/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or https://opensource.org/licenses/CDDL-1.0. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012 by Delphix. All rights reserved. * Copyright 2014 Nexenta Systems, Inc. All rights reserved. * Copyright (c) 2016, 2017, Intel Corporation. * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. */ /* * ZFS syseventd module. * * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c * * The purpose of this module is to identify when devices are added to the * system, and appropriately online or replace the affected vdevs. * * When a device is added to the system: * * 1. Search for any vdevs whose devid matches that of the newly added * device. * * 2. If no vdevs are found, then search for any vdevs whose udev path * matches that of the new device. * * 3. If no vdevs match by either method, then ignore the event. * * 4. Attempt to online the device with a flag to indicate that it should * be unspared when resilvering completes. If this succeeds, then the * same device was inserted and we should continue normally. * * 5. If the pool does not have the 'autoreplace' property set, attempt to * online the device again without the unspare flag, which will * generate a FMA fault. * * 6. If the pool has the 'autoreplace' property set, and the matching vdev * is a whole disk, then label the new disk and attempt a 'zpool * replace'. * * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK * event indicates that a device failed to open during pool load, but the * autoreplace property was set. In this case, we deferred the associated * FMA fault until our module had a chance to process the autoreplace logic. * If the device could not be replaced, then the second online attempt will * trigger the FMA fault that we skipped earlier. * * On Linux udev provides a disk insert for both the disk and the partition. */ #include <ctype.h> #include <fcntl.h> #include <libnvpair.h> #include <libzfs.h> #include <libzutil.h> #include <limits.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #include <syslog.h> #include <sys/list.h> #include <sys/sunddi.h> #include <sys/sysevent/eventdefs.h> #include <sys/sysevent/dev.h> #include <thread_pool.h> #include <pthread.h> #include <unistd.h> #include <errno.h> #include "zfs_agents.h" #include "../zed_log.h" #define DEV_BYID_PATH "/dev/disk/by-id/" #define DEV_BYPATH_PATH "/dev/disk/by-path/" #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/" typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); libzfs_handle_t *g_zfshdl; list_t g_pool_list; /* list of unavailable pools at initialization */ list_t g_device_list; /* list of disks with asynchronous label request */ tpool_t *g_tpool; boolean_t g_enumeration_done; pthread_t g_zfs_tid; /* zfs_enum_pools() thread */ typedef struct unavailpool { zpool_handle_t *uap_zhp; list_node_t uap_node; } unavailpool_t; typedef struct pendingdev { char pd_physpath[128]; list_node_t pd_node; } pendingdev_t; static int zfs_toplevel_state(zpool_handle_t *zhp) { nvlist_t *nvroot; vdev_stat_t *vs; unsigned int c; verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); return (vs->vs_state); } static int zfs_unavail_pool(zpool_handle_t *zhp, void *data) { zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)", zpool_get_name(zhp), (int)zfs_toplevel_state(zhp)); if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { unavailpool_t *uap; uap = malloc(sizeof (unavailpool_t)); if (uap == NULL) { perror("malloc"); exit(EXIT_FAILURE); } uap->uap_zhp = zhp; list_insert_tail((list_t *)data, uap); } else { zpool_close(zhp); } return (0); } /* * Two stage replace on Linux * since we get disk notifications * we can wait for partitioned disk slice to show up! * * First stage tags the disk, initiates async partitioning, and returns * Second stage finds the tag and proceeds to ZFS labeling/replace * * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach * * 1. physical match with no fs, no partition * tag it top, partition disk * * 2. physical match again, see partition and tag * */ /* * The device associated with the given vdev (either by devid or physical path) * has been added to the system. If 'isdisk' is set, then we only attempt a * replacement if it's a whole disk. This also implies that we should label the * disk first. * * First, we attempt to online the device (making sure to undo any spare * operation when finished). If this succeeds, then we're done. If it fails, * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, * but that the label was not what we expected. If the 'autoreplace' property * is enabled, then we relabel the disk (if specified), and attempt a 