_CKM_MD5, CRYPTO_MAX_MECH_NAME); kcf_digest_mechs_tab[0].me_threshold = kcf_md5_threshold; (void) strncpy(kcf_digest_mechs_tab[1].me_name, SUN_CKM_SHA1, CRYPTO_MAX_MECH_NAME); kcf_digest_mechs_tab[1].me_threshold = kcf_sha1_threshold; /* The symmetric ciphers in various modes */ (void) strncpy(kcf_cipher_mechs_tab[0].me_name, SUN_CKM_DES_CBC, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[0].me_threshold = kcf_des_threshold; (void) strncpy(kcf_cipher_mechs_tab[1].me_name, SUN_CKM_DES3_CBC, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[1].me_threshold = kcf_des3_threshold; (void) strncpy(kcf_cipher_mechs_tab[2].me_name, SUN_CKM_DES_ECB, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[2].me_threshold = kcf_des_threshold; (void) strncpy(kcf_cipher_mechs_tab[3].me_name, SUN_CKM_DES3_ECB, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[3].me_threshold = kcf_des3_threshold; (void) strncpy(kcf_cipher_mechs_tab[4].me_name, SUN_CKM_BLOWFISH_CBC, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[4].me_threshold = kcf_bf_threshold; (void) strncpy(kcf_cipher_mechs_tab[5].me_name, SUN_CKM_BLOWFISH_ECB, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[5].me_threshold = kcf_bf_threshold; (void) strncpy(kcf_cipher_mechs_tab[6].me_name, SUN_CKM_AES_CBC, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[6].me_threshold = kcf_aes_threshold; (void) strncpy(kcf_cipher_mechs_tab[7].me_name, SUN_CKM_AES_ECB, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[7].me_threshold = kcf_aes_threshold; (void) strncpy(kcf_cipher_mechs_tab[8].me_name, SUN_CKM_RC4, CRYPTO_MAX_MECH_NAME); kcf_cipher_mechs_tab[8].me_threshold = kcf_rc4_threshold; /* 4 HMACs */ (void) strncpy(kcf_mac_mechs_tab[0].me_name, SUN_CKM_MD5_HMAC, CRYPTO_MAX_MECH_NAME); kcf_mac_mechs_tab[0].me_threshold = kcf_md5_threshold; (void) strncpy(kcf_mac_mechs_tab[1].me_name, SUN_CKM_MD5_HMAC_GENERAL, CRYPTO_MAX_MECH_NAME); kcf_mac_mechs_tab[1].me_threshold = kcf_md5_threshold; (void) strncpy(kcf_mac_mechs_tab[2].me_name, SUN_CKM_SHA1_HMAC, CRYPTO_MAX_MECH_NAME); kcf_mac_mechs_tab[2].me_threshold = kcf_sha1_threshold; (void) strncpy(kcf_mac_mechs_tab[3].me_name, SUN_CKM_SHA1_HMAC_GENERAL, CRYPTO_MAX_MECH_NAME); kcf_mac_mechs_tab[3].me_threshold = kcf_sha1_threshold; /* 1 random number generation pseudo mechanism */ (void) strncpy(kcf_misc_mechs_tab[0].me_name, SUN_RANDOM, CRYPTO_MAX_MECH_NAME); kcf_mech_hash = mod_hash_create_strhash_nodtr("kcf mech2id hash", kcf_mech_hash_size, mod_hash_null_valdtor); for (class = KCF_FIRST_OPSCLASS; class <= KCF_LAST_OPSCLASS; class++) { max = kcf_mech_tabs_tab[class].met_size; me_tab = kcf_mech_tabs_tab[class].met_tab; for (i = 0; i < max; i++) { mutex_init(&(me_tab[i].me_mutex), NULL, MUTEX_DEFAULT, NULL); if (me_tab[i].me_name[0] != 0) { me_tab[i].me_mechid = KCF_MECHID(class, i); (void) mod_hash_insert(kcf_mech_hash, (mod_hash_key_t)me_tab[i].me_name, (mod_hash_val_t)&(me_tab[i].me_mechid)); } } } } /* * kcf_create_mech_entry() * * Arguments: * . The class of mechanism. * . the name of the new mechanism. * * Description: * Creates a new mech_entry for a mechanism not yet known to the * framework. * This routine is called by kcf_add_mech_provider, which is * in turn invoked for each mechanism supported by a