/*
 * Implementation of the Skein block functions.
 * Source code author: Doug Whiting, 2008.
 * This algorithm and source code is released to the public domain.
 * Compile-time switches:
 *  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
 *                    versions use ASM code for block processing
 *                    [default: use C for all block sizes]
 */
/* Copyright 2013 Doug Whiting. This code is released to the public domain. */

#include <sys/skein.h>
#include "skein_impl.h"
#include <sys/isa_defs.h>	/* for _ILP32 */

#ifndef	SKEIN_USE_ASM
#define	SKEIN_USE_ASM	(0)	/* default is all C code (no ASM) */
#endif

#ifndef	SKEIN_LOOP
/*
 * The low-level checksum routines use a lot of stack space. On systems where
 * small stacks frame are enforced (like 32-bit kernel builds), do not unroll
 * checksum calculations to save stack space.
 *
 * Even with no loops unrolled, we still can exceed the 1k stack frame limit
 * in Skein1024_Process_Block() (it hits 1272 bytes on ARM32).  We can
 * safely ignore it though, since that the checksum functions will be called
 * from a worker thread that won't be using much stack.  That's why we have
 * the #pragma here to ignore the warning.
 */
#if defined(_ILP32) || defined(__powerpc)	/* Assume small stack */
#pragma GCC diagnostic ignored "-Wframe-larger-than="
/*
 * We're running on 32-bit, don't unroll loops to save stack frame space
 *
 * Due to the ways the calculations on SKEIN_LOOP are done in
 * Skein_*_Process_Block(), a value of 111 disables unrolling loops
 * in any of those functions.
 */
#define	SKEIN_LOOP 111
#else
/* We're compiling with large stacks */
#define	SKEIN_LOOP 001		/* default: unroll 256 and 512, but not 1024 */
#endif
#endif

/* some useful definitions for code here */
#define	BLK_BITS	(WCNT*64)
#define	KW_TWK_BASE	(0)
#define	KW_KEY_BASE	(3)
#define	ks		(kw + KW_KEY_BASE)
#define	ts		(kw + KW_TWK_BASE)

/* no debugging in Illumos version */
#define	DebugSaveTweak(ctx)

/* Skein_256 */
#if	!(SKEIN_USE_ASM & 256)
void
Skein_256_Process_Block(Skein_256_Ctxt_t *ctx, const uint8_t *blkPtr,
    size_t blkCnt, size_t byteCntAdd)
{
	enum {
		WCNT = SKEIN_256_STATE_WORDS
	};
#undef  RCNT
#define	RCNT  (SKEIN_256_ROUNDS_TOTAL / 8)

#ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
#define	SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
#else
#define	SKEIN_UNROLL_256 (0)
#endif

#if	SKEIN_UNROLL_256
#if	(RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256"	/* sanity check on unroll count */
#endif
	size_t r;
	/* key schedule words : chaining vars + tweak + "rotation" */
	uint64_t kw[WCNT + 4 + RCNT * 2];
#else
	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
#endif
	/* local copy of context vars, for speed */
	uint64_t X0, X1, X2, X3;
	uint64_t w[WCNT];		/* local copy of input block */
#ifdef	SKEIN_DEBUG
	/* use for debugging (help compiler put Xn in registers) */
	const uint64_t *Xptr[4];
	Xptr[0] = &X0;
	Xptr[1] = &X1;
	Xptr[2] = &X2;
	Xptr[3] = &X3;
#endif
	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
	ts[0] = ctx->h.T[0];
	ts[1] = ctx->h.T[1];
	do {
		/*
		 * this implementation only supports 2**64 input bytes
		 * (no carry out here)
		 */
		ts[0] += byteCntAdd;	/* update processed length */

		/* precompute the key schedule for this block */
		ks[0] = ctx->X[0];
		ks[1] = ctx->X[1];
		ks[2] = ctx->X[2];
		ks[3] = ctx->X[3];
		ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;

		ts[2] = ts[0] ^ ts[1];

