/* * Implement fast Fletcher4 with NEON instructions. (aarch64) * * Use the 128-bit NEON SIMD instructions and registers to compute * Fletcher4 in two incremental 64-bit parallel accumulator streams, * and then combine the streams to form the final four checksum words. * This implementation is a derivative of the AVX SIMD implementation by * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). * * Copyright (C) 2016 Romain Dolbeau. * * Authors: * Romain Dolbeau * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(__aarch64__) #include #include #include #include ZFS_NO_SANITIZE_UNDEFINED static void fletcher_4_aarch64_neon_init(fletcher_4_ctx_t *ctx) { memset(ctx->aarch64_neon, 0, 4 * sizeof (zfs_fletcher_aarch64_neon_t)); } ZFS_NO_SANITIZE_UNDEFINED static void fletcher_4_aarch64_neon_fini(fletcher_4_ctx_t *ctx, zio_cksum_t *zcp) { uint64_t A, B, C, D; A = ctx->aarch64_neon[0].v[0] + ctx->aarch64_neon[0].v[1]; B = 2 * ctx->aarch64_neon[1].v[0] + 2 * ctx->aarch64_neon[1].v[1] - ctx->aarch64_neon[0].v[1]; C = 4 * ctx->aarch64_neon[2].v[0] - ctx->aarch64_neon[1].v[0] + 4 * ctx->aarch64_neon[2].v[1] - 3 * ctx->aarch64_neon[1].v[1]; D = 8 * ctx->aarch64_neon[3].v[0] - 4 * ctx->aarch64_neon[2].v[0] + 8 * ctx->aarch64_neon[3].v[1] - 8 * ctx->aarch64_neon[2].v[1] + ctx->aarch64_neon[1].v[1]; ZIO_SET_CHECKSUM(zcp, A, B, C, D); } #define NEON_INIT_LOOP() \ asm("eor %[ZERO].16b,%[ZERO].16b,%[ZERO].16b\n" \ "ld1 { %[ACC0].4s }, %[CTX0]\n" \ "ld1 { %[ACC1].4s }, %[CTX1]\n" \ "ld1 { %[ACC2].4s }, %[CTX2]\n" \ "ld1 { %[ACC3].4s }, %[CTX3]\n" \ : [ZERO] "=w" (ZERO), \ [ACC0] "=w" (ACC0), [ACC1] "=w" (ACC1), \ [ACC2] "=w" (ACC2), [ACC3] "=w" (ACC3) \ : [CTX0] "Q" (ctx->aarch64_neon[0]), \ [CTX1] "Q" (ctx->aarch64_neon[1]), \ [CTX2] "Q" (ctx->aarch64_neon[2]), \ [CTX3] "Q" (ctx->aarch64_neon[3])) #define NEON_DO_REVERSE "rev32 %[SRC].16b, %[SRC].16b\n" #define NEON_DONT_REVERSE "" #define NEON_MAIN_LOOP(REVERSE) \ asm("ld1 { %[SRC].4s }, %[IP]\n" \ REVERSE \ "zip1 %[TMP1].4s, %[SRC].4s, %[ZERO].4s\n" \ "zip2 %[TMP2].4s, %[SRC].4s, %[ZERO].4s\n" \ "add %[ACC0].2d, %[ACC0].2d, %[TMP1].2d\n" \ "add %[ACC1].2d, %[ACC1].2d, %[ACC0].2d\n" \ "add %[ACC2].2d, %[ACC2].2d, %[ACC1].2d\n" \ "add %[ACC3].2d, %[ACC3].2d, %[ACC2].2d\n" \ "add %[ACC0].2d, %[ACC0].2d, %[TMP2].2d\n" \ "add %[ACC1].2d, %[ACC1].2d, %[ACC0].2d\n" \ "add %[ACC2].2d, %[ACC2].2d, %[ACC1].2d\n" \ "add %[ACC3].2d, %[ACC3].2d, %[ACC2].2d\n" \ : [SRC] "=&w" (SRC), \ [TMP1] "=&w" (TMP1), [TMP2] "=&w" (TMP2), \ [ACC0] "+w" (ACC0), [ACC1] "+w" (ACC1), \ [ACC2] "+w" (ACC2), [ACC3] "+w" (ACC3) \ : [ZERO] "w" (ZERO), [IP] "Q" (*ip)) #define NEON_FINI_LOOP() \ asm("st1 { %[ACC0].4s },%[DST0]\n" \ "st1 { %[ACC1].4s },%[DST1]\n" \ "st1 { %[ACC2].4s },%[DST2]\n" \ "st1 { %[ACC3].4s },%[DST3]\n" \ : [DST0] "=Q" (ctx->aarch64_neon[0]), \ [DST1] "=Q" (ctx->aarch64_neon[1]), \ [DST2] "=Q" (ctx->aarch64_neon[2]), \ [DST3] "=Q" (ctx->aarch64_neon[3]) \ : [ACC0] "w" (ACC0), [ACC1] "w" (ACC1), \ [ACC2] "w" (ACC2), [ACC3] "w" (ACC3)) static void