provider. * The'class' argument depends on the crypto_func_group_t bitmask * in the registering provider's mech_info struct for this mechanism. * When there is ambiguity in the mapping between the crypto_func_group_t * and a class (dual ops, ...) the KCF_MISC_CLASS should be used. * * Context: * User context only. * * Returns: * KCF_INVALID_MECH_CLASS or KCF_INVALID_MECH_NAME if the class or * the mechname is bogus. * KCF_MECH_TAB_FULL when there is no room left in the mech. tabs. * KCF_SUCCESS otherwise. */ static int kcf_create_mech_entry(kcf_ops_class_t class, char *mechname) { crypto_mech_type_t mt; kcf_mech_entry_t *me_tab; int i = 0, size; if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) return (KCF_INVALID_MECH_CLASS); if ((mechname == NULL) || (mechname[0] == 0)) return (KCF_INVALID_MECH_NAME); /* * First check if the mechanism is already in one of the tables. * The mech_entry could be in another class. */ mutex_enter(&kcf_mech_tabs_lock); mt = kcf_mech_hash_find(mechname); if (mt != CRYPTO_MECH_INVALID) { /* Nothing to do, regardless the suggested class. */ mutex_exit(&kcf_mech_tabs_lock); return (KCF_SUCCESS); } /* Now take the next unused mech entry in the class's tab */ me_tab = kcf_mech_tabs_tab[class].met_tab; size = kcf_mech_tabs_tab[class].met_size; while (i < size) { mutex_enter(&(me_tab[i].me_mutex)); if (me_tab[i].me_name[0] == 0) { /* Found an empty spot */ (void) strlcpy(me_tab[i].me_name, mechname, CRYPTO_MAX_MECH_NAME); me_tab[i].me_name[CRYPTO_MAX_MECH_NAME-1] = '\0'; me_tab[i].me_mechid = KCF_MECHID(class, i); /* * No a-priori information about the new mechanism, so * the threshold is set to zero. */ me_tab[i].me_threshold = 0; mutex_exit(&(me_tab[i].me_mutex)); /* Add the new mechanism to the hash table */ (void) mod_hash_insert(kcf_mech_hash, (mod_hash_key_t)me_tab[i].me_name, (mod_hash_val_t)&(me_tab[i].me_mechid)); break; } mutex_exit(&(me_tab[i].me_mutex)); i++; } mutex_exit(&kcf_mech_tabs_lock); if (i == size) { return (KCF_MECH_TAB_FULL); } return (KCF_SUCCESS); } /* * kcf_add_mech_provider() * * Arguments: * . An index in to the provider mechanism array * . A pointer to the provider descriptor * . A storage for the kcf_prov_mech_desc_t the entry was added at. * * Description: * Adds a new provider of a mechanism to the mechanism's mech_entry * chain. * * Context: * User context only. * * Returns * KCF_SUCCESS on success * KCF_MECH_TAB_FULL otherwise. */ int kcf_add_mech_provider(short mech_indx, kcf_provider_desc_t *prov_desc, kcf_prov_mech_desc_t **pmdpp) { int error; kcf_mech_entry_t *mech_entry = NULL; crypto_mech_info_t *mech_info; crypto_mech_type_t kcf_mech_type, mt; kcf_prov_mech_desc_t *prov_mech, *prov_mech2; crypto_func_group_t simple_fg_mask, dual_fg_mask; crypto_mech_info_t *dmi; crypto_mech_info_list_t *mil, *mil2; kcf_mech_entry_t *me; int i; ASSERT(prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER); mech_info = &prov_desc->pd_mechanisms[mech_indx]; /* * A mechanism belongs to exactly one mechanism table. * Find the class corresponding to the function group flag of * the mechanism. */ kcf_mech_type = kcf_mech_hash_find(mech_info->cm_mech_name); if (kcf_mech_type == CRYPTO_MECH_INVALID) { crypto_func_group_t fg = mech_info->cm_func_group_mask; kcf_ops_class_t