		/* get input block in little-endian format */
		Skein_Get64_LSB_First(w, blkPtr, WCNT);
		DebugSaveTweak(ctx);
		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);

		X0 = w[0] + ks[0];	/* do the first full key injection */
		X1 = w[1] + ks[1] + ts[0];
		X2 = w[2] + ks[2] + ts[1];
		X3 = w[3] + ks[3];

		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
		    Xptr);	/* show starting state values */

		blkPtr += SKEIN_256_BLOCK_BYTES;

		/* run the rounds */

#define	Round256(p0, p1, p2, p3, ROT, rNum)                          \
	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0; \
	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2; \

#if	SKEIN_UNROLL_256 == 0
#define	R256(p0, p1, p2, p3, ROT, rNum)		/* fully unrolled */	\
	Round256(p0, p1, p2, p3, ROT, rNum)		\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);

#define	I256(R)								\
	X0 += ks[((R) + 1) % 5]; /* inject the key schedule value */ \
	X1 += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];			\
	X2 += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];			\
	X3 += ks[((R) + 4) % 5] + (R) + 1;			\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else				/* looping version */
#define	R256(p0, p1, p2, p3, ROT, rNum)                             \
	Round256(p0, p1, p2, p3, ROT, rNum)                             \
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);

#define	I256(R)								\
	X0 += ks[r + (R) + 0];	/* inject the key schedule value */	\
	X1 += ks[r + (R) + 1] + ts[r + (R) + 0];			\
	X2 += ks[r + (R) + 2] + ts[r + (R) + 1];			\
	X3 += ks[r + (R) + 3] + r + (R);				\
	ks[r + (R) + 4] = ks[r + (R) - 1];   /* rotate key schedule */	\
	ts[r + (R) + 2] = ts[r + (R) - 1];			\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);

		/* loop thru it */
		for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_256)
#endif
		{
#define	R256_8_rounds(R)                         \
	R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
	R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
	R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
	R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
	I256(2 * (R));                           \
	R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
	R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
	R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
	R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
	I256(2 * (R) + 1);

			R256_8_rounds(0);

#define	R256_Unroll_R(NN) \
	((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
	(SKEIN_UNROLL_256 > (NN)))

#if	R256_Unroll_R(1)
			R256_8_rounds(1);
#endif
#if	R256_Unroll_R(2)
			R256_8_rounds(2);
#endif
#if	R256_Unroll_R(3)
			R256_8_rounds(3);
#endif
#if	R256_Unroll_R(4)
			R256_8_rounds(4);
#endif
#if	R256_Unroll_R(5)
			R256_8_rounds(5);
#endif
#if	R256_Unroll_R(6)
			R256_8_rounds(6);
#endif
#if	R256_Unroll_R(7)
			R256_8_rounds(7);
#endif
#if	R256_Unroll_R(8)
			R256_8_rounds(8);
#endif
#if	R256_Unroll_R(9)
			R256_8_rounds(9);
#endif
#if	R256_Unroll_R(10)
			R256_8_rounds(10);
#endif
#if	R256_Unroll_R(11)
			R256_8_rounds(11);
#endif
#if	R256_Unroll_R(12)
			R256_8_rounds(12);
#endif
#if	R256_Unroll_R(13)
			R256_8_rounds(13);
#endif
#if	R256_Unroll_R(14)
			R256_8_rounds(14);
#endif
#if	(SKEIN_UNROLL_256 > 14)
#error  "need more unrolling in Skein_256_Process_Block"
#endif
		}
		/*
		 * do the final "feedforward" xor, update context chaining vars
		 */
		ctx->X[0] = X0 ^ w[0];
		ctx->X[1] = X1 ^ w[1];
		ctx->X[2] = X2 ^ w[2];
		ctx->X[3] = X3 ^ w[3];

		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);

		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
	} while (--blkCnt);
	ctx->h.T[0] = ts[0];
	ctx->h.T[1] = ts[1];
}

