/*****************************************************************************\ * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * For details, see . * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . ***************************************************************************** * Solaris Porting LAyer Tests (SPLAT) Kmem Tests. \*****************************************************************************/ #include "splat-internal.h" #define SPLAT_KMEM_NAME "kmem" #define SPLAT_KMEM_DESC "Kernel Malloc/Slab Tests" #define SPLAT_KMEM_TEST1_ID 0x0101 #define SPLAT_KMEM_TEST1_NAME "kmem_alloc" #define SPLAT_KMEM_TEST1_DESC "Memory allocation test (kmem_alloc)" #define SPLAT_KMEM_TEST2_ID 0x0102 #define SPLAT_KMEM_TEST2_NAME "kmem_zalloc" #define SPLAT_KMEM_TEST2_DESC "Memory allocation test (kmem_zalloc)" #define SPLAT_KMEM_TEST3_ID 0x0103 #define SPLAT_KMEM_TEST3_NAME "vmem_alloc" #define SPLAT_KMEM_TEST3_DESC "Memory allocation test (vmem_alloc)" #define SPLAT_KMEM_TEST4_ID 0x0104 #define SPLAT_KMEM_TEST4_NAME "vmem_zalloc" #define SPLAT_KMEM_TEST4_DESC "Memory allocation test (vmem_zalloc)" #define SPLAT_KMEM_TEST5_ID 0x0105 #define SPLAT_KMEM_TEST5_NAME "slab_small" #define SPLAT_KMEM_TEST5_DESC "Slab ctor/dtor test (small)" #define SPLAT_KMEM_TEST6_ID 0x0106 #define SPLAT_KMEM_TEST6_NAME "slab_large" #define SPLAT_KMEM_TEST6_DESC "Slab ctor/dtor test (large)" #define SPLAT_KMEM_TEST7_ID 0x0107 #define SPLAT_KMEM_TEST7_NAME "slab_align" #define SPLAT_KMEM_TEST7_DESC "Slab alignment test" #define SPLAT_KMEM_TEST8_ID 0x0108 #define SPLAT_KMEM_TEST8_NAME "slab_reap" #define SPLAT_KMEM_TEST8_DESC "Slab reaping test" #define SPLAT_KMEM_TEST9_ID 0x0109 #define SPLAT_KMEM_TEST9_NAME "slab_age" #define SPLAT_KMEM_TEST9_DESC "Slab aging test" #define SPLAT_KMEM_TEST10_ID 0x010a #define SPLAT_KMEM_TEST10_NAME "slab_lock" #define SPLAT_KMEM_TEST10_DESC "Slab locking test" #ifdef _LP64 #define SPLAT_KMEM_TEST11_ID 0x010b #define SPLAT_KMEM_TEST11_NAME "slab_overcommit" #define SPLAT_KMEM_TEST11_DESC "Slab memory overcommit test" #endif /* _LP64 */ #define SPLAT_KMEM_TEST12_ID 0x010c #define SPLAT_KMEM_TEST12_NAME "vmem_size" #define SPLAT_KMEM_TEST12_DESC "Memory zone test" #define SPLAT_KMEM_ALLOC_COUNT 10 #define SPLAT_VMEM_ALLOC_COUNT 10 static int splat_kmem_test1(struct file *file, void *arg) { void *ptr[SPLAT_KMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, count, rc = 0; while ((!rc) && (size <= (PAGE_SIZE * 32))) { count = 0; for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) { ptr[i] = kmem_alloc(size, KM_SLEEP | __GFP_NOWARN); if (ptr[i]) count++; } for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) if (ptr[i]) kmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST1_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_KMEM_ALLOC_COUNT); if (count != SPLAT_KMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } return rc; } static int splat_kmem_test2(struct file *file, void *arg) { void *ptr[SPLAT_KMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, j, count, rc = 0; while ((!rc) && (size <= (PAGE_SIZE * 32))) { count = 0; for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) { ptr[i] = kmem_zalloc(size, KM_SLEEP | __GFP_NOWARN); if (ptr[i]) count++; } /* Ensure buffer has been zero filled */ for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) { for (j = 0; j < size; j++) { if (((char *)ptr[i])[j] != '\0') { splat_vprint(file,SPLAT_KMEM_TEST2_NAME, "%d-byte allocation was " "not zeroed\n", size); rc = -EFAULT; } } } for (i = 0; i < SPLAT_KMEM_ALLOC_COUNT; i++) if (ptr[i]) kmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST2_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_KMEM_ALLOC_COUNT); if (count != SPLAT_KMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } return rc; } static int