Commit Graph

90 Commits

Author SHA1 Message Date
Alexander Motin b22bab2547
Remove fastwrite mechanism.
Fastwrite was introduced many years ago to improve ZIL writes spread
between multiple top-level vdevs by tracking number of allocated but
not written blocks and choosing vdev with smaller count.  It suposed
to reduce ZIL knowledge about allocation, but actually made ZIL to
even more actively report allocation code about the allocations,
complicating both ZIL and metaslabs code.

On top of that, it seems ZIO_FLAG_FASTWRITE setting in dmu_sync()
was lost many years ago, that was one of the declared benefits. Plus
introduction of embedded log metaslab class solved another problem
with allocation rotor accounting both normal and log allocations,
since in most cases those are now in different metaslab classes.

After all that, I'd prefer to simplify already too complicated ZIL,
ZIO and metaslab code if the benefit of complexity is not obvious.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #15107
2023-07-28 13:30:33 -07:00
Alexander Motin b4a0873092
Some ZIO micro-optimizations.
- Pack struct zio_prop by 4 bytes from 84 to 80.
 - Skip new child ZIO locking while linking to parent.  The newly
allocated ZIO is not externally visible yet, so nobody should care.
 - Skip io_bp_copy writes when not used (write && non-debug).

Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14985
2023-06-30 08:54:00 -07:00
Alexander Motin 8469b5aac0
Another set of vdev queue optimizations.
Switch FIFO queues (SYNC/TRIM) and active queue of vdev queue from
time-sorted AVL-trees to simple lists.  AVL-trees are too expensive
for such a simple task.  To change I/O priority without searching
through the trees, add io_queue_state field to struct zio.

To not check number of queued I/Os for each priority add vq_cqueued
bitmap to struct vdev_queue.  Update it when adding/removing I/Os.
Make vq_cactive a separate array instead of struct vdev_queue_class
member.  Together those allow to avoid lots of cache misses when
looking for work in vdev_queue_class_to_issue().

Introduce deadline of ~0.5s for LBA-sorted queues.  Before this I
saw some I/Os waiting in a queue for up to 8 seconds and possibly
more due to starvation.  With this change I no longer see it.  I
had to slightly more complicate the comparison function, but since
it uses all the same cache lines the difference is minimal.  For a
sequential I/Os the new code in vdev_queue_io_to_issue() actually
often uses more simple avl_first(), falling back to avl_find() and
avl_nearest() only when needed.

Arrange members in struct zio to access only one cache line when
searching through vdev queues.  While there, remove io_alloc_node,
reusing the io_queue_node instead.  Those two are never used same
time.

Remove zfs_vdev_aggregate_trim parameter.  It was disabled for 4
years since implemented, while still wasted time maintaining the
offset-sorted tree of TRIM requests.  Just remove the tree.

Remove locking from txg_all_lists_empty().  It is racy by design,
while 2 pair of locks/unlocks take noticeable time under the vdev
queue lock.

With these changes in my tests with volblocksize=4KB I measure vdev
queue lock spin time reduction by 50% on read and 75% on write.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14925
2023-06-27 09:09:48 -07:00
Alexander Motin ccec7fbe1c
Remove ARC/ZIO physdone callbacks.
Those callbacks were introduced many years ago as part of a bigger
patch to smoothen the write throttling within a txg. They allow to
account completion of individual physical writes within a logical
one, improving cases when some of physical writes complete much
sooner than others, gradually opening the write throttle.

Few years after that ZFS got allocation throttling, working on a
level of logical writes and limiting number of writes queued to
vdevs at any point, and so limiting latency distribution between
the physical writes and especially writes of multiple copies.
The addition of scheduling deadline I proposed in #14925 should
further reduce the latency distribution.  Grown memory sizes over
the past 10 years should also reduce importance of the smoothing.

While the use of physdone callback may still in theory provide
some smoother throttling, there are cases where we simply can not
afford it.  Since dirty data accounting is protected by pool-wide
lock, in case of 6-wide RAIDZ, for example, it requires us to take
it 8 times per logical block write, creating huge lock contention.

My tests of this patch show radical reduction of the lock spinning
time on workloads when smaller blocks are written to RAIDZ pools,
when each of the disks receives 8-16KB chunks, but the total rate
reaching 100K+ blocks per second.  Same time attempts to measure
any write time fluctuations didn't show anything noticeable.

