Title: Linux Kernel ZFS Port for Lustre Servers
Author: Brian Behlendorf <behlendorfl @llnl.gcov>
Date: May 23", 2008

Summary: For petascale Lustre deployments NNSA and CEA/DAM recognize the need for a strong
underlying file system for Lustre Object Storage Targets (OST). One candidate is Sun's ZFS which
contains many of the needed features and is available under the CDDL open source license. To
properly evaluate ZFS LLNL has ported the DMU component of ZFS to the Linux kernel for analysis.

Approach: The strategy taken to port the DMU to the Linux kernel was to make as few modifications
as possible to the DMU code proper. This allows us to easily re-base the port on the latest Sun ZFS
source code which is under active development. To achieve this a shim layer was written, the Solaris
Porting Layer (SPL), which provides a Solaris style API the DMU code can call directly. Internally
the SPL maps this API to equivalent Linux kernel primitives. In the few cases where this approach
does not work patches are applied directly to the DMU source.

Services Provides by the SPL Layer

Adaptive Mutex Interface

Memory /Slab Allocation Interfaces

Kernel Thread Interface
Read/Writer Lock Interface

Condition Variable Interface

Task Queue Interface

Block/Character Device Interfaces

Timer/Clock/Delay Interfaces

Panic/Assertion/Debug Interfaces

Kstat Interface
Credential/Callback/RNG/Misc Interfaces

SPL Test Infrastructure and Regression Suite

To characterize the performance of our kernel DMU port we then ported Sun's PIOS benchmark in to
the Linux kernel. Renamed KPIOS this code can be used to simulate a large random lustre 1O load in a
single node test environment greatly simplifying the needed test infrastructure.

mailto:behlendorf1@llnl.gov

Results: The results of this investigation were encouraging. KPIOS can currently achieve 10 rates as
high as 79% of the expected peak write rate and 95% of the expected peak read rate under a IMiB
random IO workload. This expected peak rate is defined to be the observed sustained aggregate
parallel streaming IO rate to all attached disks. The following modifications to the DMU were made
during our investigation and they are listed in descending order of impact. A summary of these
performance results can be found in Appendix A and a detailed analysis is available in the attached
spreadsheet.

Disable Prefetch: For reasons which are still not entirely clear disabling the DMU level
prefetch dramatically improved read performance. A detailed analysis must still be done to
clearly understand the complicated interplay between the DMU and Linux 10 elevators.
Zero copy: Copying data to/from an internal file system buffer before reading/writing it
from disk is a well known performance bottleneck. While zero copy interfaces do not yet
exist for the DMU we simulated this behavior in our testing to determine the expected
performance improvement.

vdev_max_pending: This is a DMU tuning which controls how many concurrent 10
requests can be issued to the underlying block devices. Increasing this value greatly
improved performance in the read case by allowing the Linux IO elevator to merge the
relatively small IO requests (128k) issued by the DMU in to much larger requests before
being issued to the disk. The penalty for this is increased latency and we are slightly
subverting the DMU elevator which has a much better notion of 10 priority. Ideally, we
need to get the DMU to be able to submit large 1O requests to the Linux elevator which can
then use the 'noop' scheduler.

zfs_arc_max: Carefully tuning the DMU ARC size which controls how much data is cached
is critical in the current implementation. When the ARC is tuned too small the DMU will be
unable to keep the drives busy and performance will suffer. Conversely if you allow the
ARC to grow too large you hit performance issues due to the DMUs need for large
expensive contiguous memory allocations. This value can be tuned effectively for
benchmarking, but in the long term the DMUSs appetite for large contiguous allocations must
be quelled likely with a scatter/gather implementation.

Disable Checksums: One major advantage of ZFS is that all data is checksummed and thus
silent data corruption can be easily detected. This checksumming comes with additional
overhead which negatively impacts performance. While we absolutely do not want to
disable this checksumming in a real production environment it is possible to offload all this
checksumming to the Lustre clients. This not only gets us true end-to-end checksumming
which is desirable, but it removes this overhead from a single Lustre server and parallelizes
it over your compute rich Lustre clients improving scalability. For this reason we felt that
disabling checksumming was a fair way to simulate this performance improvement.

