/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. * * Copyright (c) 2016, Intel Corporation. * Copyright (c) 2018, loli10K */ /* * The ZFS retire agent is responsible for managing hot spares across all pools. * When we see a device fault or a device removal, we try to open the associated * pool and look for any hot spares. We iterate over any available hot spares * and attempt a 'zpool replace' for each one. * * For vdevs diagnosed as faulty, the agent is also responsible for proactively * marking the vdev FAULTY (for I/O errors) or DEGRADED (for checksum errors). */ #include #include #include #include #include #include #include "zfs_agents.h" #include "fmd_api.h" typedef struct zfs_retire_repaired { struct zfs_retire_repaired *zrr_next; uint64_t zrr_pool; uint64_t zrr_vdev; } zfs_retire_repaired_t; typedef struct zfs_retire_data { libzfs_handle_t *zrd_hdl; zfs_retire_repaired_t *zrd_repaired; } zfs_retire_data_t; static void zfs_retire_clear_data(fmd_hdl_t *hdl, zfs_retire_data_t *zdp) { zfs_retire_repaired_t *zrp; while ((zrp = zdp->zrd_repaired) != NULL) { zdp->zrd_repaired = zrp->zrr_next; fmd_hdl_free(hdl, zrp, sizeof (zfs_retire_repaired_t)); } } /* * Find a pool with a matching GUID. */ typedef struct find_cbdata { uint64_t cb_guid; zpool_handle_t *cb_zhp; nvlist_t *cb_vdev; uint64_t cb_vdev_guid; uint64_t cb_num_spares; } find_cbdata_t; static int find_pool(zpool_handle_t *zhp, void *data) { find_cbdata_t *cbp = data; if (cbp->cb_guid == zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL)) { cbp->cb_zhp = zhp; return (1); } zpool_close(zhp); return (0); } /* * Find a vdev within a tree with a matching GUID. */ static nvlist_t * find_vdev(libzfs_handle_t *zhdl, nvlist_t *nv, uint64_t search_guid) { uint64_t guid; nvlist_t **child; uint_t c, children; nvlist_t *ret; if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0 && guid == search_guid) { fmd_hdl_debug(fmd_module_hdl("zfs-retire"), "matched vdev %llu", guid); return (nv); } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, &child, &children) != 0) return (NULL); for (c = 0; c < children; c++) { if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL) return (ret); } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_L2CACHE, &child, &children) != 0) return (NULL); for (c = 0; c < children; c++) { if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL) return (ret); } if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES, &child, &children) != 0) return (NULL); for (c = 0; c < children; c++) { if ((ret = find_vdev(zhdl, child[c], search_guid)) != NULL) return (ret); } return (NULL); } static int remove_spares(zpool_handle_t *zhp, void *data) { nvlist_t *config, *nvroot; nvlist_t **spares; uint_t nspares; char *devname; find_cbdata_t *cbp = data; uint64_t spareguid = 0; vdev_stat_t *vs; unsigned int c; config = zpool_get_config(zhp, NULL); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) { zpool_close(zhp); return (0); } if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) { zpool_close(zhp); return (0); } for (int i = 0; i < nspares; i++) { if (nvlist_lookup_uint64(spares[i], ZPOOL_CONFIG_GUID, &spareguid) == 0 && spareguid == cbp->cb_vdev_guid) { devname = zpool_vdev_name(NULL, zhp, spares[i], B_FALSE); nvlist_lookup_uint64_array(spares[i], ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c); if (vs->vs_state != VDEV_STATE_REMOVED && zpool_vdev_remove_wanted(zhp, devname) == 0) cbp->cb_num_spares++; break; } } zpool_close(zhp); return (0); } /* * Given a vdev guid, find and remove all spares associated with it. */ static int find_and_remove_spares(libzfs_handle_t *zhdl, uint64_t vdev_guid) { find_cbdata_t