#if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t
Skein_256_Process_Block_CodeSize(void)
{
	return ((uint8_t *)Skein_256_Process_Block_CodeSize) -
	    ((uint8_t *)Skein_256_Process_Block);
}

uint_t
Skein_256_Unroll_Cnt(void)
{
	return (SKEIN_UNROLL_256);
}
#endif
#endif

/* Skein_512 */
#if	!(SKEIN_USE_ASM & 512)
void
Skein_512_Process_Block(Skein_512_Ctxt_t *ctx, const uint8_t *blkPtr,
    size_t blkCnt, size_t byteCntAdd)
{
	enum {
		WCNT = SKEIN_512_STATE_WORDS
	};
#undef  RCNT
#define	RCNT  (SKEIN_512_ROUNDS_TOTAL / 8)

#ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
#define	SKEIN_UNROLL_512 (((SKEIN_LOOP) / 10) % 10)
#else
#define	SKEIN_UNROLL_512 (0)
#endif

#if	SKEIN_UNROLL_512
#if	(RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512"	/* sanity check on unroll count */
#endif
	size_t r;
	/* key schedule words : chaining vars + tweak + "rotation" */
	uint64_t kw[WCNT + 4 + RCNT * 2];
#else
	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
#endif
	/* local copy of vars, for speed */
	uint64_t X0, X1, X2, X3, X4, X5, X6, X7;
	uint64_t w[WCNT];		/* local copy of input block */
#ifdef	SKEIN_DEBUG
	/* use for debugging (help compiler put Xn in registers) */
	const uint64_t *Xptr[8];
	Xptr[0] = &X0;
	Xptr[1] = &X1;
	Xptr[2] = &X2;
	Xptr[3] = &X3;
	Xptr[4] = &X4;
	Xptr[5] = &X5;
	Xptr[6] = &X6;
	Xptr[7] = &X7;
#endif

	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
	ts[0] = ctx->h.T[0];
	ts[1] = ctx->h.T[1];
	do {
		/*
		 * this implementation only supports 2**64 input bytes
		 * (no carry out here)
		 */
		ts[0] += byteCntAdd;	/* update processed length */

		/* precompute the key schedule for this block */
		ks[0] = ctx->X[0];
		ks[1] = ctx->X[1];
		ks[2] = ctx->X[2];
		ks[3] = ctx->X[3];
		ks[4] = ctx->X[4];
		ks[5] = ctx->X[5];
		ks[6] = ctx->X[6];
		ks[7] = ctx->X[7];
		ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
		    ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;

		ts[2] = ts[0] ^ ts[1];

		/* get input block in little-endian format */
		Skein_Get64_LSB_First(w, blkPtr, WCNT);
		DebugSaveTweak(ctx);
		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);

		X0 = w[0] + ks[0];	/* do the first full key injection */
		X1 = w[1] + ks[1];
		X2 = w[2] + ks[2];
		X3 = w[3] + ks[3];
		X4 = w[4] + ks[4];
		X5 = w[5] + ks[5] + ts[0];
		X6 = w[6] + ks[6] + ts[1];
		X7 = w[7] + ks[7];

		blkPtr += SKEIN_512_BLOCK_BYTES;

		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
		    Xptr);
		/* run the rounds */
#define	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
	X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
	X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;

#if	SKEIN_UNROLL_512 == 0
#define	R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)	/* unrolled */	\
	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rNum, Xptr);

#define	I512(R)								\
	X0 += ks[((R) + 1) % 9];	/* inject the key schedule value */\
	X1 += ks[((R) + 2) % 9];					\
	X2 += ks[((R) + 3) % 9];					\
	X3 += ks[((R) + 4) % 9];					\
	X4 += ks[((R) + 5) % 9];					\
	X5 += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];			\
	X6 += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];			\
	X7 += ks[((R) + 8) % 9] + (R) + 1;				\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else				/* looping version */
#define	R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)			\
	Round512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, rNum)		\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rNum, Xptr);

