/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include <assert.h> #include <fcntl.h> #include <poll.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <zlib.h> #include <sys/signal.h> #include <sys/spa.h> #include <sys/stat.h> #include <sys/processor.h> #include <sys/zfs_context.h> #include <sys/utsname.h> #include <sys/time.h> #include <sys/systeminfo.h> /* * Emulation of kernel services in userland. */ uint64_t physmem; vnode_t *rootdir = (vnode_t *)0xabcd1234; char hw_serial[HW_HOSTID_LEN]; struct utsname utsname = { "userland", "libzpool", "1", "1", "na" }; /* * ========================================================================= * threads * ========================================================================= */ /* NOTE: Tracking each tid on a list and using it for curthread lookups * is slow at best but it provides an easy way to provide a kthread * style API on top of pthreads. For now we just want ztest to work * to validate correctness. Performance is not much of an issue * since that is what the in-kernel version is for. That said * reworking this to track the kthread_t structure as thread * specific data would be probably the best way to speed this up. */ pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER; pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER; list_t kthread_list; static int thread_count(void) { kthread_t *kt; int count = 0; for (kt = list_head(&kthread_list); kt != NULL; kt = list_next(&kthread_list, kt)) count++; return count; } static void thread_init(void) { kthread_t *kt; /* Initialize list for tracking kthreads */ list_create(&kthread_list, sizeof (kthread_t), offsetof(kthread_t, t_node)); /* Create entry for primary kthread */ kt = umem_zalloc(sizeof(kthread_t), UMEM_NOFAIL); list_link_init(&kt->t_node); VERIFY3U(kt->t_tid = pthread_self(), !=, 0); VERIFY3S(pthread_attr_init(&kt->t_attr), ==, 0); VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); list_insert_head(&kthread_list, kt); VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); } static void thread_fini(void) { kthread_t *kt; struct timespec ts = { 0 }; int count; /* Wait for all threads to exit via thread_exit() */ VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); while ((count = thread_count()) > 1) { clock_gettime(CLOCK_REALTIME, &ts); ts.tv_sec += 1; pthread_cond_timedwait(&kthread_cond, &kthread_lock, &ts); } ASSERT3S(thread_count(), ==, 1); kt = list_head(&kthread_list); list_remove(&kthread_list, kt); VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); VERIFY(pthread_attr_destroy(&kt->t_attr) == 0); umem_free(kt, sizeof(kthread_t)); /* Cleanup list for tracking kthreads */ list_destroy(&kthread_list); } kthread_t * zk_thread_current(void) { kt_did_t tid = pthread_self(); kthread_t *kt; int count = 1; /* * Because a newly created thread may call zk_thread_current() * before the thread parent has had time to add the thread's tid * to our lookup list. We will loop as long as there are tid * which have not yet been set which must be one of ours. * Yes it's a hack, at some point we can just use native pthreads. */ while (count > 0) { count = 0; VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); for (kt = list_head(&kthread_list); kt != NULL; kt = list_next(&kthread_list, kt)) { if (kt->t_tid == tid) { VERIFY3S(pthread_mutex_unlock( &kthread_lock), ==, 0); return kt; } if (kt->t_tid == (kt_did_t)-1) count++; } VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); } /* Unreachable */ ASSERT(0); return NULL; } kthread_t * zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg, size_t len, void *pp, int state, pri_t pri) { kthread_t *kt; kt = umem_zalloc(sizeof(kthread_t), UMEM_NOFAIL); kt->t_tid = (kt_did_t)-1; list_link_init(&kt->t_node); VERIFY(pthread_attr_init(&kt->t_attr) == 0); VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); list_insert_head(&kthread_list, kt); VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); VERIFY3U(pthread_create(&kt->t_tid, &kt->t_attr, (void *(*)(void *))func, arg), ==, 0); return kt; } int zk_thread_join(kt_did_t tid, kthread_t *dtid, void **status) { return pthread_join(tid, status); } void zk_thread_exit(void) { kthread_t *kt; VERIFY3P(kt = curthread, !