splat_kmem_test3(struct file *file, void *arg) { void *ptr[SPLAT_VMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, count, rc = 0; while ((!rc) && (size <= (PAGE_SIZE * 1024))) { count = 0; for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) { ptr[i] = vmem_alloc(size, KM_SLEEP); if (ptr[i]) count++; } for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) if (ptr[i]) vmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST3_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_VMEM_ALLOC_COUNT); if (count != SPLAT_VMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } return rc; } static int splat_kmem_test4(struct file *file, void *arg) { void *ptr[SPLAT_VMEM_ALLOC_COUNT]; int size = PAGE_SIZE; int i, j, count, rc = 0; while ((!rc) && (size <= (PAGE_SIZE * 1024))) { count = 0; for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) { ptr[i] = vmem_zalloc(size, KM_SLEEP); if (ptr[i]) count++; } /* Ensure buffer has been zero filled */ for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) { for (j = 0; j < size; j++) { if (((char *)ptr[i])[j] != '\0') { splat_vprint(file, SPLAT_KMEM_TEST4_NAME, "%d-byte allocation was " "not zeroed\n", size); rc = -EFAULT; } } } for (i = 0; i < SPLAT_VMEM_ALLOC_COUNT; i++) if (ptr[i]) vmem_free(ptr[i], size); splat_vprint(file, SPLAT_KMEM_TEST4_NAME, "%d byte allocations, %d/%d successful\n", size, count, SPLAT_VMEM_ALLOC_COUNT); if (count != SPLAT_VMEM_ALLOC_COUNT) rc = -ENOMEM; size *= 2; } return rc; } #define SPLAT_KMEM_TEST_MAGIC 0x004488CCUL #define SPLAT_KMEM_CACHE_NAME "kmem_test" #define SPLAT_KMEM_OBJ_COUNT 1024 #define SPLAT_KMEM_OBJ_RECLAIM 20 /* percent */ #define SPLAT_KMEM_THREADS 32 #define KCP_FLAG_READY 0x01 typedef struct kmem_cache_data { unsigned long kcd_magic; int kcd_flag; char kcd_buf[0]; } kmem_cache_data_t; typedef struct kmem_cache_thread { kmem_cache_t *kct_cache; spinlock_t kct_lock; int kct_id; int kct_kcd_count; kmem_cache_data_t *kct_kcd[0]; } kmem_cache_thread_t; typedef struct kmem_cache_priv { unsigned long kcp_magic; struct file *kcp_file; kmem_cache_t *kcp_cache; spinlock_t kcp_lock; wait_queue_head_t kcp_ctl_waitq; wait_queue_head_t kcp_thr_waitq; int kcp_flags; int kcp_kct_count; kmem_cache_thread_t *kcp_kct[SPLAT_KMEM_THREADS]; int kcp_size; int kcp_align; int kcp_count; int kcp_alloc; int kcp_rc; int kcp_kcd_count; kmem_cache_data_t *kcp_kcd[0]; } kmem_cache_priv_t; static kmem_cache_priv_t * splat_kmem_cache_test_kcp_alloc(struct file *file, char *name, int size, int align, int alloc, int count) { kmem_cache_priv_t *kcp; kcp = vmem_zalloc(sizeof(kmem_cache_priv_t) + count * sizeof(kmem_cache_data_t *), KM_SLEEP); if (!kcp) return NULL; kcp->kcp_magic = SPLAT_KMEM_TEST_MAGIC; kcp->kcp_file = file; kcp->kcp_cache = NULL; spin_lock_init(&kcp->kcp_lock); init_waitqueue_head(&kcp->kcp_ctl_waitq); init_waitqueue_head(&kcp->kcp_thr_waitq); kcp->kcp_flags = 0; kcp->kcp_kct_count = -1; kcp->kcp_size = size; kcp->kcp_align = align; kcp->kcp_count = 0; kcp->kcp_alloc = alloc; kcp->kcp_rc = 0; kcp->kcp_kcd_count = count; return kcp; } static void splat_kmem_cache_test_kcp_free(kmem_cache_priv_t *kcp) { vmem_free(kcp, sizeof(kmem_cache_priv_t) + kcp->kcp_kcd_count * sizeof(kmem_cache_data_t *)); } static kmem_cache_thread_t * splat_kmem_cache_test_kct_alloc(int id, int count) { kmem_cache_thread_t *kct; ASSERTF(id < SPLAT_KMEM_THREADS, "id=%d\n", id); kct = vmem_zalloc(sizeof(kmem_cache_thread_t) + count * sizeof(kmem_cache_data_t *), KM_SLEEP); if (!kct) return NULL; spin_lock_init(&kct->kct_lock); kct->kct_cache = NULL; kct->kct_id = id; kct->kct_kcd_count = count; return kct; } static void splat_kmem_cache_test_kct_free(kmem_cache_thread_t *kct) { vmem_free(kct, sizeof(kmem_cache_thread_t) + kct->kct_kcd_count * sizeof(kmem_cache_data_t *)); } static int