#define	I512(R)								\
	X0 += ks[r + (R) + 0];	/* inject the key schedule value */	\
	X1 += ks[r + (R) + 1];						\
	X2 += ks[r + (R) + 2];						\
	X3 += ks[r + (R) + 3];						\
	X4 += ks[r + (R) + 4];						\
	X5 += ks[r + (R) + 5] + ts[r + (R) + 0];			\
	X6 += ks[r + (R) + 6] + ts[r + (R) + 1];			\
	X7 += ks[r + (R) + 7] + r + (R);				\
	ks[r + (R)+8] = ks[r + (R) - 1];	/* rotate key schedule */\
	ts[r + (R)+2] = ts[r + (R) - 1];				\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);

		/* loop thru it */
		for (r = 1; r < 2 * RCNT; r += 2 * SKEIN_UNROLL_512)
#endif				/* end of looped code definitions */
		{
#define	R512_8_rounds(R)	/* do 8 full rounds */			\
	R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);		\
	R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);		\
	R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);		\
	R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);		\
	I512(2 * (R));							\
	R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);		\
	R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);		\
	R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);		\
	R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);		\
	I512(2*(R) + 1);		/* and key injection */

			R512_8_rounds(0);

#define	R512_Unroll_R(NN) \
	((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL / 8 > (NN)) || \
	(SKEIN_UNROLL_512 > (NN)))

#if	R512_Unroll_R(1)
			R512_8_rounds(1);
#endif
#if	R512_Unroll_R(2)
			R512_8_rounds(2);
#endif
#if	R512_Unroll_R(3)
			R512_8_rounds(3);
#endif
#if	R512_Unroll_R(4)
			R512_8_rounds(4);
#endif
#if	R512_Unroll_R(5)
			R512_8_rounds(5);
#endif
#if	R512_Unroll_R(6)
			R512_8_rounds(6);
#endif
#if	R512_Unroll_R(7)
			R512_8_rounds(7);
#endif
#if	R512_Unroll_R(8)
			R512_8_rounds(8);
#endif
#if	R512_Unroll_R(9)
			R512_8_rounds(9);
#endif
#if	R512_Unroll_R(10)
			R512_8_rounds(10);
#endif
#if	R512_Unroll_R(11)
			R512_8_rounds(11);
#endif
#if	R512_Unroll_R(12)
			R512_8_rounds(12);
#endif
#if	R512_Unroll_R(13)
			R512_8_rounds(13);
#endif
#if	R512_Unroll_R(14)
			R512_8_rounds(14);
#endif
#if	(SKEIN_UNROLL_512 > 14)
#error "need more unrolling in Skein_512_Process_Block"
#endif
		}

		/*
		 * do the final "feedforward" xor, update context chaining vars
		 */
		ctx->X[0] = X0 ^ w[0];
		ctx->X[1] = X1 ^ w[1];
		ctx->X[2] = X2 ^ w[2];
		ctx->X[3] = X3 ^ w[3];
		ctx->X[4] = X4 ^ w[4];
		ctx->X[5] = X5 ^ w[5];
		ctx->X[6] = X6 ^ w[6];
		ctx->X[7] = X7 ^ w[7];
		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);

		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
	} while (--blkCnt);
	ctx->h.T[0] = ts[0];
	ctx->h.T[1] = ts[1];
}

#if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t
Skein_512_Process_Block_CodeSize(void)
{
	return ((uint8_t *)Skein_512_Process_Block_CodeSize) -
	    ((uint8_t *)Skein_512_Process_Block);
}

uint_t
Skein_512_Unroll_Cnt(void)
{
	return (SKEIN_UNROLL_512);
}
#endif
#endif

/*  Skein1024 */
#if	!(SKEIN_USE_ASM & 1024)
void
Skein1024_Process_Block(Skein1024_Ctxt_t *ctx, const uint8_t *blkPtr,
    size_t blkCnt, size_t byteCntAdd)
{
	/* do it in C, always looping (unrolled is bigger AND slower!) */
	enum {
		WCNT = SKEIN1024_STATE_WORDS
	};
#undef  RCNT
#define	RCNT  (SKEIN1024_ROUNDS_TOTAL/8)