=, NULL); VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0); list_remove(&kthread_list, kt); VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0); VERIFY(pthread_attr_destroy(&kt->t_attr) == 0); umem_free(kt, sizeof(kthread_t)); pthread_cond_broadcast(&kthread_cond); pthread_exit(NULL); } /* * ========================================================================= * kstats * ========================================================================= */ /*ARGSUSED*/ kstat_t * kstat_create(char *module, int instance, char *name, char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag) { return (NULL); } /*ARGSUSED*/ void kstat_install(kstat_t *ksp) {} /*ARGSUSED*/ void kstat_delete(kstat_t *ksp) {} /* * ========================================================================= * mutexes * ========================================================================= */ void mutex_init(kmutex_t *mp, char *name, int type, void *cookie) { ASSERT3S(type, ==, MUTEX_DEFAULT); ASSERT3P(cookie, ==, NULL); #ifdef IM_FEELING_LUCKY ASSERT3U(mp->m_magic, !=, MTX_MAGIC); #endif mp->m_owner = MTX_INIT; mp->m_magic = MTX_MAGIC; VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0); } void mutex_destroy(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mp->m_owner, ==, MTX_INIT); VERIFY3S(pthread_mutex_destroy(&(mp)->m_lock), ==, 0); mp->m_owner = MTX_DEST; mp->m_magic = 0; } void mutex_enter(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mp->m_owner, !=, MTX_DEST); ASSERT3P(mp->m_owner, !=, curthread); VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0); ASSERT3P(mp->m_owner, ==, MTX_INIT); mp->m_owner = curthread; } int mutex_tryenter(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mp->m_owner, !=, MTX_DEST); if (0 == pthread_mutex_trylock(&mp->m_lock)) { ASSERT3P(mp->m_owner, ==, MTX_INIT); mp->m_owner = curthread; return (1); } else { return (0); } } void mutex_exit(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); ASSERT3P(mutex_owner(mp), ==, curthread); mp->m_owner = MTX_INIT; VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0); } void * mutex_owner(kmutex_t *mp) { ASSERT3U(mp->m_magic, ==, MTX_MAGIC); return (mp->m_owner); } /* * ========================================================================= * rwlocks * ========================================================================= */ /*ARGSUSED*/ void rw_init(krwlock_t *rwlp, char *name, int type, void *arg) { ASSERT3S(type, ==, RW_DEFAULT); ASSERT3P(arg, ==, NULL); #ifdef IM_FEELING_LUCKY ASSERT3U(rwlp->rw_magic, !=, RW_MAGIC); #endif VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0); rwlp->rw_owner = RW_INIT; rwlp->rw_wr_owner = RW_INIT; rwlp->rw_readers = 0; rwlp->rw_magic = RW_MAGIC; } void rw_destroy(krwlock_t *rwlp) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0); rwlp->rw_magic = 0; } void rw_enter(krwlock_t *rwlp, krw_t rw) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); ASSERT3P(rwlp->rw_owner, !=, curthread); ASSERT3P(rwlp->rw_wr_owner, !=, curthread); if (rw == RW_READER) { VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0); ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT); atomic_inc_uint(&rwlp->rw_readers); } else { VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0); ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT); ASSERT3U(rwlp->rw_readers, ==, 0); rwlp->rw_wr_owner = curthread; } rwlp->rw_owner = curthread; } void rw_exit(krwlock_t *rwlp) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); ASSERT(RW_LOCK_HELD(rwlp)); if (RW_READ_HELD(rwlp)) atomic_dec_uint(&rwlp->rw_readers); else rwlp->rw_wr_owner = RW_INIT; rwlp->rw_owner = RW_INIT; VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0); } int rw_tryenter(krwlock_t *rwlp, krw_t rw) { int rv; ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); if (rw == RW_READER) rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock); else rv = pthread_rwlock_trywrlock(&rwlp->rw_lock); if (rv == 0) { ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT); if (rw == RW_READER) atomic_inc_uint(&rwlp->rw_readers); else { ASSERT3U(rwlp->rw_readers, ==, 0); rwlp->rw_wr_owner = curthread; } rwlp->rw_owner = curthread; return (1); } VERIFY3S(rv, ==, EBUSY); return (0); } /*ARGSUSED*/ int rw_tryupgrade(krwlock_t *rwlp) { ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC); return (0); } /* * ========================================================================= * condition variables * ========================================================================= */ /*ARGSUSED*/ void cv_init(kcondvar_t *cv, char *name, int type, void *arg) { ASSERT3S(type, ==, CV_DEFAULT); #ifdef IM_FEELING_LUCKY ASSERT3U(cv->cv_magic, !