'zpool * replace'. If the online is successful, but the new state is something else * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of * race, and we should avoid attempting to relabel the disk. * * Also can arrive here from a ESC_ZFS_VDEV_CHECK event */ static void zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled) { const char *path; vdev_state_t newstate; nvlist_t *nvroot, *newvd; pendingdev_t *device; uint64_t wholedisk = 0ULL; uint64_t offline = 0ULL, faulted = 0ULL; uint64_t guid = 0ULL; uint64_t is_spare = 0; const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL; char rawpath[PATH_MAX], fullpath[PATH_MAX]; char devpath[PATH_MAX]; int ret; int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE; boolean_t is_sd = B_FALSE; boolean_t is_mpath_wholedisk = B_FALSE; uint_t c; vdev_stat_t *vs; if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) return; /* Skip healthy disks */ verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); if (vs->vs_state == VDEV_STATE_HEALTHY) { zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.", __func__, path); return; } (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, &enc_sysfs_path); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid); (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare); /* * Special case: * * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH * entry in their config. For example, on this force-faulted disk: * * children[0]: * type: 'disk' * id: 0 * guid: 14309659774640089719 * path: '/dev/disk/by-vdev/L28' * whole_disk: 0 * DTL: 654 * create_txg: 4 * com.delphix:vdev_zap_leaf: 1161 * faulted: 1 * aux_state: 'external' * children[1]: * type: 'disk' * id: 1 * guid: 16002508084177980912 * path: '/dev/disk/by-vdev/L29' * devid: 'dm-uuid-mpath-35000c500a61d68a3' * phys_path: 'L29' * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' * whole_disk: 0 * DTL: 1028 * create_txg: 4 * com.delphix:vdev_zap_leaf: 131 * * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name. */ if (physpath == NULL && path != NULL) { /* If path begins with "/dev/disk/by-vdev/" ... */ if (strncmp(path, DEV_BYVDEV_PATH, strlen(DEV_BYVDEV_PATH)) == 0) { /* Set physpath to the char after "/dev/disk/by-vdev" */ physpath = &path[strlen(DEV_BYVDEV_PATH)]; } } /* * We don't want to autoreplace offlined disks. However, we do want to * replace force-faulted disks (`zpool offline -f`). Force-faulted * disks have both offline=1 and faulted=1 in the nvlist. */ if (offline && !faulted) { zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace", __func__, path); return; } is_mpath_wholedisk = is_mpath_whole_disk(path); zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'" " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', " "(guid %llu)", zpool_get_name(zhp), path, physpath ? physpath : "NULL", wholedisk ? "is" : "not", is_mpath_wholedisk? "is" : "not", labeled ? "is" : "not", enc_sysfs_path, (long long unsigned int)guid); /* * The VDEV guid is preferred for identification (gets passed in path) */ if (guid != 0) { (void) snprintf(fullpath, sizeof (fullpath), "%llu", (long long unsigned int)guid); } else { /* * otherwise use path sans partition suffix for whole disks */ (void) strlcpy(fullpath, path, sizeof (fullpath)); if (wholedisk) { char *spath = zfs_strip_partition(fullpath); if (!spath) { zed_log_msg(LOG_INFO, "%s: Can't alloc", __func__); return; } (void) strlcpy(fullpath, spath, sizeof (fullpath)); free(spath); } } if (is_spare) online_flag |= ZFS_ONLINE_SPARE; /* * Attempt to online the device. */ if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 && (newstate == VDEV_STATE_HEALTHY || newstate == VDEV_STATE_DEGRADED)) { zed_log_msg(LOG_INFO, " zpool_vdev_online: vdev '%s' ('%s') is " "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ? "HEALTHY" : "DEGRADED"); return; } /* * vdev_id alias rule for using scsi_debug devices (FMA automated * testing) */ if (physpath != NULL && strcmp("scsidebug", physpath) == 0) is_sd = B_TRUE; /* * If the pool doesn't have the autoreplace property set, then use * vdev online to trigger a FMA fault by posting an ereport. */ if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) { (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or " "not a blank disk for '%s' ('%s')", fullpath, physpath); return; } /* * Convert physical path into its current device node. Rawpath * needs to be /dev/disk/by-vdev for a scsi_debug device since * /dev/disk/by-path will not be present. */ (void) snprintf(rawpath, sizeof (rawpath), "%s%s", is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath); if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) { zed_log_msg(LOG_INFO, " realpath: %s failed (%s)", rawpath, strerror(errno)); (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)", fullpath, libzfs_error_description(g_zfshdl)); return; } /* Only autoreplace bad disks */ if ((vs->vs_state != VDEV_STATE_DEGRADED) && (vs->vs_state != VDEV_STATE_FAULTED) && (vs->vs_state != VDEV_STATE_REMOVED) && (vs->vs_state != VDEV_STATE_CANT_OPEN)) { zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in " "a bad state (currently %llu)", vs->vs_state); return; } nvlist_lookup_string(vdev, "new_devid", &new_devid); if (is_mpath_wholedisk) { /* Don't label device mapper or multipath disks. */ } else if (!labeled) { /* * we're auto-replacing a raw disk, so label it first */ char *leafname; /* * If this is a request to label a whole disk, then attempt to * write out the label. Before we can label the disk, we need * to map the physical string that was matched on to the under * lying device node. * * If any part of this process fails, then do a force online * to trigger a ZFS fault for the device (and any hot spare * replacement). */ leafname = strrchr(devpath, '/') + 1; /* * If this is a request to label a whole disk, then attempt to * write out the label. */ if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) { zed_log_msg(LOG_INFO, " zpool_label_disk: could not " "label '%s' (%s)", leafname, libzfs_error_description(g_zfshdl)); (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } /* * The disk labeling is asynchronous on Linux. Just record * this label request and return as there will be another * disk add event for the partition after the labeling is * completed. */ device = malloc(sizeof (pendingdev_t)); if (device == NULL) { perror("malloc"); exit(EXIT_FAILURE); } (void) strlcpy(device->pd_physpath, physpath, sizeof (device->pd_physpath)); list_insert_tail(&g_device_list, device); zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)", leafname, (u_longlong_t)guid); return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */ } else /* labeled */ { boolean_t found = B_FALSE; /* * match up with request above to label the disk */ for (device = list_head(&g_device_list); device != NULL; device = list_next(&g_device_list, device)) { if (strcmp(physpath, device->pd_physpath) == 0) { list_remove(&g_device_list, device); free(device); found = B_TRUE; break; } zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s", physpath, device->pd_physpath); } if (!found) { /* unexpected partition slice encountered */ zed_log_msg(LOG_INFO, "labeled disk %s unexpected here", fullpath); (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, &newstate); return; } zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)", physpath, (u_longlong_t)guid); (void) snprintf(devpath, sizeof (devpath), "%s%s", DEV_BYID_PATH, new_devid); } /* * Construct the root vdev to pass to zpool_vdev_attach(). While adding * the entire vdev structure is harmless, we construct a reduced set of * path/physpath/wholedisk to keep it simple. */ if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); return; } if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); nvlist_free(nvroot); return; } if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 || (physpath != NULL && nvlist_add_string(newvd, ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || (enc_sysfs_path != NULL && nvlist_add_string(newvd, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) || nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, (const nvlist_t **)&newvd, 1) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs"); nvlist_free(newvd); nvlist_free(nvroot); return; } nvlist_free(newvd); /* * Wait for udev to verify the links exist, then auto-replace * the leaf disk at same physical location. */ if (zpool_label_disk_wait(path, 3000) != 0) { zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement " "disk %s is missing", path); nvlist_free(nvroot); return; } /* * Prefer sequential resilvering when supported (mirrors and dRAID), * otherwise fallback to a traditional healing resilver. */ ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE); if (ret != 0) { ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_FALSE); } zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)", fullpath, path, (ret == 0) ? "no errors" : libzfs_error_description(g_zfshdl)); nvlist_free(nvroot); } /* * Utility functions to find a vdev matching given criteria. */ typedef struct dev_data { const char *dd_compare; const char *dd_prop; zfs_process_func_t dd_func; boolean_t dd_found; boolean_t dd_islabeled; uint64_t dd_pool_guid; uint64_t dd_vdev_guid; uint64_t dd_new_vdev_guid; const char *dd_new_devid; uint64_t