While there, remove also io_child_count/io_parent_count counters.
They are used only for couple assertions that can be avoided.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14948
2023-06-15 10:49:03 -07:00
Alexander Motin 70ea484e3e
Finally drop long disabled vdev cache.
It was a vdev level read cache, designed to aggregate many small
reads by speculatively issuing bigger reads instead and caching
the result.  But since it has almost no idea about what is going
on with exception of ZIO_FLAG_DONT_CACHE flag set by higher layers,
it was found to make more harm than good, for which reason it was
disabled for the past 12 years.  These days we have much better
instruments to enlarge the I/Os, such as speculative and prescient
prefetches, I/O scheduler, I/O aggregation etc.

Besides just the dead code removal this removes one extra mutex
lock/unlock per write inside vdev_cache_write(), not otherwise
disabled and trying to do some work.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by:	Alexander Motin <mav@FreeBSD.org>
Sponsored by:	iXsystems, Inc.
Closes #14953
2023-06-09 12:40:55 -07:00
Matthew Ahrens 3095ca91c2
Verify block pointers before writing them out
If a block pointer is corrupted (but the block containing it checksums
correctly, e.g. due to a bug that overwrites random memory), we can
often detect it before the block is read, with the `zfs_blkptr_verify()`
function, which is used in `arc_read()`, `zio_free()`, etc.

However, such corruption is not typically recoverable.  To recover from
it we would need to detect the memory error before the block pointer is
written to disk.

This PR verifies BP's that are contained in indirect blocks and dnodes
before they are written to disk, in `dbuf_write_ready()`. This way,
we'll get a panic before the on-disk data is corrupted. This will help
us to diagnose what's causing the corruption, as well as being much
easier to recover from.

To minimize performance impact, only checks that can be done without
holding the spa_config_lock are performed.

Additionally, when corruption is detected, the raw words of the block
pointer are logged.  (Note that `dprintf_bp()` is a no-op by default,
but if enabled it is not safe to use with invalid block pointers.)

Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #14817
2023-05-08 11:20:23 -07:00
George Amanakis 431083f75b
Fixes in persistent error log
Address the following bugs in persistent error log:

1) Check nested clones, eg "fs->snap->clone->snap2->clone2".

2) When deleting files containing error blocks in those clones (from
   "clone" the example above), do not break the check chain.

3) When deleting files in the originating fs before syncing the errlog
   to disk, do not break the check chain. This happens because at the
   time of introducing the error block in the error list, we do not have
   its birth txg and the head filesystem. If the original file is
   deleted before the error list is synced to the error log (which is
   when we actually lookup the birth txg and the head filesystem), then
   we do not have access to this info anymore and break the check chain.

The most prominent change is related to achieving (3). We expand the
spa_error_entry_t structure to accommodate the newly introduced
zbookmark_err_phys_t structure (containing the birth txg of the error
block).Due to compatibility reasons we cannot remove the
zbookmark_phys_t structure and we also need to place the new structure
after se_avl, so it is not accounted for in avl_find(). Then we modify
spa_log_error() to also provide the birth txg of the error block. With
these changes in place we simplify the previously introduced function
get_head_and_birth_txg() (now named get_head_ds()).

We chose not to follow the same approach for the head filesystem (thus
completely removing get_head_ds()) to avoid introducing new lock
contentions.

The stack sizes of nested functions (as measured by checkstack.pl in the
linux kernel) are:
check_filesystem [zfs]: 272 (was 912)
check_clones [zfs]: 64

We also introduced two new tests covering the above changes.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #14633
2023-03-28 16:51:58 -07:00
Pawel Jakub Dawidek 67a1b03791
Implementation of block cloning for ZFS
Block Cloning allows to manually clone a file (or a subset of its
blocks) into another (or the same) file by just creating additional
references to the data blocks without copying the data itself.
Those references are kept in the Block Reference Tables (BRTs).

The whole design of block cloning is documented in module/zfs/brt.c.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Christian Schwarz <christian.schwarz@nutanix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Closes #13392
2023-03-10 11:59:53 -08:00
Richard Yao 4938d01db7
Convert enum zio_flag to uint64_t
We ran out of space in enum zio_flag for additional flags. Rather than
introduce enum zio_flag2 and then modify a bunch of functions to take a
second flags variable, we expand the type to 64 bits via `typedef
uint64_t zio_flag_t`.

Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@klarasystems.com>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Co-authored-by: Richard Yao <richard.yao@klarasystems.com>
Closes #14086
2022-10-27 09:54:54 -07:00
Alek P e8cf3a4f76
Implement a new type of zfs receive: corrective receive (-c)
This type of recv is used to heal corrupted data when a replica
of the data already exists (in the form of a send file for example).
With the provided send stream, corrective receive will read from
disk blocks described by the WRITE records. When any of the reads
come back with ECKSUM we use the data from the corresponding WRITE
record to rewrite the corrupted block.

Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Signed-off-by: Alek Pinchuk <apinchuk@axcient.com>
Closes #9372
2022-07-28 15:52:46 -07:00
Alexander Motin 33dba8c792
Fix scrub resume from newly created hole
It may happen that scan bookmark points to a block that was turned
into a part of a big hole.  In such case dsl_scan_visitbp() may skip
it and dsl_scan_check_resume() will not be called for it.  As result
new scan suspend won't be possible until the end of the object, that
may take hours if the object is a multi-terabyte ZVOL on a slow HDD
pool, stretching TXG to all that time, creating all sorts of problems.

This patch changes the resume condition to any greater or equal block,
so even if we miss the bookmarked block, the next one we find will
delete the bookmark, allowing new suspend.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored-By: iXsystems, Inc.
Closes #13643
2022-07-20 17:02:36 -07:00
Tino Reichardt 1d3ba0bf01
Replace dead opensolaris.org license link
The commit replaces all findings of the link:
http://www.opensolaris.org/os/licensing with this one:
https://opensource.org/licenses/CDDL-1.0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Closes #13619
2022-07-11 14:16:13 -07:00
наб dd66857d92 Remaining {=> const} char|void *tag
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #13348
2022-06-29 14:08:59 -07:00
Tino Reichardt 985c33b132
Introduce BLAKE3 checksums as an OpenZFS feature
This commit adds BLAKE3 checksums to OpenZFS, it has similar
performance to Edon-R, but without the caveats around the latter.

Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3
Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3

Short description of Wikipedia:

  BLAKE3 is a cryptographic hash function based on Bao and BLAKE2,
  created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and
  Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real
  World Crypto. BLAKE3 is a single algorithm with many desirable
  features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE
  and BLAKE2, which are algorithm families with multiple variants.
  BLAKE3 has a binary tree structure, so it supports a practically
  unlimited degree of parallelism (both SIMD and multithreading) given
  enough input. The official Rust and C implementations are
  dual-licensed as public domain (CC0) and the Apache License.

Along with adding the BLAKE3 hash into the OpenZFS infrastructure a
new benchmarking file called chksum_bench was introduced.  When read
it reports the speed of the available checksum functions.

On Linux: cat /proc/spl/kstat/zfs/chksum_bench
On FreeBSD: sysctl kstat.zfs.misc.chksum_bench

This is an example output of an i3-1005G1 test system with Debian 11:

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic     1196    1602    1761    1749    1762    1759    1751
skein-generic      546     591     608     615     619     612     616
sha256-generic     240     300     316     314     304     285     276
sha512-generic     353     441     467     476     472     467     426
blake3-generic     308     313     313     313     312     313     312
blake3-sse2        402    1289    1423    1446    1432    1458    1413
blake3-sse41       427    1470    1625    1704    1679    1607    1629
blake3-avx2        428    1920    3095    3343    3356    3318    3204
blake3-avx512      473    2687    4905    5836    5844    5643    5374

Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X)

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic     1840    2458    2665    2719    2711    2723    2693
skein-generic      870     966     996     992    1003    1005    1009
sha256-generic     415     442     453     455     457     457     457
sha512-generic     608     690     711     718     719     720     721
blake3-generic     301     313     311     309     309     310     310
blake3-sse2        343    1865    2124    2188    2180    2181    2186
blake3-sse41       364    2091    2396    2509    2463    2482    2488
blake3-avx2        365    2590    4399    4971    4915    4802    4764

Output on Debian 5.10.0-9-powerpc64le system: (POWER 9)

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic     1213    1703    1889    1918    1957    1902    1907
skein-generic      434     492     520     522     511     525     525
sha256-generic     167     183     187     188     188     187     188
sha512-generic     186     216     222     221     225     224     224
blake3-generic     153     152     154     153     151     153     153
blake3-sse2        391    1170    1366    1406    1428    1426    1414
blake3-sse41       352    1049    1212    1174    1262    1258    1259

Output on Debian 5.10.0-11-arm64 system: (Pi400)

implementation      1k      4k     16k     64k    256k      1m      4m
edonr-generic      487     603     629     639     643     641     641
skein-generic      271     299     303     308     309     309     307
sha256-generic     117     127     128     130     130     129     130
sha512-generic     145     165     170     172     173     174     175
blake3-generic      81      29      71      89      89      89      89
blake3-sse2        112     323     368     379     380     371     374
blake3-sse41       101     315     357     368     369     364     360

Structurally, the new code is mainly split into these parts:
- 1x cross platform generic c variant: blake3_generic.c
- 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512)
- 2x assembly for ARMv8 (NEON converted from SSE2)
- 2x assembly for PPC64-LE (POWER8 converted from SSE2)
- one file for switching between the implementations

Note the PPC64 assembly requires the VSX instruction set and the
kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly.