splat_kmem_cache_test_constructor(void *ptr, void *priv, int flags) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv; kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr; if (kcd && kcp) { kcd->kcd_magic = kcp->kcp_magic; kcd->kcd_flag = 1; memset(kcd->kcd_buf, 0xaa, kcp->kcp_size - (sizeof *kcd)); kcp->kcp_count++; } return 0; } static void splat_kmem_cache_test_destructor(void *ptr, void *priv) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv; kmem_cache_data_t *kcd = (kmem_cache_data_t *)ptr; if (kcd && kcp) { kcd->kcd_magic = 0; kcd->kcd_flag = 0; memset(kcd->kcd_buf, 0xbb, kcp->kcp_size - (sizeof *kcd)); kcp->kcp_count--; } return; } /* * Generic reclaim function which assumes that all objects may * be reclaimed at any time. We free a small percentage of the * objects linked off the kcp or kct[] every time we are called. */ static void splat_kmem_cache_test_reclaim(void *priv) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)priv; kmem_cache_thread_t *kct; int i, j, count; ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC); count = kcp->kcp_kcd_count * SPLAT_KMEM_OBJ_RECLAIM / 100; /* Objects directly attached to the kcp */ spin_lock(&kcp->kcp_lock); for (i = 0; i < kcp->kcp_kcd_count; i++) { if (kcp->kcp_kcd[i]) { kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]); kcp->kcp_kcd[i] = NULL; if ((--count) == 0) break; } } spin_unlock(&kcp->kcp_lock); /* No threads containing objects to consider */ if (kcp->kcp_kct_count == -1) return; /* Objects attached to a kct thread */ for (i = 0; i < kcp->kcp_kct_count; i++) { spin_lock(&kcp->kcp_lock); kct = kcp->kcp_kct[i]; if (!kct) { spin_unlock(&kcp->kcp_lock); continue; } spin_lock(&kct->kct_lock); count = kct->kct_kcd_count * SPLAT_KMEM_OBJ_RECLAIM / 100; for (j = 0; j < kct->kct_kcd_count; j++) { if (kct->kct_kcd[j]) { kmem_cache_free(kcp->kcp_cache,kct->kct_kcd[j]); kct->kct_kcd[j] = NULL; if ((--count) == 0) break; } } spin_unlock(&kct->kct_lock); spin_unlock(&kcp->kcp_lock); } return; } static int splat_kmem_cache_test_threads(kmem_cache_priv_t *kcp, int threads) { int rc; spin_lock(&kcp->kcp_lock); rc = (kcp->kcp_kct_count == threads); spin_unlock(&kcp->kcp_lock); return rc; } static int splat_kmem_cache_test_flags(kmem_cache_priv_t *kcp, int flags) { int rc; spin_lock(&kcp->kcp_lock); rc = (kcp->kcp_flags & flags); spin_unlock(&kcp->kcp_lock); return rc; } static void splat_kmem_cache_test_thread(void *arg) { kmem_cache_priv_t *kcp = (kmem_cache_priv_t *)arg; kmem_cache_thread_t *kct; int rc = 0, id, i; void *obj; ASSERT(kcp->kcp_magic == SPLAT_KMEM_TEST_MAGIC); /* Assign thread ids */ spin_lock(&kcp->kcp_lock); if (kcp->kcp_kct_count == -1) kcp->kcp_kct_count = 0; id = kcp->kcp_kct_count; kcp->kcp_kct_count++; spin_unlock(&kcp->kcp_lock); kct = splat_kmem_cache_test_kct_alloc(id, kcp->kcp_alloc); if (!kct) { rc = -ENOMEM; goto out; } spin_lock(&kcp->kcp_lock); kcp->kcp_kct[id] = kct; spin_unlock(&kcp->kcp_lock); /* Wait for all threads to have started and report they are ready */ if (kcp->kcp_kct_count == SPLAT_KMEM_THREADS) wake_up(&kcp->kcp_ctl_waitq); wait_event(kcp->kcp_thr_waitq, splat_kmem_cache_test_flags(kcp, KCP_FLAG_READY)); /* * Updates to kct->kct_kcd[] are performed under a spin_lock so * they may safely run concurrent with the reclaim function. If * we are not in a low memory situation we have one lock per- * thread so they are not expected to be contended. */ for (i = 0; i < kct->kct_kcd_count; i++) { obj = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP); spin_lock(&kct->kct_lock); kct->kct_kcd[i] = obj; spin_unlock(&kct->kct_lock); } for (i = 0; i < kct->kct_kcd_count; i++) { spin_lock(&kct->kct_lock); if (kct->kct_kcd[i]) { kmem_cache_free(kcp->kcp_cache, kct->kct_kcd[i]); kct->kct_kcd[i] = NULL; } spin_unlock(&kct->kct_lock); } out: spin_lock(&kcp->kcp_lock); if (kct) { splat_kmem_cache_test_kct_free(kct); kcp->kcp_kct[id] = kct = NULL; } if (!kcp->kcp_rc) kcp->kcp_rc = rc; if ((--kcp->kcp_kct_count) == 0) wake_up(&kcp->kcp_ctl_waitq); spin_unlock(&kcp->kcp_lock); thread_exit(); } static int splat_kmem_cache_test(struct file *file, void *arg, char *name, int size, int align, int flags) { kmem_cache_priv_t *kcp; kmem_cache_data_t *kcd; int rc = 0, max; kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, align, 0, 1); if (!kcp) { splat_vprint(file, name, "Unable to create '%s'\n", "kcp"); return -ENOMEM; } kcp->kcp_kcd[0] = NULL; kcp->kcp_cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, kcp->kcp_align, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, NULL, kcp, NULL, flags); if (!kcp->kcp_cache) { splat_vprint(file, name, "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -ENOMEM; goto out_free; } kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP); if (!kcd) { splat_vprint(file, name, "Unable to allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; goto out_free; } spin_lock(&kcp->kcp_lock); kcp->kcp_kcd[0] = kcd; spin_unlock(&kcp->kcp_lock); if (!kcp->kcp_kcd[0]->kcd_flag) { splat_vprint(file, name, "Failed to run contructor for '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; goto out_free; } if (kcp->kcp_kcd[0]->kcd_magic != kcp->kcp_magic) { splat_vprint(file, name, "Failed to pass private data to constructor " "for '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; goto out_free; } max = kcp->kcp_count; spin_lock(&kcp->kcp_lock); kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[0]); kcp->kcp_kcd[0] = NULL; spin_unlock(&kcp->kcp_lock); /* Destroy the entire cache which will force destructors to * run and we can verify one was called for every object */ kmem_cache_destroy(kcp->kcp_cache); if (kcp->kcp_count) { splat_vprint(file, name, "Failed to run destructor on all slab objects " "for '%s'\n", SPLAT_KMEM_CACHE_NAME); rc = -EINVAL; } splat_kmem_cache_test_kcp_free(kcp); splat_vprint(file, name, "Successfully ran ctors/dtors for %d elements in '%s'\n", max, SPLAT_KMEM_CACHE_NAME); return rc; out_free: if (kcp->kcp_kcd[0]) { spin_lock(&kcp->kcp_lock); kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[0]); kcp->kcp_kcd[0] = NULL; spin_unlock(&kcp->kcp_lock); } if (kcp->kcp_cache) kmem_cache_destroy(kcp->kcp_cache); splat_kmem_cache_test_kcp_free(kcp); return rc; } static int splat_kmem_cache_thread_test(struct file *file, void *arg, char *name, int size, int alloc, int max_time) { kmem_cache_priv_t *kcp; kthread_t *thr; struct timespec start, stop, delta; char cache_name[32]; int i, rc = 0; kcp = splat_kmem_cache_test_kcp_alloc(file, name, size, 0, alloc, 0); if (!kcp) { splat_vprint(file, name, "Unable to create '%s'\n", "kcp"); return -ENOMEM; } (void)snprintf(cache_name, 32, "%s-%d-%d", SPLAT_KMEM_CACHE_NAME, size, alloc); kcp->kcp_cache = kmem_cache_create(cache_name, kcp->kcp_size, 0, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, splat_kmem_cache_test_reclaim, kcp, NULL, 0); if (!kcp->kcp_cache) { splat_vprint(file, name, "Unable to create '%s'\n", cache_name); rc = -ENOMEM; goto out_kcp; } start = current_kernel_time(); for (i = 0; i < SPLAT_KMEM_THREADS; i++) { thr = thread_create(NULL, 0, splat_kmem_cache_test_thread, kcp, 0, &p0, TS_RUN, minclsyspri); if (thr == NULL) { rc = -ESRCH; goto out_cache; } } /* Sleep until all threads have started, then set the ready * flag and wake them all up for maximum concurrency. */ wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, SPLAT_KMEM_THREADS)); spin_lock(&kcp->kcp_lock); kcp->kcp_flags |= KCP_FLAG_READY; spin_unlock(&kcp->kcp_lock); wake_up_all(&kcp->kcp_thr_waitq); /* Sleep until all thread have finished */ wait_event(kcp->kcp_ctl_waitq, splat_kmem_cache_test_threads(kcp, 0)); stop = current_kernel_time(); delta = timespec_sub(stop, start); splat_vprint(file, name, "%-22s %2ld.