cb; cb.cb_num_spares = 0; cb.cb_vdev_guid = vdev_guid; zpool_iter(zhdl, remove_spares, &cb); return (cb.cb_num_spares); } /* * Given a (pool, vdev) GUID pair, find the matching pool and vdev. */ static zpool_handle_t * find_by_guid(libzfs_handle_t *zhdl, uint64_t pool_guid, uint64_t vdev_guid, nvlist_t **vdevp) { find_cbdata_t cb; zpool_handle_t *zhp; nvlist_t *config, *nvroot; /* * Find the corresponding pool and make sure the vdev still exists. */ cb.cb_guid = pool_guid; if (zpool_iter(zhdl, find_pool, &cb) != 1) return (NULL); zhp = cb.cb_zhp; config = zpool_get_config(zhp, NULL); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) { zpool_close(zhp); return (NULL); } if (vdev_guid != 0) { if ((*vdevp = find_vdev(zhdl, nvroot, vdev_guid)) == NULL) { zpool_close(zhp); return (NULL); } } return (zhp); } /* * Given a vdev, attempt to replace it with every known spare until one * succeeds or we run out of devices to try. * Return whether we were successful or not in replacing the device. */ static boolean_t replace_with_spare(fmd_hdl_t *hdl, zpool_handle_t *zhp, nvlist_t *vdev) { nvlist_t *config, *nvroot, *replacement; nvlist_t **spares; uint_t s, nspares; char *dev_name; zprop_source_t source; int ashift; config = zpool_get_config(zhp, NULL); if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) != 0) return (B_FALSE); /* * Find out if there are any hot spares available in the pool. */ if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0) return (B_FALSE); /* * lookup "ashift" pool property, we may need it for the replacement */ ashift = zpool_get_prop_int(zhp, ZPOOL_PROP_ASHIFT, &source); replacement = fmd_nvl_alloc(hdl, FMD_SLEEP); (void) nvlist_add_string(replacement, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT); dev_name = zpool_vdev_name(NULL, zhp, vdev, B_FALSE); /* * Try to replace each spare, ending when we successfully * replace it. */ for (s = 0; s < nspares; s++) { boolean_t rebuild = B_FALSE; char *spare_name, *type; if (nvlist_lookup_string(spares[s], ZPOOL_CONFIG_PATH, &spare_name) != 0) continue; /* prefer sequential resilvering for distributed spares */ if ((nvlist_lookup_string(spares[s], ZPOOL_CONFIG_TYPE, &type) == 0) && strcmp(type, VDEV_TYPE_DRAID_SPARE) == 0) rebuild = B_TRUE; /* if set, add the "ashift" pool property to the spare nvlist */ if (source != ZPROP_SRC_DEFAULT) (void) nvlist_add_uint64(spares[s], ZPOOL_CONFIG_ASHIFT, ashift); (void) nvlist_add_nvlist_array(replacement, ZPOOL_CONFIG_CHILDREN, &spares[s], 1); fmd_hdl_debug(hdl, "zpool_vdev_replace '%s' with spare '%s'", dev_name, basename(spare_name)); if (zpool_vdev_attach(zhp, dev_name, spare_name, replacement, B_TRUE, rebuild) == 0) { free(dev_name); nvlist_free(replacement); return (B_TRUE); } } free(dev_name); nvlist_free(replacement); return (B_FALSE); } /* * Repair this vdev if we had diagnosed a 'fault.fs.zfs.device' and * ASRU is now usable. ZFS has found the device to be present and * functioning. */ /*ARGSUSED*/ static void zfs_vdev_repair(fmd_hdl_t *hdl, nvlist_t *nvl) { zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); zfs_retire_repaired_t *zrp; uint64_t pool_guid, vdev_guid; if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid) != 0 || nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) return; /* * Before checking the state of the ASRU, go through and see if we've * already made an attempt to repair this ASRU. This list is cleared * whenever we receive any kind of list event, and is designed to * prevent us from generating a feedback loop when we attempt repairs * against a faulted pool. The problem is that checking the unusable * state of the ASRU can involve opening the pool, which can post * statechange events but otherwise leave the pool in the faulted * state. This list allows us to detect when a statechange event is * due to our own request. */ for (zrp = zdp->zrd_repaired; zrp != NULL; zrp = zrp->zrr_next) { if (zrp->zrr_pool == pool_guid && zrp->zrr_vdev == vdev_guid) return; } zrp = fmd_hdl_alloc(hdl, sizeof (zfs_retire_repaired_t), FMD_SLEEP); zrp->zrr_next = zdp->zrd_repaired; zrp->zrr_pool = pool_guid; zrp->zrr_vdev = vdev_guid; zdp->zrd_repaired = zrp; fmd_hdl_debug(hdl, "marking repaired vdev %llu on pool %llu", vdev_guid, pool_guid); } /*ARGSUSED*/ static void zfs_retire_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) { uint64_t pool_guid, vdev_guid; zpool_handle_t *zhp; nvlist_t *resource, *fault; nvlist_t **faults; uint_t f, nfaults; zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); libzfs_handle_t *zhdl = zdp->zrd_hdl; boolean_t fault_device, degrade_device; boolean_t is_repair; boolean_t l2arc = B_FALSE; boolean_t spare = B_FALSE; char *scheme; nvlist_t *vdev = NULL; char *uuid; int repair_done = 0; boolean_t retire; boolean_t is_disk; vdev_aux_t aux; uint64_t state = 0; vdev_stat_t *vs; unsigned int c; fmd_hdl_debug(hdl, "zfs_retire_recv: '%s'", class); nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state); /* * If this is a resource notifying us of device removal then simply * check for an available spare and continue unless the device is a * l2arc vdev, in which case we just offline it. */ if (strcmp(class, "resource.fs.zfs.removed") == 0 || (strcmp(class, "resource.fs.zfs.statechange") == 0 && (state == VDEV_STATE_REMOVED || state == VDEV_STATE_FAULTED))) { char *devtype; char *devname; if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, &devtype) == 0) { if (strcmp(devtype, VDEV_TYPE_SPARE) == 0) spare = B_TRUE; else if (strcmp(devtype, VDEV_TYPE_L2CACHE) == 0) l2arc = B_TRUE; } if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) return; if (spare) { int nspares = find_and_remove_spares(zhdl, vdev_guid); fmd_hdl_debug(hdl, "%d spares removed", nspares); return; } if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid) != 0) return; if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid, &vdev)) == NULL) return; devname = zpool_vdev_name(NULL, zhp, vdev, B_FALSE); nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &c); /* * If state removed is requested for already removed vdev, * its a loopback event from spa_async_remove(). Just * ignore it. */ if (vs->vs_state == VDEV_STATE_REMOVED && state == VDEV_STATE_REMOVED) return; /* Remove the vdev since device is unplugged */ int remove_status = 0; if (l2arc || (strcmp(class, "resource.fs.zfs.removed") == 0)) { remove_status = zpool_vdev_remove_wanted(zhp, devname); fmd_hdl_debug(hdl, "zpool_vdev_remove_wanted '%s'" ", err:%d", devname, libzfs_errno(zhdl)); } /* Replace the vdev with a spare if its not a l2arc */ if (!l2arc && !remove_status && (!fmd_prop_get_int32(hdl, "spare_on_remove") || replace_with_spare(hdl, zhp, vdev) == B_FALSE)) { /* Could not handle with spare */ fmd_hdl_debug(hdl, "no spare for '%s'", devname); } free(devname); zpool_close(zhp); return; } if (strcmp(class, FM_LIST_RESOLVED_CLASS) == 0) return; /* * Note: on Linux statechange events are more than just * healthy ones so we need to confirm the actual state value. */ if (strcmp(class, "resource.fs.zfs.statechange") == 0 && state == VDEV_STATE_HEALTHY) { zfs_vdev_repair(hdl, nvl); return; } if (strcmp(class, "sysevent.fs.zfs.vdev_remove") == 0) { zfs_vdev_repair(hdl, nvl); return; } zfs_retire_clear_data(hdl, zdp); if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0) is_repair = B_TRUE; else is_repair = B_FALSE; /* * We subscribe to zfs faults as well as all repair events. */ if (nvlist_lookup_nvlist_array(nvl, FM_SUSPECT_FAULT_LIST, &faults, &nfaults) != 0) return; for (f = 0; f < nfaults; f++) { fault = faults[f]; fault_device = B_FALSE; degrade_device = B_FALSE; is_disk = B_FALSE; if (nvlist_lookup_boolean_value(fault, FM_SUSPECT_RETIRE, &retire) == 0 && retire == 0) continue; /* * While we subscribe to fault.fs.zfs.