dd_num_spares; } dev_data_t; static void zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) { dev_data_t *dp = data; const char *path = NULL; uint_t c, children; nvlist_t **child; uint64_t guid = 0; uint64_t isspare = 0; /* * First iterate over any children. */ if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, &children) == 0) { for (c = 0; c < children; c++) zfs_iter_vdev(zhp, child[c], data); } /* * Iterate over any spares and cache devices */ if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES, &child, &children) == 0) { for (c = 0; c < children; c++) zfs_iter_vdev(zhp, child[c], data); } if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE, &child, &children) == 0) { for (c = 0; c < children; c++) zfs_iter_vdev(zhp, child[c], data); } /* once a vdev was matched and processed there is nothing left to do */ if (dp->dd_found && dp->dd_num_spares == 0) return; (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid); /* * Match by GUID if available otherwise fallback to devid or physical */ if (dp->dd_vdev_guid != 0) { if (guid != dp->dd_vdev_guid) return; zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid); dp->dd_found = B_TRUE; } else if (dp->dd_compare != NULL) { /* * NOTE: On Linux there is an event for partition, so unlike * illumos, substring matching is not required to accommodate * the partition suffix. An exact match will be present in * the dp->dd_compare value. * If the attached disk already contains a vdev GUID, it means * the disk is not clean. In such a scenario, the physical path * would be a match that makes the disk faulted when trying to * online it. So, we would only want to proceed if either GUID * matches with the last attached disk or the disk is in clean * state. */ if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || strcmp(dp->dd_compare, path) != 0) { return; } if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) { zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu" " != vdev GUID:%llu)", __func__, dp->dd_new_vdev_guid, guid); return; } zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s", dp->dd_prop, path); dp->dd_found = B_TRUE; /* pass the new devid for use by replacing code */ if (dp->dd_new_devid != NULL) { (void) nvlist_add_string(nvl, "new_devid", dp->dd_new_devid); } } if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) dp->dd_num_spares++; (dp->dd_func)(zhp, nvl, dp->dd_islabeled); } static void zfs_enable_ds(void *arg) { unavailpool_t *pool = (unavailpool_t *)arg; (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); zpool_close(pool->uap_zhp); free(pool); } static int zfs_iter_pool(zpool_handle_t *zhp, void *data) { nvlist_t *config, *nvl; dev_data_t *dp = data; uint64_t pool_guid; unavailpool_t *pool; zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)", zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop); /* * For each vdev in this pool, look for a match to apply dd_func */ if ((config = zpool_get_config(zhp, NULL)) != NULL) { if (dp->dd_pool_guid == 0 || (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { (void) nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl); zfs_iter_vdev(zhp, nvl, data); } } else { zed_log_msg(LOG_INFO, "%s: no config\n", __func__); } /* * if this pool was originally unavailable, * then enable its datasets asynchronously */ if (g_enumeration_done) { for (pool = list_head(&g_pool_list); pool != NULL; pool = list_next(&g_pool_list, pool)) { if (strcmp(zpool_get_name(zhp), zpool_get_name(pool->uap_zhp))) continue; if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { list_remove(&g_pool_list, pool); (void) tpool_dispatch(g_tpool, zfs_enable_ds, pool); break; } } } zpool_close(zhp); /* cease iteration after a match */ return (dp->dd_found && dp->dd_num_spares == 0); } /* * Given a physical device location, iterate over all * (pool, vdev) pairs which correspond to that location. */ static boolean_t devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, boolean_t is_slice, uint64_t new_vdev_guid) { dev_data_t data = { 0 }; data.dd_compare = physical; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; /* used by auto replace code */ data.dd_new_vdev_guid = new_vdev_guid; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Given a device identifier, find any vdevs with a matching by-vdev * path. Normally we shouldn't need this as the comparison would be * made earlier in the devphys_iter(). For example, if we were replacing * /dev/disk/by-vdev/L28, normally devphys_iter() would match the * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28" * of the new disk config. However, we've seen cases where * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's * an example of a real 2-disk mirror pool where one disk was force * faulted: * * com.delphix:vdev_zap_top: 129 * children[0]: * type: 'disk' * id: 0 * guid: 14309659774640089719 * path: '/dev/disk/by-vdev/L28' * whole_disk: 0 * DTL: 654 * create_txg: 4 * com.delphix:vdev_zap_leaf: 1161 * faulted: 1 * aux_state: 'external' * children[1]: * type: 'disk' * id: 1 * guid: 16002508084177980912 * path: '/dev/disk/by-vdev/L29' * devid: 'dm-uuid-mpath-35000c500a61d68a3' * phys_path: 'L29' * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' * whole_disk: 0 * DTL: 1028 * create_txg: 4 * com.delphix:vdev_zap_leaf: 131 * * So in the case above, the only thing we could compare is the path. * * We can do this because we assume by-vdev paths are authoritative as physical * paths. We could not assume this for normal paths like /dev/sda since the * physical location /dev/sda points to could change over time. */ static boolean_t by_vdev_path_iter(const char *by_vdev_path, const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_compare = by_vdev_path; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_PATH; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; if (strncmp(by_vdev_path, DEV_BYVDEV_PATH, strlen(DEV_BYVDEV_PATH)) != 0) { /* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */ return (B_FALSE); } (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Given a device identifier, find any vdevs with a matching devid. * On Linux we can match devid directly which is always a whole disk. */ static boolean_t devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_compare = devid; data.dd_func = func; data.dd_prop = ZPOOL_CONFIG_DEVID; data.dd_found = B_FALSE; data.dd_islabeled = is_slice; data.dd_new_devid = devid; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Given a device guid, find any vdevs with a matching guid. */ static boolean_t guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid, zfs_process_func_t func, boolean_t is_slice) { dev_data_t data = { 0 }; data.dd_func = func; data.dd_found = B_FALSE; data.dd_pool_guid = pool_guid; data.dd_vdev_guid = vdev_guid; data.dd_islabeled = is_slice; data.dd_new_devid = devid; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (data.dd_found); } /* * Handle a EC_DEV_ADD.ESC_DISK event. * * illumos * Expects: DEV_PHYS_PATH string in schema * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID * * path: '/dev/dsk/c0t1d0s0' (persistent) * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a' * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a' * * linux * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID * * path: '/dev/sdc1' (not persistent) * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1' * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0' */ static int zfs_deliver_add(nvlist_t *nvl) { const char *devpath = NULL, *devid = NULL; uint64_t pool_guid = 0, vdev_guid = 0; boolean_t is_slice; /* * Expecting a devid string and an optional physical location and guid */ if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) { zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__); return (-1); } (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath); (void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid); (void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid); is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0); zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)", devid, devpath ? devpath : "NULL", is_slice); /* * Iterate over all vdevs looking for a match in the following order: * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk) * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location). * 3. ZPOOL_CONFIG_GUID (identifies unique vdev). * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since * by-vdev paths represent physical paths). */ if (devid_iter(devid, zfs_process_add, is_slice)) return (0); if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add, is_slice, vdev_guid)) return (0); if (vdev_guid != 0) (void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add, is_slice); if (devpath != NULL) { /* Can we match a /dev/disk/by-vdev/ path? */ char by_vdev_path[MAXPATHLEN]; snprintf(by_vdev_path, sizeof (by_vdev_path), "/dev/disk/by-vdev/%s", devpath); if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add, is_slice)) return (0); } return (0); } /* * Called when we receive a VDEV_CHECK event, which indicates a device could not * be opened during initial pool open, but the autoreplace property was set on * the pool. In this case, we treat it as if it were an add event. */ static int zfs_deliver_check(nvlist_t *nvl) { dev_data_t