/* * Implement fast Fletcher4 with SSE2,SSSE3 instructions. (x86) * * Use the 128-bit SSE2/SSSE3 SIMD instructions and registers to compute * Fletcher4 in four incremental 64-bit parallel accumulator streams, * and then combine the streams to form the final four checksum words. * This implementation is a derivative of the AVX SIMD implementation by * James Guilford and Jinshan Xiong from Intel (see zfs_fletcher_intel.c). * * Copyright (C) 2016 Tyler J. Stachecki. * * Authors: * Tyler J. Stachecki * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(HAVE_SSE2) #include #include #include struct zfs_fletcher_sse_array { uint64_t v[2] __attribute__((aligned(16))); }; static void fletcher_4_sse2_init(zio_cksum_t *zcp) { kfpu_begin(); /* clear sse registers */ asm volatile("pxor %xmm0, %xmm0"); asm volatile("pxor %xmm1, %xmm1"); asm volatile("pxor %xmm2, %xmm2"); asm volatile("pxor %xmm3, %xmm3"); } static void fletcher_4_sse2_fini(zio_cksum_t *zcp) { struct zfs_fletcher_sse_array a, b, c, d; uint64_t A, B, C, D; asm volatile("movdqa %%xmm0, %0":"=m" (a.v)); asm volatile("movdqa %%xmm1, %0":"=m" (b.v)); asm volatile("psllq $0x2, %xmm2"); asm volatile("movdqa %%xmm2, %0":"=m" (c.v)); asm volatile("psllq $0x3, %xmm3"); asm volatile("movdqa %%xmm3, %0":"=m" (d.v)); kfpu_end(); /* * The mixing matrix for checksum calculation is: * a = a0 + a1 * b = 2b0 + 2b1 - a1 * c = 4c0 - b0 + 4c1 -3b1 * d = 8d0 - 4c0 + 8d1 - 8c1 + b1; * * c and d are multiplied by 4 and 8, respectively, * before spilling the vectors out to memory. */ A = a.v[0] + a.v[1]; B = 2*b.v[0] + 2*b.v[1] - a.v[1]; C = c.v[0] - b.v[0] + c.v[1] - 3*b.v[1]; D = d.v[0] - c.v[0] + d.v[1] - 2*c.v[1] + b.v[1]; ZIO_SET_CHECKSUM(zcp, A, B, C, D); } static void fletcher_4_sse2(const void *buf, uint64_t size, zio_cksum_t *unused) { const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); asm volatile("pxor %xmm4, %xmm4"); for (; ip < ipend; ip += 2) { asm volatile("movdqu %0, %%xmm5" :: "m"(*ip)); asm volatile("movdqa %xmm5, %xmm6"); asm volatile("punpckldq %xmm4, %xmm5"); asm volatile("punpckhdq %xmm4, %xmm6"); asm volatile("paddq %xmm5, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); asm volatile("paddq %xmm6, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); } } static void fletcher_4_sse2_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused) { const uint32_t *ip = buf; const uint32_t *ipend = (uint32_t *)((uint8_t *)ip + size); for (; ip < ipend; ip += 2) { uint32_t scratch; asm volatile("bswapl %0" : "=r"(scratch) : "0"(*ip)); asm volatile("movd %0, %%xmm5" :: "r"(scratch)); asm volatile("bswapl %0" : "=r"(scratch) : "0"(*(ip + 1))); asm volatile("movd %0, %%xmm6" :: "r"(scratch)); asm volatile("punpcklqdq %xmm6, %xmm5"); asm volatile("paddq %xmm5, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); } } static boolean_t fletcher_4_sse2_valid(void) { return (zfs_sse2_available()); } const fletcher_4_ops_t fletcher_4_sse2_ops = { .init = fletcher_4_sse2_init, .fini = fletcher_4_sse2_fini, .compute = fletcher_4_sse2, .compute_byteswap = fletcher_4_sse2_byteswap, .valid = fletcher_4_sse2_valid, .name = "sse2" }; #endif /* defined(HAVE_SSE2) */ #if defined(HAVE_SSE2) && defined(HAVE_SSSE3) static void fletcher_4_ssse3_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused) { static const struct zfs_fletcher_sse_array mask = { .v = { 0x0405060700010203, 0x0C0D0E0F08090A0B } }; const uint64_t *ip = buf; const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size); asm volatile("movdqa %0, %%xmm7"::"m" (mask)); asm volatile("pxor %xmm4, %xmm4"); for (; ip < ipend; ip += 2) { asm volatile("movdqu %0, %%xmm5"::"m" (*ip)); asm volatile("pshufb %xmm7, %xmm5"); asm volatile("movdqa %xmm5, %xmm6"); asm volatile("punpckldq %xmm4, %xmm5"); asm volatile("punpckhdq %xmm4, %xmm6"); asm volatile("paddq %xmm5, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); asm volatile("paddq %xmm6, %xmm0"); asm volatile("paddq %xmm0, %xmm1"); asm volatile("paddq %xmm1, %xmm2"); asm volatile("paddq %xmm2, %xmm3"); } } static boolean_t fletcher_4_ssse3_valid(void) { return (zfs_sse2_available() && zfs_ssse3_available()); } const fletcher_4_ops_t fletcher_4_ssse3_ops = { .init = fletcher_4_sse2_init, .fini = fletcher_4_sse2_fini, .compute = fletcher_4_sse2, .compute_byteswap = fletcher_4_ssse3_byteswap, .valid = fletcher_4_ssse3_valid, .name = "ssse3" }; #endif /* defined(HAVE_SSE2) && defined(HAVE_SSSE3) */