fletcher_4_aarch64_neon_native(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); #if defined(_KERNEL) register unsigned char ZERO asm("v0") __attribute__((vector_size(16))); register unsigned char ACC0 asm("v1") __attribute__((vector_size(16))); register unsigned char ACC1 asm("v2") __attribute__((vector_size(16))); register unsigned char ACC2 asm("v3") __attribute__((vector_size(16))); register unsigned char ACC3 asm("v4") __attribute__((vector_size(16))); register unsigned char TMP1 asm("v5") __attribute__((vector_size(16))); register unsigned char TMP2 asm("v6") __attribute__((vector_size(16))); register unsigned char SRC asm("v7") __attribute__((vector_size(16))); #else unsigned char ZERO __attribute__((vector_size(16))); unsigned char ACC0 __attribute__((vector_size(16))); unsigned char ACC1 __attribute__((vector_size(16))); unsigned char ACC2 __attribute__((vector_size(16))); unsigned char ACC3 __attribute__((vector_size(16))); unsigned char TMP1 __attribute__((vector_size(16))); unsigned char TMP2 __attribute__((vector_size(16))); unsigned char SRC __attribute__((vector_size(16))); #endif NEON_INIT_LOOP(); do { NEON_MAIN_LOOP(NEON_DONT_REVERSE); } while ((ip += 2) < ipend); NEON_FINI_LOOP(); } static void fletcher_4_aarch64_neon_byteswap(fletcher_4_ctx_t *ctx, const void *buf, uint64_t size) { const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); #if defined(_KERNEL) register unsigned char ZERO asm("v0") __attribute__((vector_size(16))); register unsigned char ACC0 asm("v1") __attribute__((vector_size(16))); register unsigned char ACC1 asm("v2") __attribute__((vector_size(16))); register unsigned char ACC2 asm("v3") __attribute__((vector_size(16))); register unsigned char ACC3 asm("v4") __attribute__((vector_size(16))); register unsigned char TMP1 asm("v5") __attribute__((vector_size(16))); register unsigned char TMP2 asm("v6") __attribute__((vector_size(16))); register unsigned char SRC asm("v7") __attribute__((vector_size(16))); #else unsigned char ZERO __attribute__((vector_size(16))); unsigned char ACC0 __attribute__((vector_size(16))); unsigned char ACC1 __attribute__((vector_size(16))); unsigned char ACC2 __attribute__((vector_size(16))); unsigned char ACC3 __attribute__((vector_size(16))); unsigned char TMP1 __attribute__((vector_size(16))); unsigned char TMP2 __attribute__((vector_size(16))); unsigned char SRC __attribute__((vector_size(16))); #endif NEON_INIT_LOOP(); do { NEON_MAIN_LOOP(NEON_DO_REVERSE); } while ((ip += 2) < ipend); NEON_FINI_LOOP(); } static boolean_t fletcher_4_aarch64_neon_valid(void) { return (kfpu_allowed()); } const fletcher_4_ops_t fletcher_4_aarch64_neon_ops = { .init_native = fletcher_4_aarch64_neon_init, .compute_native = fletcher_4_aarch64_neon_native, .fini_native = fletcher_4_aarch64_neon_fini, .init_byteswap = fletcher_4_aarch64_neon_init, .compute_byteswap = fletcher_4_aarch64_neon_byteswap, .fini_byteswap = fletcher_4_aarch64_neon_fini, .valid = fletcher_4_aarch64_neon_valid, .uses_fpu = B_TRUE, .name = "aarch64_neon" }; #endif /* defined(__aarch64__) */