data = { 0 }; if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &data.dd_pool_guid) != 0 || nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &data.dd_vdev_guid) != 0 || data.dd_vdev_guid == 0) return (0); zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", data.dd_pool_guid, data.dd_vdev_guid); data.dd_func = zfs_process_add; (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); return (0); } /* * Given a path to a vdev, lookup the vdev's physical size from its * config nvlist. * * Returns the vdev's physical size in bytes on success, 0 on error. */ static uint64_t vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path) { nvlist_t *nvl = NULL; boolean_t avail_spare, l2cache, log; vdev_stat_t *vs = NULL; uint_t c; nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); if (!nvl) return (0); verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c) == 0); if (!vs) { zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__, vdev_path); return (0); } return (vs->vs_pspace); } /* * Given a path to a vdev, lookup if the vdev is a "whole disk" in the * config nvlist. "whole disk" means that ZFS was passed a whole disk * at pool creation time, which it partitioned up and has full control over. * Thus a partition with wholedisk=1 set tells us that zfs created the * partition at creation time. A partition without whole disk set would have * been created by externally (like with fdisk) and passed to ZFS. * * Returns the whole disk value (either 0 or 1). */ static uint64_t vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path) { nvlist_t *nvl = NULL; boolean_t avail_spare, l2cache, log; uint64_t wholedisk = 0; nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); if (!nvl) return (0); (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); return (wholedisk); } /* * If the device size grew more than 1% then return true. */ #define DEVICE_GREW(oldsize, newsize) \ ((newsize > oldsize) && \ ((newsize / (newsize - oldsize)) <= 100)) static int zfsdle_vdev_online(zpool_handle_t *zhp, void *data) { boolean_t avail_spare, l2cache; nvlist_t *udev_nvl = data; nvlist_t *tgt; int error; const char *tmp_devname; char devname[MAXPATHLEN] = ""; uint64_t guid; if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { sprintf(devname, "%llu", (u_longlong_t)guid); } else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH, &tmp_devname) == 0) { strlcpy(devname, tmp_devname, MAXPATHLEN); zfs_append_partition(devname, MAXPATHLEN); } else { zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__); } zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'", devname, zpool_get_name(zhp)); if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, &avail_spare, &l2cache, NULL)) != NULL) { const char *path; char fullpath[MAXPATHLEN]; uint64_t wholedisk = 0; error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path); if (error) { zpool_close(zhp); return (0); } (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); if (wholedisk) { char *tmp; path = strrchr(path, '/'); if (path != NULL) { tmp = zfs_strip_partition(path + 1); if (tmp == NULL) { zpool_close(zhp); return (0); } } else { zpool_close(zhp); return (0); } (void) strlcpy(fullpath, tmp, sizeof (fullpath)); free(tmp); /* * We need to reopen the pool associated with this * device so that the kernel can update the size of * the expanded device. When expanding there is no * need to restart the scrub from the beginning. */ boolean_t scrub_restart = B_FALSE; (void) zpool_reopen_one(zhp, &scrub_restart); } else { (void) strlcpy(fullpath, path, sizeof (fullpath)); } if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { vdev_state_t newstate; if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) { /* * If this disk size has not changed, then * there's no need to do an autoexpand. To * check we look at the disk's size in its * config, and compare it to the disk size * that udev is reporting. */ uint64_t udev_size = 0, conf_size = 0, wholedisk = 0, udev_parent_size = 0; /* * Get the size of our disk that udev is * reporting. */ if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE, &udev_size) != 0) { udev_size = 0; } /* * Get the size of our disk's parent device * from udev (where sda1's parent is sda). */ if (nvlist_lookup_uint64(udev_nvl, DEV_PARENT_SIZE, &udev_parent_size) != 0) { udev_parent_size = 0; } conf_size = vdev_size_from_config(zhp, fullpath); wholedisk = vdev_whole_disk_from_config(zhp, fullpath); /* * Only attempt an autoexpand if the vdev size * changed. There are two different cases * to consider. * * 1. wholedisk=1 * If you do a 'zpool create' on a whole disk * (like /dev/sda), then zfs will create * partitions on the disk (like /dev/sda1). In * that case, wholedisk=1 will be set in the * partition's nvlist config. So zed will need * to see if your parent device (/dev/sda) * expanded in size, and if so, then attempt * the autoexpand. * * 2. wholedisk=0 * If you do a 'zpool create' on an existing * partition, or a device that doesn't allow * partitions, then wholedisk=0, and you will * simply need to check if the device itself * expanded in size. */ if (DEVICE_GREW(conf_size, udev_size) || (wholedisk && DEVICE_GREW(conf_size, udev_parent_size))) { error = zpool_vdev_online(zhp, fullpath, 0, &newstate); zed_log_msg(LOG_INFO, "%s: autoexpanding '%s' from %llu" " to %llu bytes in pool '%s': %d", __func__, fullpath, conf_size, MAX(udev_size, udev_parent_size), zpool_get_name(zhp), error); } } } zpool_close(zhp); return (1); } zpool_close(zhp); return (0); } /* * This function handles the ESC_DEV_DLE device change event. Use the * provided vdev guid when looking up a disk or partition, when the guid * is not present assume the entire disk is owned by ZFS and append the * expected -part1 partition information then lookup by physical path. */ static int zfs_deliver_dle(nvlist_t *nvl) { const char *devname; char name[MAXPATHLEN]; uint64_t guid; if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { sprintf(name, "%llu", (u_longlong_t)guid); } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) { strlcpy(name, devname, MAXPATHLEN); zfs_append_partition(name, MAXPATHLEN); } else { sprintf(name, "unknown"); zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath"); } if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) { zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not " "found", name); return (1); } return (0); } /* * syseventd daemon module event handler * * Handles syseventd daemon zfs device related events: * * EC_DEV_ADD.ESC_DISK * EC_DEV_STATUS.ESC_DEV_DLE * EC_ZFS.ESC_ZFS_VDEV_CHECK * * Note: assumes only one thread active at a time (not thread safe) */ static int zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl) { int ret; boolean_t is_check = B_FALSE, is_dle = B_FALSE; if (strcmp(class, EC_DEV_ADD) == 0) { /* * We're mainly interested in disk additions, but we also listen * for new loop devices, to allow for simplified testing. */ if (strcmp(subclass, ESC_DISK) != 0 && strcmp(subclass, ESC_LOFI) != 0) return (0); is_check = B_FALSE; } else if (strcmp(class, EC_ZFS) == 0 && strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { /* * This event signifies that a device failed to open * during pool load, but the 'autoreplace' property was * set, so we should pretend it's just been added. */ is_check = B_TRUE; } else if (strcmp(class, EC_DEV_STATUS) == 0 && strcmp(subclass, ESC_DEV_DLE) == 0) { is_dle = B_TRUE; } else { return (0); } if (is_dle) ret = zfs_deliver_dle(nvl); else if (is_check) ret = zfs_deliver_check(nvl); else ret = zfs_deliver_add(nvl); return (ret); } static void * zfs_enum_pools(void *arg) { (void) arg; (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); /* * Linux - instead of using a thread pool, each list entry * will spawn a thread when an unavailable pool transitions * to available. zfs_slm_fini will wait for these threads. */ g_enumeration_done = B_TRUE; return (NULL); } /* * called from zed daemon at startup * * sent messages from zevents or udev monitor * * For now, each agent has its own libzfs instance */ int zfs_slm_init(void) { if ((g_zfshdl = libzfs_init()) == NULL) return (-1); /* * collect a list of unavailable pools (asynchronously, * since this can take a while) */ list_create(&g_pool_list, sizeof (struct unavailpool), offsetof(struct unavailpool, uap_node)); if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) { list_destroy(&g_pool_list); libzfs_fini(g_zfshdl); return (-1); } pthread_setname_np(g_zfs_tid, "enum-pools"); list_create(&g_device_list, sizeof (struct pendingdev), offsetof(struct pendingdev, pd_node)); return (0); } void zfs_slm_fini(void) { unavailpool_t *pool; pendingdev_t *device; /* wait for zfs_enum_pools thread to complete */ (void) pthread_join(g_zfs_tid, NULL); /* destroy the thread pool */ if (g_tpool != NULL) { tpool_wait(g_tpool); tpool_destroy(g_tpool); } while ((pool = list_remove_head(&g_pool_list)) != NULL) { zpool_close(pool->uap_zhp); free(pool); } list_destroy(&g_pool_list); while ((device = list_remove_head(&g_device_list)) != NULL) free(device); list_destroy(&g_device_list); libzfs_fini(g_zfshdl); } void zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl) { zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass); (void) zfs_slm_deliver_event(class, subclass, nvl); }