%09ld\t" "%lu/%lu/%lu\t%lu/%lu/%lu\n", kcp->kcp_cache->skc_name, delta.tv_sec, delta.tv_nsec, (unsigned long)kcp->kcp_cache->skc_slab_total, (unsigned long)kcp->kcp_cache->skc_slab_max, (unsigned long)(kcp->kcp_alloc * SPLAT_KMEM_THREADS / SPL_KMEM_CACHE_OBJ_PER_SLAB), (unsigned long)kcp->kcp_cache->skc_obj_total, (unsigned long)kcp->kcp_cache->skc_obj_max, (unsigned long)(kcp->kcp_alloc * SPLAT_KMEM_THREADS)); if (delta.tv_sec >= max_time) rc = -ETIME; if (!rc && kcp->kcp_rc) rc = kcp->kcp_rc; out_cache: kmem_cache_destroy(kcp->kcp_cache); out_kcp: splat_kmem_cache_test_kcp_free(kcp); return rc; } /* Validate small object cache behavior for dynamic/kmem/vmem caches */ static int splat_kmem_test5(struct file *file, void *arg) { char *name = SPLAT_KMEM_TEST5_NAME; int rc; rc = splat_kmem_cache_test(file, arg, name, 128, 0, 0); if (rc) return rc; rc = splat_kmem_cache_test(file, arg, name, 128, 0, KMC_KMEM); if (rc) return rc; return splat_kmem_cache_test(file, arg, name, 128, 0, KMC_VMEM); } /* Validate large object cache behavior for dynamic/kmem/vmem caches */ static int splat_kmem_test6(struct file *file, void *arg) { char *name = SPLAT_KMEM_TEST6_NAME; int rc; rc = splat_kmem_cache_test(file, arg, name, 256*1024, 0, 0); if (rc) return rc; rc = splat_kmem_cache_test(file, arg, name, 64*1024, 0, KMC_KMEM); if (rc) return rc; return splat_kmem_cache_test(file, arg, name, 1024*1024, 0, KMC_VMEM); } /* Validate object alignment cache behavior for caches */ static int splat_kmem_test7(struct file *file, void *arg) { char *name = SPLAT_KMEM_TEST7_NAME; int i, rc; for (i = SPL_KMEM_CACHE_ALIGN; i <= PAGE_SIZE; i *= 2) { rc = splat_kmem_cache_test(file, arg, name, 157, i, 0); if (rc) return rc; } return rc; } static int splat_kmem_test8(struct file *file, void *arg) { kmem_cache_priv_t *kcp; kmem_cache_data_t *kcd; int i, j, rc = 0; kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST8_NAME, 256, 0, 0, SPLAT_KMEM_OBJ_COUNT); if (!kcp) { splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to create '%s'\n", "kcp"); return -ENOMEM; } kcp->kcp_cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, splat_kmem_cache_test_reclaim, kcp, NULL, 0); if (!kcp->kcp_cache) { splat_kmem_cache_test_kcp_free(kcp); splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME); return -ENOMEM; } for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) { kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP); spin_lock(&kcp->kcp_lock); kcp->kcp_kcd[i] = kcd; spin_unlock(&kcp->kcp_lock); if (!kcd) { splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Unable to allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME); } } /* Request the slab cache free any objects it can. For a few reasons * this may not immediately result in more free memory even if objects * are freed. First off, due to fragmentation we may not be able to * reclaim any slabs. Secondly, even if we do we fully clear some * slabs we will not want to immedately reclaim all of them because * we may contend with cache allocs and thrash. What we want to see * is the slab size decrease more gradually as it becomes clear they * will not be needed. This should be acheivable in less than minute * if it takes longer than this something has gone wrong. */ for (i = 0; i < 60; i++) { kmem_cache_reap_now(kcp->kcp_cache); splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "%s cache objects %d, slabs %u/%u objs %u/%u mags ", SPLAT_KMEM_CACHE_NAME, kcp->kcp_count, (unsigned)kcp->kcp_cache->skc_slab_alloc, (unsigned)kcp->kcp_cache->skc_slab_total, (unsigned)kcp->kcp_cache->skc_obj_alloc, (unsigned)kcp->kcp_cache->skc_obj_total); for_each_online_cpu(j) splat_print(file, "%u/%u ", kcp->kcp_cache->skc_mag[j]->skm_avail, kcp->kcp_cache->skc_mag[j]->skm_size); splat_print(file, "%s\n", ""); if (kcp->kcp_cache->skc_obj_total == 0) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); } if (kcp->kcp_cache->skc_obj_total == 0) { splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Successfully created %d objects " "in cache %s and reclaimed them\n", SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME); } else { splat_vprint(file, SPLAT_KMEM_TEST8_NAME, "Failed to reclaim %u/%d objects from cache %s\n", (unsigned)kcp->kcp_cache->skc_obj_total, SPLAT_KMEM_OBJ_COUNT, SPLAT_KMEM_CACHE_NAME); rc = -ENOMEM; } /* Cleanup our mess (for failure case of time expiring) */ spin_lock(&kcp->kcp_lock); for (i = 0; i < SPLAT_KMEM_OBJ_COUNT; i++) if (kcp->kcp_kcd[i]) kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]); spin_unlock(&kcp->kcp_lock); kmem_cache_destroy(kcp->kcp_cache); splat_kmem_cache_test_kcp_free(kcp); return rc; } static int splat_kmem_test9(struct file *file, void *arg) { kmem_cache_priv_t *kcp; kmem_cache_data_t *kcd; int i, j, rc = 0, count = SPLAT_KMEM_OBJ_COUNT * 128; kcp = splat_kmem_cache_test_kcp_alloc(file, SPLAT_KMEM_TEST9_NAME, 256, 0, 0, count); if (!kcp) { splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to create '%s'\n", "kcp"); return -ENOMEM; } kcp->kcp_cache = kmem_cache_create(SPLAT_KMEM_CACHE_NAME, kcp->kcp_size, 0, splat_kmem_cache_test_constructor, splat_kmem_cache_test_destructor, NULL, kcp, NULL, 0); if (!kcp->kcp_cache) { splat_kmem_cache_test_kcp_free(kcp); splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to create '%s'\n", SPLAT_KMEM_CACHE_NAME); return -ENOMEM; } for (i = 0; i < count; i++) { kcd = kmem_cache_alloc(kcp->kcp_cache, KM_SLEEP); spin_lock(&kcp->kcp_lock); kcp->kcp_kcd[i] = kcd; spin_unlock(&kcp->kcp_lock); if (!kcd) { splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Unable to allocate from '%s'\n", SPLAT_KMEM_CACHE_NAME); } } spin_lock(&kcp->kcp_lock); for (i = 0; i < count; i++) if (kcp->kcp_kcd[i]) kmem_cache_free(kcp->kcp_cache, kcp->kcp_kcd[i]); spin_unlock(&kcp->kcp_lock); /* We have allocated a large number of objects thus creating a * large number of slabs and then free'd them all. However since * there should be little memory pressure at the moment those * slabs have not been freed. What we want to see is the slab * size decrease gradually as it becomes clear they will not be * be needed. This should be acheivable in less than minute * if it takes longer than this something has gone wrong. */ for (i = 0; i < 60; i++) { splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "%s cache objects %d, slabs %u/%u objs %u/%u mags ", SPLAT_KMEM_CACHE_NAME, kcp->kcp_count, (unsigned)kcp->kcp_cache->skc_slab_alloc, (unsigned)kcp->kcp_cache->skc_slab_total, (unsigned)kcp->kcp_cache->skc_obj_alloc, (unsigned)kcp->kcp_cache->skc_obj_total); for_each_online_cpu(j) splat_print(file, "%u/%u ", kcp->kcp_cache->skc_mag[j]->skm_avail, kcp->kcp_cache->skc_mag[j]->skm_size); splat_print(file, "%s\n", ""); if (kcp->kcp_cache->skc_obj_total == 0) break; set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(HZ); } if (kcp->kcp_cache->skc_obj_total == 0) { splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Successfully created %d objects " "in cache %s and reclaimed them\n", count, SPLAT_KMEM_CACHE_NAME); } else { splat_vprint(file, SPLAT_KMEM_TEST9_NAME, "Failed to reclaim %u/%d objects from cache %s\n", (unsigned)kcp->kcp_cache->skc_obj_total, count, SPLAT_KMEM_CACHE_NAME); rc = -ENOMEM; } kmem_cache_destroy(kcp->kcp_cache); splat_kmem_cache_test_kcp_free(kcp); return rc; } /* * This test creates N threads with a shared kmem cache. They then all * concurrently allocate and free from the cache to stress the locking and * concurrent cache performance. If any one test takes longer than 5 * seconds to