/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include /* Cryptographic mechanisms tables and their access functions */ /* * Internal numbers assigned to mechanisms are coded as follows: * * +----------------+----------------+ * | mech. class | mech. index | * <--- 32-bits --->+<--- 32-bits ---> * * the mech_class identifies the table the mechanism belongs to. * mech_index is the index for that mechanism in the table. * A mechanism belongs to exactly 1 table. * The tables are: * . digest_mechs_tab[] for the msg digest mechs. * . cipher_mechs_tab[] for encrypt/decrypt and wrap/unwrap mechs. * . mac_mechs_tab[] for MAC mechs. * . sign_mechs_tab[] for sign & verify mechs. * . keyops_mechs_tab[] for key/key pair generation, and key derivation. * . misc_mechs_tab[] for mechs that don't belong to any of the above. * * There are no holes in the tables. */ /* * Locking conventions: * -------------------- * A mutex is associated with every entry of the tables. * The mutex is acquired whenever the entry is accessed for * 1) retrieving the mech_id (comparing the mech name) * 2) finding a provider for an xxx_init() or atomic operation. * 3) altering the mechs entry to add or remove a provider. * * In 2), after a provider is chosen, its prov_desc is held and the * entry's mutex must be dropped. The provider's working function (SPI) is * called outside the mech_entry's mutex. * * The number of providers for a particular mechanism is not expected to be * long enough to justify the cost of using rwlocks, so the per-mechanism * entry mutex won't be very *hot*. * */ /* Mechanisms tables */ /* RFE 4687834 Will deal with the extensibility of these tables later */ static kcf_mech_entry_t kcf_digest_mechs_tab[KCF_MAXDIGEST]; static kcf_mech_entry_t kcf_cipher_mechs_tab[KCF_MAXCIPHER]; static kcf_mech_entry_t kcf_mac_mechs_tab[KCF_MAXMAC]; const kcf_mech_entry_tab_t kcf_mech_tabs_tab[KCF_LAST_OPSCLASS + 1] = { {0, NULL}, /* No class zero */ {KCF_MAXDIGEST, kcf_digest_mechs_tab}, {KCF_MAXCIPHER, kcf_cipher_mechs_tab}, {KCF_MAXMAC, kcf_mac_mechs_tab}, }; static avl_tree_t kcf_mech_hash; static int kcf_mech_hash_compar(const void *lhs, const void *rhs) { const kcf_mech_entry_t *l = lhs, *r = rhs; int cmp = strncmp(l->me_name, r->me_name, CRYPTO_MAX_MECH_NAME); return ((0 < cmp) - (cmp < 0)); } void kcf_destroy_mech_tabs(void) { for (void *cookie = NULL; avl_destroy_nodes(&kcf_mech_hash, &cookie); ) ; avl_destroy(&kcf_mech_hash); } /* * kcf_init_mech_tabs() * * Called by the misc/kcf's _init() routine to initialize the tables * of mech_entry's. */ void kcf_init_mech_tabs(void) { avl_create(&kcf_mech_hash, kcf_mech_hash_compar, sizeof (kcf_mech_entry_t), offsetof(kcf_mech_entry_t, me_node)); } /* * kcf_create_mech_entry() * * Arguments: * . The class of mechanism. * . the name of the new mechanism. * * Description: * Creates a new mech_entry for a mechanism not yet known to the * framework. * This routine is called by kcf_add_mech_provider, which is * in turn invoked for each mechanism supported by a provider. * The'class' argument depends on the crypto_func_group_t bitmask * in the registering provider's mech_info struct for this mechanism. * When there is ambiguity in the mapping between the crypto_func_group_t * and a class (dual ops, ...) the KCF_MISC_CLASS should be used. * * Context: * User context only. * * Returns: * KCF_INVALID_MECH_CLASS or KCF_INVALID_MECH_NAME if the class or * the mechname is bogus. * KCF_MECH_TAB_FULL when there is no room left in the mech. tabs. * KCF_SUCCESS otherwise. */ static int kcf_create_mech_entry(kcf_ops_class_t class, const