class; if (fg & CRYPTO_FG_DIGEST || fg & CRYPTO_FG_DIGEST_ATOMIC) class = KCF_DIGEST_CLASS; else if (fg & CRYPTO_FG_ENCRYPT || fg & CRYPTO_FG_DECRYPT || fg & CRYPTO_FG_ENCRYPT_ATOMIC || fg & CRYPTO_FG_DECRYPT_ATOMIC) class = KCF_CIPHER_CLASS; else if (fg & CRYPTO_FG_MAC || fg & CRYPTO_FG_MAC_ATOMIC) class = KCF_MAC_CLASS; else if (fg & CRYPTO_FG_SIGN || fg & CRYPTO_FG_VERIFY || fg & CRYPTO_FG_SIGN_ATOMIC || fg & CRYPTO_FG_VERIFY_ATOMIC || fg & CRYPTO_FG_SIGN_RECOVER || fg & CRYPTO_FG_VERIFY_RECOVER) class = KCF_SIGN_CLASS; else if (fg & CRYPTO_FG_GENERATE || fg & CRYPTO_FG_GENERATE_KEY_PAIR || fg & CRYPTO_FG_WRAP || fg & CRYPTO_FG_UNWRAP || fg & CRYPTO_FG_DERIVE) class = KCF_KEYOPS_CLASS; else class = KCF_MISC_CLASS; /* * Attempt to create a new mech_entry for the specified * mechanism. kcf_create_mech_entry() can handle the case * where such an entry already exists. */ if ((error = kcf_create_mech_entry(class, mech_info->cm_mech_name)) != KCF_SUCCESS) { return (error); } /* get the KCF mech type that was assigned to the mechanism */ kcf_mech_type = kcf_mech_hash_find(mech_info->cm_mech_name); ASSERT(kcf_mech_type != CRYPTO_MECH_INVALID); } error = kcf_get_mech_entry(kcf_mech_type, &mech_entry); ASSERT(error == KCF_SUCCESS); /* allocate and initialize new kcf_prov_mech_desc */ prov_mech = kmem_zalloc(sizeof (kcf_prov_mech_desc_t), KM_SLEEP); bcopy(mech_info, &prov_mech->pm_mech_info, sizeof (crypto_mech_info_t)); prov_mech->pm_prov_desc = prov_desc; prov_desc->pd_mech_indx[KCF_MECH2CLASS(kcf_mech_type)] [KCF_MECH2INDEX(kcf_mech_type)] = mech_indx; KCF_PROV_REFHOLD(prov_desc); KCF_PROV_IREFHOLD(prov_desc); dual_fg_mask = mech_info->cm_func_group_mask & CRYPTO_FG_DUAL_MASK; if (dual_fg_mask == ((crypto_func_group_t)0)) goto add_entry; simple_fg_mask = (mech_info->cm_func_group_mask & CRYPTO_FG_SIMPLEOP_MASK) | CRYPTO_FG_RANDOM; for (i = 0; i < prov_desc->pd_mech_list_count; i++) { dmi = &prov_desc->pd_mechanisms[i]; /* skip self */ if (dmi->cm_mech_number == mech_info->cm_mech_number) continue; /* skip if not a dual operation mechanism */ if (!(dmi->cm_func_group_mask & dual_fg_mask) || (dmi->cm_func_group_mask & simple_fg_mask)) continue; mt = kcf_mech_hash_find(dmi->cm_mech_name); if (mt == CRYPTO_MECH_INVALID) continue; if (kcf_get_mech_entry(mt, &me) != KCF_SUCCESS) continue; mil = kmem_zalloc(sizeof (*mil), KM_SLEEP); mil2 = kmem_zalloc(sizeof (*mil2), KM_SLEEP); /* * Ignore hard-coded entries in the mech table * if the provider hasn't registered. */ mutex_enter(&me->me_mutex); if (me->me_hw_prov_chain == NULL && me->me_sw_prov == NULL) { mutex_exit(&me->me_mutex); kmem_free(mil, sizeof (*mil)); kmem_free(mil2, sizeof (*mil2)); continue; } /* * Add other dual mechanisms that have registered * with the framework to this mechanism's * cross-reference list. */ mil->ml_mech_info = *dmi; /* struct assignment */ mil->ml_kcf_mechid = mt; /* add to head of list */ mil->ml_next = prov_mech->pm_mi_list; prov_mech->pm_mi_list = mil; if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) prov_mech2 = me->me_hw_prov_chain; else prov_mech2 = me->me_sw_prov; if (prov_mech2 == NULL) { kmem_free(mil2, sizeof (*mil2)); mutex_exit(&me->me_mutex); continue; } /* * Update all other cross-reference lists by * adding this new