complete it is treated as a failure and may indicate a * performance regression. On my test system no one test takes more * than 1 second to complete so a 5x slowdown likely a problem. */ static int splat_kmem_test10(struct file *file, void *arg) { uint64_t size, alloc, rc = 0; for (size = 16; size <= 1024*1024; size *= 2) { splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "name", "time (sec)\tslabs \tobjs \thash\n"); splat_vprint(file, SPLAT_KMEM_TEST10_NAME, "%-22s %s", "", " \ttot/max/calc\ttot/max/calc\n"); for (alloc = 1; alloc <= 1024; alloc *= 2) { /* Skip tests which exceed available memory. We * leverage availrmem here for some extra testing */ if (size * alloc * SPLAT_KMEM_THREADS > availrmem / 2) continue; rc = splat_kmem_cache_thread_test(file, arg, SPLAT_KMEM_TEST10_NAME, size, alloc, 5); if (rc) break; } } return rc; } #ifdef _LP64 /* * This test creates N threads with a shared kmem cache which overcommits * memory by 4x. This makes it impossible for the slab to satify the * thread requirements without having its reclaim hook run which will * free objects back for use. This behavior is triggered by the linum VM * detecting a low memory condition on the node and invoking the shrinkers. * This should allow all the threads to complete while avoiding deadlock * and for the most part out of memory events. This is very tough on the * system so it is possible the test app may get oom'ed. This particular * test has proven troublesome on 32-bit archs with limited virtual * address space so it only run on 64-bit systems. */ static int splat_kmem_test11(struct file *file, void *arg) { uint64_t size, alloc, rc; size = 256*1024; alloc = ((4 * physmem * PAGE_SIZE) / size) / SPLAT_KMEM_THREADS; splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "name", "time (sec)\tslabs \tobjs \thash\n"); splat_vprint(file, SPLAT_KMEM_TEST11_NAME, "%-22s %s", "", " \ttot/max/calc\ttot/max/calc\n"); rc = splat_kmem_cache_thread_test(file, arg, SPLAT_KMEM_TEST11_NAME, size, alloc, 60); return rc; } #endif /* _LP64 */ /* * Check vmem_size() behavior by acquiring the alloc/free/total vmem * space, then allocate a known buffer size from vmem space. We can * then check that vmem_size() values were updated properly with in * a fairly small tolerence. The tolerance is important because we * are not the only vmem consumer on the system. Other unrelated * allocations might occur during the small test window. The vmem * allocation itself may also add in a little extra private space to * the buffer. Finally, verify total space always remains unchanged. */ static int splat_kmem_test12(struct file *file, void *arg) { size_t alloc1, free1, total1; size_t alloc2, free2, total2; int size = 8*1024*1024; void *ptr; alloc1 = vmem_size(NULL, VMEM_ALLOC); free1 = vmem_size(NULL, VMEM_FREE); total1 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE); splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu " "free=%lu total=%lu\n", (unsigned long)alloc1, (unsigned long)free1, (unsigned long)total1); splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Alloc %d bytes\n", size); ptr = vmem_alloc(size, KM_SLEEP); if (!ptr) { splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed to alloc %d bytes\n", size); return -ENOMEM; } alloc2 = vmem_size(NULL, VMEM_ALLOC); free2 = vmem_size(NULL, VMEM_FREE); total2 = vmem_size(NULL, VMEM_ALLOC | VMEM_FREE); splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Vmem alloc=%lu " "free=%lu total=%lu\n", (unsigned long)alloc2, (unsigned long)free2, (unsigned long)total2); splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Free %d bytes\n", size); vmem_free(ptr, size); if (alloc2 < (alloc1 + size - (size / 100)) || alloc2 > (alloc1 + size + (size / 100))) { splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed " "VMEM_ALLOC size: %lu != %lu+%d (+/- 1%%)\n", (unsigned long)alloc2,(unsigned long)alloc1,size); return -ERANGE; } if (free2 < (free1 - size - (size / 100)) || free2 > (free1 - size + (size / 100))) { splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed " "VMEM_FREE size: %lu != %lu-%d (+/- 1%%)\n", (unsigned long)free2, (unsigned long)free1, size); return -ERANGE; } if (total1 != total2) { splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "Failed " "VMEM_ALLOC | VMEM_FREE not constant: " "%lu != %lu\n", (unsigned long)total2, (unsigned long)total1); return -ERANGE; } splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "VMEM_ALLOC within tolerance: ~%ld%% (%ld/%d)\n", (long)abs(alloc1 + (long)size - alloc2) * 100 / (long)size, (long)abs(alloc1 + (long)size - alloc2), size); splat_vprint(file, SPLAT_KMEM_TEST12_NAME, "VMEM_FREE within tolerance: ~%ld%% (%ld/%d)\n", (long)abs((free1 - (long)size) - free2) * 100 / (long)size, (long)abs((free1 - (long)size) - free2), size); return 0; } splat_subsystem_t * splat_kmem_init(void) { splat_subsystem_t *sub; sub = kmalloc(sizeof(*sub), GFP_KERNEL); if (sub == NULL) return NULL; memset(sub, 0, sizeof(*sub)); strncpy(sub->desc.name, SPLAT_KMEM_NAME, SPLAT_NAME_SIZE); strncpy(sub->desc.desc, SPLAT_KMEM_DESC, SPLAT_DESC_SIZE); INIT_LIST_HEAD(&sub->subsystem_list); INIT_LIST_HEAD(&sub->test_list); spin_lock_init(&sub->test_lock); sub->desc.id = SPLAT_SUBSYSTEM_KMEM; SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST1_NAME, SPLAT_KMEM_TEST1_DESC, SPLAT_KMEM_TEST1_ID, splat_kmem_test1); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST2_NAME, SPLAT_KMEM_TEST2_DESC, SPLAT_KMEM_TEST2_ID, splat_kmem_test2); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST3_NAME, SPLAT_KMEM_TEST3_DESC, SPLAT_KMEM_TEST3_ID, splat_kmem_test3); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST4_NAME, SPLAT_KMEM_TEST4_DESC, SPLAT_KMEM_TEST4_ID, splat_kmem_test4); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST5_NAME, SPLAT_KMEM_TEST5_DESC, SPLAT_KMEM_TEST5_ID, splat_kmem_test5); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST6_NAME, SPLAT_KMEM_TEST6_DESC, SPLAT_KMEM_TEST6_ID, splat_kmem_test6); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST7_NAME, SPLAT_KMEM_TEST7_DESC, SPLAT_KMEM_TEST7_ID, splat_kmem_test7); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST8_NAME, SPLAT_KMEM_TEST8_DESC, SPLAT_KMEM_TEST8_ID, splat_kmem_test8); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST9_NAME, SPLAT_KMEM_TEST9_DESC, SPLAT_KMEM_TEST9_ID, splat_kmem_test9); SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST10_NAME, SPLAT_KMEM_TEST10_DESC, SPLAT_KMEM_TEST10_ID, splat_kmem_test10); #ifdef _LP64 SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST11_NAME, SPLAT_KMEM_TEST11_DESC, SPLAT_KMEM_TEST11_ID, splat_kmem_test11); #endif /* _LP64 */ SPLAT_TEST_INIT(sub, SPLAT_KMEM_TEST12_NAME, SPLAT_KMEM_TEST12_DESC, SPLAT_KMEM_TEST12_ID, splat_kmem_test12); return sub; } void splat_kmem_fini(splat_subsystem_t *sub) { ASSERT(sub); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST12_ID); #ifdef _LP64 SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST11_ID); #endif /* _LP64 */ SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST10_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST9_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST8_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST7_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST6_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST5_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST4_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST3_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST2_ID); SPLAT_TEST_FINI(sub, SPLAT_KMEM_TEST1_ID); kfree(sub); } int splat_kmem_id(void) { return SPLAT_SUBSYSTEM_KMEM; }