#ifdef	SKEIN_LOOP		/* configure how much to unroll the loop */
#define	SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define	SKEIN_UNROLL_1024 (0)
#endif

#if	(SKEIN_UNROLL_1024 != 0)
#if	(RCNT % SKEIN_UNROLL_1024)
#error "Invalid SKEIN_UNROLL_1024"	/* sanity check on unroll count */
#endif
	size_t r;
	/* key schedule words : chaining vars + tweak + "rotation" */
	uint64_t kw[WCNT + 4 + RCNT * 2];
#else
	uint64_t kw[WCNT + 4];	/* key schedule words : chaining vars + tweak */
#endif

	/* local copy of vars, for speed */
	uint64_t X00, X01, X02, X03, X04, X05, X06, X07, X08, X09, X10, X11,
	    X12, X13, X14, X15;
	uint64_t w[WCNT];		/* local copy of input block */
#ifdef	SKEIN_DEBUG
	/* use for debugging (help compiler put Xn in registers) */
	const uint64_t *Xptr[16];
	Xptr[0] = &X00;
	Xptr[1] = &X01;
	Xptr[2] = &X02;
	Xptr[3] = &X03;
	Xptr[4] = &X04;
	Xptr[5] = &X05;
	Xptr[6] = &X06;
	Xptr[7] = &X07;
	Xptr[8] = &X08;
	Xptr[9] = &X09;
	Xptr[10] = &X10;
	Xptr[11] = &X11;
	Xptr[12] = &X12;
	Xptr[13] = &X13;
	Xptr[14] = &X14;
	Xptr[15] = &X15;
#endif

	Skein_assert(blkCnt != 0);	/* never call with blkCnt == 0! */
	ts[0] = ctx->h.T[0];
	ts[1] = ctx->h.T[1];
	do {
		/*
		 * this implementation only supports 2**64 input bytes
		 * (no carry out here)
		 */
		ts[0] += byteCntAdd;	/* update processed length */

		/* precompute the key schedule for this block */
		ks[0] = ctx->X[0];
		ks[1] = ctx->X[1];
		ks[2] = ctx->X[2];
		ks[3] = ctx->X[3];
		ks[4] = ctx->X[4];
		ks[5] = ctx->X[5];
		ks[6] = ctx->X[6];
		ks[7] = ctx->X[7];
		ks[8] = ctx->X[8];
		ks[9] = ctx->X[9];
		ks[10] = ctx->X[10];
		ks[11] = ctx->X[11];
		ks[12] = ctx->X[12];
		ks[13] = ctx->X[13];
		ks[14] = ctx->X[14];
		ks[15] = ctx->X[15];
		ks[16] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
		    ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
		    ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
		    ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;

		ts[2] = ts[0] ^ ts[1];

		/* get input block in little-endian format */
		Skein_Get64_LSB_First(w, blkPtr, WCNT);
		DebugSaveTweak(ctx);
		Skein_Show_Block(BLK_BITS, &ctx->h, ctx->X, blkPtr, w, ks, ts);

		X00 = w[0] + ks[0];	/* do the first full key injection */
		X01 = w[1] + ks[1];
		X02 = w[2] + ks[2];
		X03 = w[3] + ks[3];
		X04 = w[4] + ks[4];
		X05 = w[5] + ks[5];
		X06 = w[6] + ks[6];
		X07 = w[7] + ks[7];
		X08 = w[8] + ks[8];
		X09 = w[9] + ks[9];
		X10 = w[10] + ks[10];
		X11 = w[11] + ks[11];
		X12 = w[12] + ks[12];
		X13 = w[13] + ks[13] + ts[0];
		X14 = w[14] + ks[14] + ts[1];
		X15 = w[15] + ks[15];

		Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INITIAL,
		    Xptr);

#define	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
	pD, pE, pF, ROT, rNum)						\
	X##p0 += X##p1; X##p1 = RotL_64(X##p1, ROT##_0); X##p1 ^= X##p0;\
	X##p2 += X##p3; X##p3 = RotL_64(X##p3, ROT##_1); X##p3 ^= X##p2;\
	X##p4 += X##p5; X##p5 = RotL_64(X##p5, ROT##_2); X##p5 ^= X##p4;\
	X##p6 += X##p7; X##p7 = RotL_64(X##p7, ROT##_3); X##p7 ^= X##p6;\
	X##p8 += X##p9; X##p9 = RotL_64(X##p9, ROT##_4); X##p9 ^= X##p8;\
	X##pA += X##pB; X##pB = RotL_64(X##pB, ROT##_5); X##pB ^= X##pA;\
	X##pC += X##pD; X##pD = RotL_64(X##pD, ROT##_6); X##pD ^= X##pC;\
	X##pE += X##pF; X##pF = RotL_64(X##pF, ROT##_7); X##pF ^= X##pE;

#if	SKEIN_UNROLL_1024 == 0
#define	R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD,	\
	pE, pF, ROT, rn)						\
	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
	pD, pE, pF, ROT, rn)						\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, rn, Xptr);

#define	I1024(R)							\
	X00 += ks[((R) + 1) % 17];	/* inject the key schedule value */\
	X01 += ks[((R) + 2) % 17];					\
	X02 += ks[((R) + 3) % 17];					\
	X03 += ks[((R) + 4) % 17];					\
	X04 += ks[((R) + 5) % 17];					\
	X05 += ks[((R) + 6) % 17];					\
	X06 += ks[((R) + 7) % 17];					\
	X07 += ks[((R) + 8) % 17];					\
	X08 += ks[((R) + 9) % 17];					\
	X09 += ks[((R) + 10) % 17];					\
	X10 += ks[((R) + 11) % 17];					\
	X11 += ks[((R) + 12) % 17];					\
	X12 += ks[((R) + 13) % 17];					\
	X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3];			\
	X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3];			\
	X15 += ks[((R) + 16) % 17] + (R) +1;				\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);
#else				/* looping version */
#define	R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD,	\
	pE, pF, ROT, rn)						\
	Round1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC,	\
	pD, pE, pF, ROT, rn)						\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, 4 * (r - 1) + rn, Xptr);

#define	I1024(R)							\
	X00 += ks[r + (R) + 0];	/* inject the key schedule value */	\
	X01 += ks[r + (R) + 1];						\
	X02 += ks[r + (R) + 2];						\
	X03 += ks[r + (R) + 3];						\
	X04 += ks[r + (R) + 4];						\
	X05 += ks[r + (R) + 5];						\
	X06 += ks[r + (R) + 6];						\
	X07 += ks[r + (R) + 7];						\
	X08 += ks[r + (R) + 8];						\
	X09 += ks[r + (R) + 9];						\
	X10 += ks[r + (R) + 10];					\
	X11 += ks[r + (R) + 11];					\
	X12 += ks[r + (R) + 12];					\
	X13 += ks[r + (R) + 13] + ts[r + (R) + 0];			\
	X14 += ks[r + (R) + 14] + ts[r + (R) + 1];			\
	X15 += ks[r + (R) + 15] +  r + (R);				\
	ks[r + (R) + 16] = ks[r + (R) - 1];	/* rotate key schedule */\
	ts[r + (R) + 2] = ts[r + (R) - 1];				\
	Skein_Show_R_Ptr(BLK_BITS, &ctx->h, SKEIN_RND_KEY_INJECT, Xptr);