=, CV_MAGIC); #endif cv->cv_magic = CV_MAGIC; VERIFY3S(pthread_cond_init(&cv->cv, NULL), ==, 0); } void cv_destroy(kcondvar_t *cv) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); VERIFY3S(pthread_cond_destroy(&cv->cv), ==, 0); cv->cv_magic = 0; } void cv_wait(kcondvar_t *cv, kmutex_t *mp) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); ASSERT3P(mutex_owner(mp), ==, curthread); mp->m_owner = MTX_INIT; int ret = pthread_cond_wait(&cv->cv, &mp->m_lock); if (ret != 0) VERIFY3S(ret, ==, EINTR); mp->m_owner = curthread; } clock_t cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime) { int error; struct timeval tv; timestruc_t ts; clock_t delta; ASSERT3U(cv->cv_magic, ==, CV_MAGIC); top: delta = abstime - lbolt; if (delta <= 0) return (-1); VERIFY(gettimeofday(&tv, NULL) == 0); ts.tv_sec = tv.tv_sec + delta / hz; ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz); if (ts.tv_nsec >= NANOSEC) { ts.tv_sec++; ts.tv_nsec -= NANOSEC; } ASSERT3P(mutex_owner(mp), ==, curthread); mp->m_owner = MTX_INIT; error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts); mp->m_owner = curthread; if (error == ETIMEDOUT) return (-1); if (error == EINTR) goto top; VERIFY3S(error, ==, 0); return (1); } void cv_signal(kcondvar_t *cv) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); VERIFY3S(pthread_cond_signal(&cv->cv), ==, 0); } void cv_broadcast(kcondvar_t *cv) { ASSERT3U(cv->cv_magic, ==, CV_MAGIC); VERIFY3S(pthread_cond_broadcast(&cv->cv), ==, 0); } /* * ========================================================================= * vnode operations * ========================================================================= */ /* * Note: for the xxxat() versions of these functions, we assume that the * starting vp is always rootdir (which is true for spa_directory.c, the only * ZFS consumer of these interfaces). We assert this is true, and then emulate * them by adding '/' in front of the path. */ /*ARGSUSED*/ int vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3) { int fd; vnode_t *vp; int old_umask; char real_path[MAXPATHLEN]; struct stat64 st; /* * If we're accessing a real disk from userland, we need to use * the character interface to avoid caching. This is particularly * important if we're trying to look at a real in-kernel storage * pool from userland, e.g. via zdb, because otherwise we won't * see the changes occurring under the segmap cache. * On the other hand, the stupid character device returns zero * for its size. So -- gag -- we open the block device to get * its size, and remember it for subsequent VOP_GETATTR(). */ #if defined(__sun__) || defined(__sun) if (strncmp(path, "/dev/", 5) == 0) { #else if (0) { #endif char *dsk; fd = open64(path, O_RDONLY); if (fd == -1) return (errno); if (fstat64(fd, &st) == -1) { close(fd); return (errno); } close(fd); (void) sprintf(real_path, "%s", path); dsk = strstr(path, "/dsk/"); if (dsk != NULL) (void) sprintf(real_path + (dsk - path) + 1, "r%s", dsk + 1); } else { (void) sprintf(real_path, "%s", path); if (!(flags & FCREAT) && stat64(real_path, &st) == -1) return (errno); } #ifdef __linux__ if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) { flags |= O_DIRECT; if (flags & FWRITE) flags |= O_EXCL; } #endif if (flags & FCREAT) old_umask = umask(0); /* * The construct 'flags - FREAD' conveniently maps combinations of * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR. */ fd = open64(real_path, flags - FREAD, mode); if (flags & FCREAT) (void) umask(old_umask); if (fd == -1) return (errno); if (fstat64(fd, &st) == -1) { close(fd); return (errno); } (void) fcntl(fd, F_SETFD, FD_CLOEXEC); *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL); vp->v_fd = fd; vp->v_size = st.st_size; vp->v_path = spa_strdup(path); return (0); } /*ARGSUSED*/ int vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3, vnode_t *startvp, int fd) { char *real_path = umem_alloc(strlen(path) + 2, UMEM_NOFAIL); int ret; ASSERT(startvp == rootdir); (void) sprintf(real_path, "/%s", path); /* fd ignored for now, need