char *mechname) { if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) return (KCF_INVALID_MECH_CLASS); if ((mechname == NULL) || (mechname[0] == 0)) return (KCF_INVALID_MECH_NAME); /* * First check if the mechanism is already in one of the tables. * The mech_entry could be in another class. */ avl_index_t where = 0; kcf_mech_entry_t tmptab; strlcpy(tmptab.me_name, mechname, CRYPTO_MAX_MECH_NAME); if (avl_find(&kcf_mech_hash, &tmptab, &where) != NULL) return (KCF_SUCCESS); /* Now take the next unused mech entry in the class's tab */ kcf_mech_entry_t *me_tab = kcf_mech_tabs_tab[class].met_tab; int size = kcf_mech_tabs_tab[class].met_size; for (int i = 0; i < size; ++i) if (me_tab[i].me_name[0] == 0) { /* Found an empty spot */ strlcpy(me_tab[i].me_name, mechname, CRYPTO_MAX_MECH_NAME); me_tab[i].me_mechid = KCF_MECHID(class, i); /* Add the new mechanism to the hash table */ avl_insert(&kcf_mech_hash, &me_tab[i], where); return (KCF_SUCCESS); } return (KCF_MECH_TAB_FULL); } /* * kcf_add_mech_provider() * * Arguments: * . An index in to the provider mechanism array * . A pointer to the provider descriptor * . A storage for the kcf_prov_mech_desc_t the entry was added at. * * Description: * Adds a new provider of a mechanism to the mechanism's mech_entry * chain. * * Context: * User context only. * * Returns * KCF_SUCCESS on success * KCF_MECH_TAB_FULL otherwise. */ int kcf_add_mech_provider(short mech_indx, kcf_provider_desc_t *prov_desc, kcf_prov_mech_desc_t **pmdpp) { int error; kcf_mech_entry_t *mech_entry = NULL; const crypto_mech_info_t *mech_info; crypto_mech_type_t kcf_mech_type; kcf_prov_mech_desc_t *prov_mech; mech_info = &prov_desc->pd_mechanisms[mech_indx]; /* * A mechanism belongs to exactly one mechanism table. * Find the class corresponding to the function group flag of * the mechanism. */ kcf_mech_type = crypto_mech2id(mech_info->cm_mech_name); if (kcf_mech_type == CRYPTO_MECH_INVALID) { crypto_func_group_t fg = mech_info->cm_func_group_mask; kcf_ops_class_t class; if (fg & CRYPTO_FG_DIGEST || fg & CRYPTO_FG_DIGEST_ATOMIC) class = KCF_DIGEST_CLASS; else if (fg & CRYPTO_FG_ENCRYPT || fg & CRYPTO_FG_DECRYPT || fg & CRYPTO_FG_ENCRYPT_ATOMIC || fg & CRYPTO_FG_DECRYPT_ATOMIC) class = KCF_CIPHER_CLASS; else if (fg & CRYPTO_FG_MAC || fg & CRYPTO_FG_MAC_ATOMIC) class = KCF_MAC_CLASS; else __builtin_unreachable(); /* * Attempt to create a new mech_entry for the specified * mechanism. kcf_create_mech_entry() can handle the case * where such an entry already exists. */ if ((error = kcf_create_mech_entry(class, mech_info->cm_mech_name)) != KCF_SUCCESS) { return (error); } /* get the KCF mech type that was assigned to the mechanism */ kcf_mech_type = crypto_mech2id(mech_info->cm_mech_name); ASSERT(kcf_mech_type != CRYPTO_MECH_INVALID); } error = kcf_get_mech_entry(kcf_mech_type, &mech_entry); ASSERT(error == KCF_SUCCESS); /* allocate and initialize new kcf_prov_mech_desc */ prov_mech = kmem_zalloc(sizeof (kcf_prov_mech_desc_t), KM_SLEEP); memcpy(&prov_mech->pm_mech_info, mech_info, sizeof (crypto_mech_info_t)); prov_mech->pm_prov_desc = prov_desc; prov_desc->pd_mech_indx[KCF_MECH2CLASS(kcf_mech_type)] [KCF_MECH2INDEX(kcf_mech_type)] = mech_indx; KCF_PROV_REFHOLD(prov_desc); KCF_PROV_IREFHOLD(prov_desc); /* * Add new kcf_prov_mech_desc at the front of HW providers * chain. */ if (mech_entry->me_sw_prov != NULL) { /* * There is already a provider for this mechanism. * Since we allow only one provider per mechanism, * report this condition. */ cmn_err(CE_WARN, "The cryptographic provider " "\"%s\" will not be used for %s. The provider " "\"%s\" will be used for this mechanism " "instead.", prov_desc->pd_description, mech_info->cm_mech_name, mech_entry->me_sw_prov->pm_prov_desc-> pd_description); KCF_PROV_REFRELE(prov_desc); kmem_free(prov_mech, sizeof (kcf_prov_mech_desc_t)); prov_mech = NULL; } else { /* * Set the provider as the provider for * this mechanism. */ mech_entry->me_sw_prov = prov_mech; } *pmdpp = prov_mech; return (KCF_SUCCESS); } /* * kcf_remove_mech_provider() * * Arguments: * . mech_name: the name of the mechanism. * . prov_desc: The provider descriptor * * Description: * Removes a provider from chain of provider descriptors. * The provider is made unavailable to kernel consumers for the specified * mechanism. * * Context: * User context only. */ void kcf_remove_mech_provider(const char *mech_name, kcf_provider_desc_t *prov_desc) { crypto_mech_type_t mech_type; kcf_prov_mech_desc_t *prov_mech = NULL; kcf_mech_entry_t *mech_entry; /* get the KCF mech type that was assigned to the mechanism */ if ((mech_type = crypto_mech2id(mech_name)) == CRYPTO_MECH_INVALID) { /* * Provider was not allowed for this mech due to policy or * configuration. */ return; } /* get a ptr to the mech_entry that was created */ if (kcf_get_mech_entry(mech_type, &mech_entry) != KCF_SUCCESS) { /* * Provider was not allowed for this mech due to policy or * configuration. */ return; } if (mech_entry->me_sw_prov == NULL || mech_entry->me_sw_prov->pm_prov_desc != prov_desc) { /* not the provider for this mechanism */ return; } prov_mech = mech_entry->me_sw_prov; mech_entry->me_sw_prov = NULL; /* free entry */ KCF_PROV_IREFRELE(prov_mech->pm_prov_desc); KCF_PROV_REFRELE(prov_mech->pm_prov_desc); kmem_free(prov_mech, sizeof (kcf_prov_mech_desc_t)); } /* * kcf_get_mech_entry() * * Arguments: * . The framework mechanism type * . Storage for the mechanism entry * * Description: * Retrieves the mechanism entry for the mech. * * Context: * User and interrupt contexts. * * Returns: * KCF_MECHANISM_XXX appropriate error code. * KCF_SUCCESS otherwise. */ int kcf_get_mech_entry(crypto_mech_type_t mech_type, kcf_mech_entry_t **mep) { kcf_ops_class_t class; int index; const kcf_mech_entry_tab_t *me_tab; ASSERT(mep != NULL); class = KCF_MECH2CLASS(mech_type); if ((class < KCF_FIRST_OPSCLASS) || (class > KCF_LAST_OPSCLASS)) { /* the caller won't need to know it's an invalid class */ return (KCF_INVALID_MECH_NUMBER); } me_tab = &kcf_mech_tabs_tab[class]; index = KCF_MECH2INDEX(mech_type); if ((index < 0) || (index >= me_tab->met_size)) { return (KCF_INVALID_MECH_NUMBER); } *mep = &((me_tab->met_tab)[index]); return (KCF_SUCCESS); } /* * crypto_mech2id() * * Arguments: * . mechname: A null-terminated string identifying the mechanism name. * * Description: * Walks the mechanisms tables, looking for an entry that matches the * mechname. Once it find it, it builds the 64-bit mech_type and returns * it. * * Context: * Process and interruption. * * Returns: * The unique mechanism identified by 'mechname', if found. * CRYPTO_MECH_INVALID otherwise. */ /* * Lookup the hash table for an entry that matches the mechname. * If there are no providers for the mechanism, * but there is an unloaded provider, this routine will attempt * to load it. */ crypto_mech_type_t crypto_mech2id(const char *mechname) { kcf_mech_entry_t tmptab, *found; strlcpy(tmptab.me_name, mechname, CRYPTO_MAX_MECH_NAME); if ((found = avl_find(&kcf_mech_hash, &tmptab, NULL))) { ASSERT(found->me_mechid != CRYPTO_MECH_INVALID); return (found->me_mechid); } return (CRYPTO_MECH_INVALID); } #if defined(_KERNEL) EXPORT_SYMBOL(crypto_mech2id); #endif