Next Steps: While we now have a working kernel port of the DMU there are still a few rough edges
which need to be resolved.

Stack Usage: By Linux kernel standards ZFS is stack heavy using roughly 10k of stack space. This
is absolutely fine on Solaris which has 16k stacks, unfortunately on x86_64 Linux kernels the
default stack depth is 8k. For now we have overcome this issue by building custom linux kernels
with 16k stacks for development. To make this port stable for general Linux use the stack usage
must be reduced so it can be used with precompiled Linux kernels.

Scatter/Gather: To reduce the need for large contiguous memory allocations, and to increase the
maximum DMU chunk size beyond 128k scatter/gather interfaces need to be added to the DMU.
This should remove the need to do any manual tuning of 'vdev_max_pending' and 'zfs_arc_max'.
Lustre-ZFS Integration: While the KPIOS benchmark provides a convenient interface for
performance analysis the end goal is to interface the Lustre servers with the DMU. We must
continue the work to interface our Linux kernel DMU port with a recent version of Lustre.

ZVOL: Beyond the DMU which is strictly all that Lustre requires is a layer called the ZVOL. This
layer sits on top of the DMU and provides a block interface to user space with all the benefits of a
ZFS based file system. Completing this interface will provide a helpful user space access point to
aid in debugging and performance analysis of the underlying DMU.

ZPL: Additionally porting the ZFS posix layer, known as the ZPL, while not required would be a
very helpful component for DMU based Lustre servers. Sun is currently planning to utilize the
DMU in such a way that it will be possible to directly mount the ZFS based OSTs in an analogous
manor to the current 1diskfs based OSTs. Porting the ZPL will allow easy data access on the Lustre
servers. On a non-technical note, porting the ZPL will enable increased community support and
backing for ZFS on Linux. A fully function port may also motivate Sun to dual license ZFS under
the GPLv2 as they have expressed an interest in doing.

Appendix A:

Performance Summary

Test Write MiB/s Read MiB/s Write % of DD Read % of DD Write % Delta Read % Delta

ZFSBaselne 57076 61L1 5357% 5895% 000% 0.00%
ZFS Disable Checksums 602.57 610.54 56.55% 58.90% 5.57% -0.09%
ZFS Disable Prefetch 557.68 822.08 52.34% 79.30% -2.29% 34.52%
ZFS Simulated Zerocopy 673.66 615.18 63.22% 59.34% 18.03% 0.67%
ZFS pending=1024 602.05 743.91 56.50% 71.76% 5.48% 21.73%
ZFS arc=8g 600.92 682.65 56.40% 65.85% 5.28% 11.71%
ZFS (AllTunings) 84566 991.06 ~ 7936% 9560% 4816% 62.18%
DD Parallel Streaming 1065.54 1036.64 100.00% 100.00% 0.00% 0.00%

MiB/s

Percentage of DD

Performance Summary

1100
1000
900
800
700
600
500
400 —
300
200
100

] Write MiB/s
[l Read MiB/s

ZFS ZFS ZFS ZFS ZFS ZFS ZFS (All DD Paral-
Baseline Disable Disable Simu- pend- arc=8g Tunings) lel
Check- Prefetch lated ing=102 Stream-

Test

Performance Summary (Percentages)

100.00%
90.00%

80.00%

70.00%

60.00%

50.00% —
40.00% —

[0 Write % of DD
B Read % of DD

30.00% —
20.00% —
10.00%

0.00% —

ZFS ZFS ZFS ZFS ZFS ZFS ZFS (Al DD
Base- Disable Disable Simu- pend- arc=8g Tun- Parallel
line Check- Prefetc lated ing=10 ings) Stream-

Test