if want to simulate nbmand support */ ret = vn_open(real_path, x1, flags, mode, vpp, x2, x3); umem_free(real_path, strlen(path) + 2); return (ret); } /*ARGSUSED*/ int vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset, int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp) { ssize_t iolen, split; if (uio == UIO_READ) { iolen = pread64(vp->v_fd, addr, len, offset); } else { /* * To simulate partial disk writes, we split writes into two * system calls so that the process can be killed in between. */ split = (len > 0 ? rand() % len : 0); iolen = pwrite64(vp->v_fd, addr, split, offset); iolen += pwrite64(vp->v_fd, (char *)addr + split, len - split, offset + split); } if (iolen == -1) return (errno); if (residp) *residp = len - iolen; else if (iolen != len) return (EIO); return (0); } void vn_close(vnode_t *vp) { close(vp->v_fd); spa_strfree(vp->v_path); umem_free(vp, sizeof (vnode_t)); } #ifdef ZFS_DEBUG /* * ========================================================================= * Figure out which debugging statements to print * ========================================================================= */ static char *dprintf_string; static int dprintf_print_all; int dprintf_find_string(const char *string) { char *tmp_str = dprintf_string; int len = strlen(string); /* * Find out if this is a string we want to print. * String format: file1.c,function_name1,file2.c,file3.c */ while (tmp_str != NULL) { if (strncmp(tmp_str, string, len) == 0 && (tmp_str[len] == ',' || tmp_str[len] == '\0')) return (1); tmp_str = strchr(tmp_str, ','); if (tmp_str != NULL) tmp_str++; /* Get rid of , */ } return (0); } void dprintf_setup(int *argc, char **argv) { int i, j; /* * Debugging can be specified two ways: by setting the * environment variable ZFS_DEBUG, or by including a * "debug=..." argument on the command line. The command * line setting overrides the environment variable. */ for (i = 1; i < *argc; i++) { int len = strlen("debug="); /* First look for a command line argument */ if (strncmp("debug=", argv[i], len) == 0) { dprintf_string = argv[i] + len; /* Remove from args */ for (j = i; j < *argc; j++) argv[j] = argv[j+1]; argv[j] = NULL; (*argc)--; } } if (dprintf_string == NULL) { /* Look for ZFS_DEBUG environment variable */ dprintf_string = getenv("ZFS_DEBUG"); } /* * Are we just turning on all debugging? */ if (dprintf_find_string("on")) dprintf_print_all = 1; } /* * ========================================================================= * debug printfs * ========================================================================= */ void __dprintf(const char *file, const char *func, int line, const char *fmt, ...) { const char *newfile; va_list adx; /* * Get rid of annoying "../common/" prefix to filename. */ newfile = strrchr(file, '/'); if (newfile != NULL) { newfile = newfile + 1; /* Get rid of leading / */ } else { newfile = file; } if (dprintf_print_all || dprintf_find_string(newfile) || dprintf_find_string(func)) { /* Print out just the function name if requested */ flockfile(stdout); if (dprintf_find_string("pid")) (void) printf("%d ", getpid()); if (dprintf_find_string("tid")) (void) printf("%u ", (uint_t) pthread_self()); if (dprintf_find_string("cpu")) (void) printf("%u ", getcpuid()); if (dprintf_find_string("time")) (void) printf("%llu ", gethrtime()); if (dprintf_find_string("long")) (void) printf("%s, line %d: ", newfile, line); (void) printf("%s: ", func); va_start(adx, fmt); (void) vprintf(fmt, adx); va_end(adx); funlockfile(stdout); } } #endif /* ZFS_DEBUG */ /* * ========================================================================= * cmn_err() and panic() * ========================================================================= */ static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" }; static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" }; void vpanic(const char *fmt, va_list adx) { (void) fprintf(stderr, "error: "); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "\n"); abort(); /* think of it as a "user-level crash dump" */ } void panic(const char *fmt, ...) { va_list adx; va_start(adx, fmt); vpanic(fmt, adx); va_end(adx); } void vcmn_err(int ce, const char *fmt, va_list adx) { if (ce == CE_PANIC) vpanic(fmt, adx); if (ce != CE_NOTE) { /* suppress noise in userland stress testing */ (void) fprintf(stderr, "%s", ce_prefix[ce]); (void) vfprintf(stderr, fmt, adx); (void) fprintf(stderr, "%s", ce_suffix[ce]); } } /*PRINTFLIKE2*/ void cmn_err(int ce, const char *fmt, ...) { va_list adx; va_start(adx, fmt); vcmn_err(ce, fmt, adx); va_end(adx); } /* * ========================================================================= * kobj interfaces * ========================================================================= */ struct _buf * kobj_open_file(char *name) { struct _buf *file; vnode_t *vp; /* set vp as the _fd field of the file */ if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir, -1) != 0) return ((void *)-1UL); file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL); file->_fd = (intptr_t)vp; return (file); } int kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off) { ssize_t resid; vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off, UIO_SYSSPACE, 0, 0, 0, &resid); return (size - resid); } void kobj_close_file(struct _buf *file) { vn_close((vnode_t *)file->_fd); umem_free(file, sizeof (struct _buf)); } int kobj_get_filesize(struct _buf *file, uint64_t *size) { struct stat64 st; vnode_t *vp = (vnode_t *)file->_fd; if (fstat64(vp->v_fd, &st) == -1) { vn_close(vp); return (errno); } *size = st.st_size; return (0); } /* * ========================================================================= * misc routines * ========================================================================= */ void delay(clock_t ticks) { poll(0, 0, ticks * (1000 / hz)); } /* * Find highest one bit set. * Returns bit number + 1 of highest bit that is set, otherwise returns 0. * High order bit is 31 (or 63 in _LP64 kernel). */ int highbit(ulong_t i) { register int h = 1; if (i == 0) return (0); #ifdef _LP64 if (i & 0xffffffff00000000ul) { h += 32; i >>= 32; } #endif if (i & 0xffff0000) { h += 16; i >>= 16; } if (i & 0xff00) { h += 8; i >>= 8; } if (i & 0xf0) { h += 4; i >>= 4; } if (i & 0xc) { h += 2; i >>= 2; } if (i & 0x2) { h += 1; } return (h); } static int random_fd = -1, urandom_fd = -1; static int random_get_bytes_common(uint8_t *ptr, size_t len, int fd) { size_t resid = len; ssize_t bytes; ASSERT(fd != -1); while (resid != 0) { bytes = read(fd, ptr, resid); ASSERT3S(bytes, >=, 0); ptr += bytes; resid -= bytes; } return (0); } int random_get_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, random_fd)); } int random_get_pseudo_bytes(uint8_t *ptr, size_t len) { return (random_get_bytes_common(ptr, len, urandom_fd)); } int ddi_strtoul(const char *serial, char **nptr, int base, unsigned long *result) { char *end; *result = strtoul(serial, &end, base); if (*result == 0) return (errno); return (0); } /* * ========================================================================= * kernel emulation setup & teardown * ========================================================================= */ static int umem_out_of_memory(void) { char errmsg[] = "out of memory -- generating core dump\n"; (void) fprintf(stderr, "%s", errmsg); abort(); return (0); } void kernel_init(int mode) { umem_nofail_callback(umem_out_of_memory); physmem = sysconf(_SC_PHYS_PAGES); dprintf("physmem = %llu pages (%.2f GB)\n", physmem, (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30)); (void) snprintf(hw_serial, sizeof (hw_serial), "%ld", gethostid()); VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1); VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1); thread_init(); system_taskq_init(); spa_init(mode); } void kernel_fini(void) { spa_fini(); system_taskq_fini(); thread_fini(); close(random_fd); close(urandom_fd); random_fd = -1; urandom_fd = -1; } uid_t crgetuid(cred_t *cr) { return (0); } gid_t crgetgid(cred_t *cr) { return (0); } int crgetngroups(cred_t *cr) { return (0); } gid_t * crgetgroups(cred_t *cr) { return (NULL); } int zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr) { return (0); } int zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr) { return (0); } int zfs_secpolicy_destroy_perms(const char *name, cred_t *cr) { return (0); } ksiddomain_t * ksid_lookupdomain(const char *dom) { ksiddomain_t *kd; kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL); kd->kd_name = spa_strdup(dom); return (kd); } void ksiddomain_rele(ksiddomain_t *ksid) { spa_strfree(ksid->kd_name); umem_free(ksid, sizeof (ksiddomain_t)); }