*, we only take action * for faults targeting a specific vdev (open failure or SERD * failure). We also subscribe to fault.io.* events, so that * faulty disks will be faulted in the ZFS configuration. */ if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.io")) { fault_device = B_TRUE; } else if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.vdev.checksum")) { degrade_device = B_TRUE; } else if (fmd_nvl_class_match(hdl, fault, "fault.fs.zfs.device")) { fault_device = B_FALSE; } else if (fmd_nvl_class_match(hdl, fault, "fault.io.*")) { is_disk = B_TRUE; fault_device = B_TRUE; } else { continue; } if (is_disk) { continue; } else { /* * This is a ZFS fault. Lookup the resource, and * attempt to find the matching vdev. */ if (nvlist_lookup_nvlist(fault, FM_FAULT_RESOURCE, &resource) != 0 || nvlist_lookup_string(resource, FM_FMRI_SCHEME, &scheme) != 0) continue; if (strcmp(scheme, FM_FMRI_SCHEME_ZFS) != 0) continue; if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_POOL, &pool_guid) != 0) continue; if (nvlist_lookup_uint64(resource, FM_FMRI_ZFS_VDEV, &vdev_guid) != 0) { if (is_repair) vdev_guid = 0; else continue; } if ((zhp = find_by_guid(zhdl, pool_guid, vdev_guid, &vdev)) == NULL) continue; aux = VDEV_AUX_ERR_EXCEEDED; } if (vdev_guid == 0) { /* * For pool-level repair events, clear the entire pool. */ fmd_hdl_debug(hdl, "zpool_clear of pool '%s'", zpool_get_name(zhp)); (void) zpool_clear(zhp, NULL, NULL); zpool_close(zhp); continue; } /* * If this is a repair event, then mark the vdev as repaired and * continue. */ if (is_repair) { repair_done = 1; fmd_hdl_debug(hdl, "zpool_clear of pool '%s' vdev %llu", zpool_get_name(zhp), vdev_guid); (void) zpool_vdev_clear(zhp, vdev_guid); zpool_close(zhp); continue; } /* * Actively fault the device if needed. */ if (fault_device) (void) zpool_vdev_fault(zhp, vdev_guid, aux); if (degrade_device) (void) zpool_vdev_degrade(zhp, vdev_guid, aux); if (fault_device || degrade_device) fmd_hdl_debug(hdl, "zpool_vdev_%s: vdev %llu on '%s'", fault_device ? "fault" : "degrade", vdev_guid, zpool_get_name(zhp)); /* * Attempt to substitute a hot spare. */ (void) replace_with_spare(hdl, zhp, vdev); zpool_close(zhp); } if (strcmp(class, FM_LIST_REPAIRED_CLASS) == 0 && repair_done && nvlist_lookup_string(nvl, FM_SUSPECT_UUID, &uuid) == 0) fmd_case_uuresolved(hdl, uuid); } static const fmd_hdl_ops_t fmd_ops = { zfs_retire_recv, /* fmdo_recv */ NULL, /* fmdo_timeout */ NULL, /* fmdo_close */ NULL, /* fmdo_stats */ NULL, /* fmdo_gc */ }; static const fmd_prop_t fmd_props[] = { { "spare_on_remove", FMD_TYPE_BOOL, "true" }, { NULL, 0, NULL } }; static const fmd_hdl_info_t fmd_info = { "ZFS Retire Agent", "1.0", &fmd_ops, fmd_props }; void _zfs_retire_init(fmd_hdl_t *hdl) { zfs_retire_data_t *zdp; libzfs_handle_t *zhdl; if ((zhdl = libzfs_init()) == NULL) return; if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { libzfs_fini(zhdl); return; } zdp = fmd_hdl_zalloc(hdl, sizeof (zfs_retire_data_t), FMD_SLEEP); zdp->zrd_hdl = zhdl; fmd_hdl_setspecific(hdl, zdp); } void _zfs_retire_fini(fmd_hdl_t *hdl) { zfs_retire_data_t *zdp = fmd_hdl_getspecific(hdl); if (zdp != NULL) { zfs_retire_clear_data(hdl, zdp); libzfs_fini(zdp->zrd_hdl); fmd_hdl_free(hdl, zdp, sizeof (zfs_retire_data_t)); } }