		/* loop thru it */
		for (r = 1; r <= 2 * RCNT; r += 2 * SKEIN_UNROLL_1024)
#endif
		{
#define	R1024_8_rounds(R)	/* do 8 full rounds */			\
	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,	\
	    14, 15, R1024_0, 8 * (R) + 1);				\
	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05,	\
	    08, 01, R1024_1, 8 * (R) + 2);				\
	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11,	\
	    10, 09, R1024_2, 8 * (R) + 3);				\
	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03,	\
	    12, 07, R1024_3, 8 * (R) + 4);				\
	I1024(2 * (R));							\
	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13,	\
	    14, 15, R1024_4, 8 * (R) + 5);				\
	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05,	\
	    08, 01, R1024_5, 8 * (R) + 6);				\
	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11,	\
	    10, 09, R1024_6, 8 * (R) + 7);				\
	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03,	\
	    12, 07, R1024_7, 8 * (R) + 8);				\
	I1024(2 * (R) + 1);

			R1024_8_rounds(0);

#define	R1024_Unroll_R(NN)						\
	((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) ||	\
	(SKEIN_UNROLL_1024 > (NN)))

#if	R1024_Unroll_R(1)
			R1024_8_rounds(1);
#endif
#if	R1024_Unroll_R(2)
			R1024_8_rounds(2);
#endif
#if	R1024_Unroll_R(3)
			R1024_8_rounds(3);
#endif
#if	R1024_Unroll_R(4)
			R1024_8_rounds(4);
#endif
#if	R1024_Unroll_R(5)
			R1024_8_rounds(5);
#endif
#if	R1024_Unroll_R(6)
			R1024_8_rounds(6);
#endif
#if	R1024_Unroll_R(7)
			R1024_8_rounds(7);
#endif
#if	R1024_Unroll_R(8)
			R1024_8_rounds(8);
#endif
#if	R1024_Unroll_R(9)
			R1024_8_rounds(9);
#endif
#if	R1024_Unroll_R(10)
			R1024_8_rounds(10);
#endif
#if	R1024_Unroll_R(11)
			R1024_8_rounds(11);
#endif
#if	R1024_Unroll_R(12)
			R1024_8_rounds(12);
#endif
#if	R1024_Unroll_R(13)
			R1024_8_rounds(13);
#endif
#if	R1024_Unroll_R(14)
			R1024_8_rounds(14);
#endif
#if	(SKEIN_UNROLL_1024 > 14)
#error  "need more unrolling in Skein_1024_Process_Block"
#endif
		}
		/*
		 * do the final "feedforward" xor, update context chaining vars
		 */

		ctx->X[0] = X00 ^ w[0];
		ctx->X[1] = X01 ^ w[1];
		ctx->X[2] = X02 ^ w[2];
		ctx->X[3] = X03 ^ w[3];
		ctx->X[4] = X04 ^ w[4];
		ctx->X[5] = X05 ^ w[5];
		ctx->X[6] = X06 ^ w[6];
		ctx->X[7] = X07 ^ w[7];
		ctx->X[8] = X08 ^ w[8];
		ctx->X[9] = X09 ^ w[9];
		ctx->X[10] = X10 ^ w[10];
		ctx->X[11] = X11 ^ w[11];
		ctx->X[12] = X12 ^ w[12];
		ctx->X[13] = X13 ^ w[13];
		ctx->X[14] = X14 ^ w[14];
		ctx->X[15] = X15 ^ w[15];

		Skein_Show_Round(BLK_BITS, &ctx->h, SKEIN_RND_FEED_FWD, ctx->X);

		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
		blkPtr += SKEIN1024_BLOCK_BYTES;
	} while (--blkCnt);
	ctx->h.T[0] = ts[0];
	ctx->h.T[1] = ts[1];
}

#if	defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t
Skein1024_Process_Block_CodeSize(void)
{
	return ((uint8_t *)Skein1024_Process_Block_CodeSize) -
	    ((uint8_t *)Skein1024_Process_Block);
}

uint_t
Skein1024_Unroll_Cnt(void)
{
	return (SKEIN_UNROLL_1024);
}
#endif
#endif