mechanism. */ while (prov_mech2 != NULL) { if (prov_mech2->pm_prov_desc == prov_desc) { /* struct assignment */ mil2->ml_mech_info = *mech_info; mil2->ml_kcf_mechid = kcf_mech_type; /* add to head of list */ mil2->ml_next = prov_mech2->pm_mi_list; prov_mech2->pm_mi_list = mil2; break; } prov_mech2 = prov_mech2->pm_next; } if (prov_mech2 == NULL) kmem_free(mil2, sizeof (*mil2)); mutex_exit(&me->me_mutex); } add_entry: /* * Add new kcf_prov_mech_desc at the front of HW providers * chain. */ switch (prov_desc->pd_prov_type) { case CRYPTO_HW_PROVIDER: mutex_enter(&mech_entry->me_mutex); prov_mech->pm_me = mech_entry; prov_mech->pm_next = mech_entry->me_hw_prov_chain; mech_entry->me_hw_prov_chain = prov_mech; mech_entry->me_num_hwprov++; mutex_exit(&mech_entry->me_mutex); break; case CRYPTO_SW_PROVIDER: mutex_enter(&mech_entry->me_mutex); if (mech_entry->me_sw_prov != NULL) { /* * There is already a SW provider for this mechanism. * Since we allow only one SW provider per mechanism, * report this condition. */ cmn_err(CE_WARN, "The cryptographic software provider " "\"%s\" will not be used for %s. The provider " "\"%s\" will be used for this mechanism " "instead.", prov_desc->pd_description, mech_info->cm_mech_name, mech_entry->me_sw_prov->pm_prov_desc-> pd_description); KCF_PROV_REFRELE(prov_desc); kmem_free(prov_mech, sizeof (kcf_prov_mech_desc_t)); prov_mech = NULL; } else { /* * Set the provider as the software provider for * this mechanism. */ mech_entry->me_sw_prov = prov_mech; /* We'll wrap around after 4 billion registrations! */ mech_entry->me_gen_swprov = kcf_gen_swprov++; } mutex_exit(&mech_entry->me_mutex); break; default: break; } *pmdpp = prov_mech; return (KCF_SUCCESS); } /* * kcf_remove_mech_provider() * * Arguments: * . mech_name: the name of the mechanism. * . prov_desc: The provider descriptor * * Description: * Removes a provider from chain of provider descriptors. * The provider is made unavailable to kernel consumers for the specified * mechanism. * * Context: * User context only. */ void kcf_remove_mech_provider(char *mech_name, kcf_provider_desc_t *prov_desc) { crypto_mech_type_t mech_type; kcf_prov_mech_desc_t *prov_mech = NULL, *prov_chain; kcf_prov_mech_desc_t **prev_entry_next; kcf_mech_entry_t *mech_entry; crypto_mech_info_list_t *mil, *mil2, *next, **prev_next; ASSERT(prov_desc->pd_prov_type != CRYPTO_LOGICAL_PROVIDER); /* get the KCF mech type that was assigned to the mechanism */ if ((mech_type = kcf_mech_hash_find(mech_name)) == CRYPTO_MECH_INVALID) { /* * Provider was not allowed for this mech due to policy or * configuration. */ return; } /* get a ptr to the mech_entry that was created */ if (kcf_get_mech_entry(mech_type, &mech_entry) != KCF_SUCCESS) { /* * Provider was not allowed for this mech due to policy or * configuration. */ return; } mutex_enter(&mech_entry->me_mutex); switch (prov_desc->pd_prov_type) { case CRYPTO_HW_PROVIDER: /* find the provider in the mech_entry chain */ prev_entry_next = &mech_entry->me_hw_prov_chain; prov_mech = mech_entry->me_hw_prov_chain; while (prov_mech != NULL && prov_mech->pm_prov_desc != prov_desc) { prev_entry_next = &prov_mech->pm_next; prov_mech = prov_mech->pm_next; } if (prov_mech == NULL) { /* entry not found, simply return */ mutex_exit(&mech_entry->me_mutex); return; } /* remove provider entry from mech_entry chain */ *prev_entry_next = prov_mech->pm_next; ASSERT(mech_entry->me_num_hwprov > 0); mech_entry->me_num_hwprov--; break; case CRYPTO_SW_PROVIDER: if (mech_entry->me_sw_prov == NULL || mech_entry->me_sw_prov->pm_prov_desc != prov_desc) { /* not the software provider for this mechanism */ mutex_exit(&mech_entry->me_mutex); return; } prov_mech = mech_entry->me_sw_prov; mech_entry->me_sw_prov = NULL; break; default: /* unexpected crypto_provider_type_t */ mutex_exit(&mech_entry->me_mutex); return; } mutex_exit(&mech_entry->me_mutex); /* Free the dual ops cross-reference lists */ mil = prov_mech->pm_mi_list; while (mil != NULL) { next = mil->ml_next; if (kcf_get_mech_entry(mil->ml_kcf_mechid, &mech_entry) != KCF_SUCCESS) { mil = next; continue; } mutex_enter(&mech_entry->me_mutex); if (prov_desc->pd_prov_type == CRYPTO_HW_PROVIDER) prov_chain = mech_entry->me_hw_prov_chain; else prov_chain = mech_entry->me_sw_prov; while (prov_chain != NULL) { if (prov_chain->pm_prov_desc == prov_desc) { prev_next = &prov_chain->pm_mi_list; mil2 = prov_chain->pm_mi_list; while (mil2 != NULL && mil2->ml_kcf_mechid != mech_type) { prev_next = &mil2->ml_next; mil2 = mil2->ml_next; } if (mil2 != NULL) { *prev_next = mil2->ml_next; kmem_free(mil2, sizeof (*mil2)); } break; } prov_chain = prov_chain->pm_next; } mutex_exit(&mech_entry->me_mutex); kmem_free(mil, sizeof (crypto_mech_info_list_t)); mil = next; } /* free entry */ KCF_PROV_REFRELE(prov_mech->pm_prov_desc); KCF_PROV_IREFRELE(prov_mech->pm_prov_desc); kmem_free(prov_mech, sizeof (kcf_prov_mech_desc_t)); } /* * kcf_get_mech_entry() * * Arguments: * . The framework mechanism type * . Storage for the mechanism entry * * Description: * Retrieves the mechanism entry for the mech. * * Context: * User and interrupt contexts. * * Returns: * KCF_MECHANISM_XXX appropriate error code. * KCF_SUCCESS otherwise. */ int kcf_get_mech_entry(crypto_mech_type_t mech_type, kcf_mech_entry_t **mep) { kcf_ops_class_t class; int index; kcf_mech_entry_tab_t *me_tab; ASSERT(mep != NULL); class = KCF_MECH2CLASS(mech_type); if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) { /* the caller won't need to know it's an invalid class */ return (KCF_INVALID_MECH_NUMBER); } me_tab = &kcf_mech_tabs_tab[class]; index = KCF_MECH2INDEX(mech_type); if ((index < 0) || (index >= me_tab->met_size)) { return (KCF_INVALID_MECH_NUMBER); } *mep = &((me_tab->met_tab)[index]); return (KCF_SUCCESS); } /* CURRENTLY UNSUPPORTED: attempting to load the module if it isn't found */ /* * Lookup the hash table for an entry that matches the mechname. * If there are no hardware or software providers for the mechanism, * but there is an unloaded software provider, this routine will attempt * to load it. * * If the MOD_NOAUTOUNLOAD flag is not set, a software provider is * in constant danger of being unloaded. For consumers that call * crypto_mech2id() only once, the provider will not be reloaded * if it becomes unloaded. If a provider gets loaded elsewhere * without the MOD_NOAUTOUNLOAD flag being set, we set it now. */ crypto_mech_type_t crypto_mech2id_common(char *mechname, boolean_t load_module) { crypto_mech_type_t mt = kcf_mech_hash_find(mechname); return (mt); }