Reviewed-by: Felix Dörre <felix@dogcraft.de>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Co-authored-by: Rich Ercolani <rincebrain@gmail.com>
Closes #10058
Closes #12918
2022-06-08 15:55:57 -07:00
George Amanakis 0409d33273
Improve zpool status output, list all affected datasets
Currently, determining which datasets are affected by corruption is
a manual process.

The primary difficulty in reporting the list of affected snapshots is
that since the error was initially found, the snapshot where the error
originally occurred in, may have been deleted. To solve this issue, we
add the ID of the head dataset of the original snapshot which the error
was detected in, to the stored error report. Then any time a filesystem
is deleted, the errors associated with it are deleted as well. Any time
a clone promote occurs, we modify reports associated with the original
head to refer to the new head. The stored error reports are identified
by this head ID, the birth time of the block which the error occurred
in, as well as some information about the error itself are also stored.

Once this information is stored, we can find the set of datasets
affected by an error by walking back the list of snapshots in the given
head until we find one with the appropriate birth txg, and then traverse
through the snapshots of the clone family, terminating a branch if the
block was replaced in a given snapshot. Then we report this information
back to libzfs, and to the zpool status command, where it is displayed
as follows:

 pool: test
 state: ONLINE
status: One or more devices has experienced an error resulting in data
        corruption.  Applications may be affected.
action: Restore the file in question if possible.  Otherwise restore the
        entire pool from backup.
   see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-8A
  scan: scrub repaired 0B in 00:00:00 with 800 errors on Fri Dec  3
08:27:57 2021
config:

        NAME        STATE     READ WRITE CKSUM
        test        ONLINE       0     0     0
          sdb       ONLINE       0     0 1.58K

errors: Permanent errors have been detected in the following files:

        test@1:/test.0.0
        /test/test.0.0
        /test/1clone/test.0.0

A new feature flag is introduced to mark the presence of this change, as
well as promotion and backwards compatibility logic. This is an updated
version of #9175. Rebase required fixing the tests, updating the ABI of
libzfs, updating the man pages, fixing bugs, fixing the error returns,
and updating the old on-disk error logs to the new format when
activating the feature.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Co-authored-by: TulsiJain <tulsi.jain@delphix.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #9175
Closes #12812
2022-04-25 17:25:42 -07:00
Rich Ercolani 56fa4aa96e
Default to ON for compression
A simple change, but so many tests break with it,
and those are the majority of this.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #13078
2022-03-03 10:43:38 -08:00
наб 18168da727
module/*.ko: prune .data, global .rodata
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12899
2022-01-14 15:37:55 -08:00
Rich Ercolani 269b5dadcf
Enable edonr in FreeBSD
The code is integrated, builds fine, runs fine, there's not really
any reason not to.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes #12735
2021-11-16 12:40:10 -07:00
Teodor Spæren d785245857
zio: use unsigned values for enum
cppcheck complains about the use of 1 << 31, because enums are signed
ints which cannot represent this. As discussed in issue #12611, it
appears that with C99, we can use an unsiged int for the enum, on most
platforms.

I've crafted this commit for just the include/sys/zio.h header, as it's
the only one with a shift of 31. If this is something we want to adopt
in the rest of the project, I will go through and apply it to the rest
of the project.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Teodor Spæren <teodor@sparen.no>
Closes #12611 
Closes #12615
2021-10-11 10:58:06 -07:00
Jorgen Lundman 5a54a4e051
Upstream: Add snapshot and zvol events
For kernel to send snapshot mount/unmount events to zed.

For kernel to send symlink creates/removes on zvol plumbing.
(/dev/run/dsk/zvol/$pool/$zvol -> /dev/diskX)

If zed misses the ENODEV, all errors after are EINVAL. Treat any error
as kernel module failure.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Closes #12416
2021-09-09 10:44:21 -07:00
Alexander 23c13c7e80
A few fixes of callback typecasting (for the upcoming ClangCFI)
* zio: avoid callback typecasting
* zil: avoid zil_itxg_clean() callback typecasting
* zpl: decouple zpl_readpage() into two separate callbacks
* nvpair: explicitly declare callbacks for xdr_array()
* linux/zfs_nvops: don't use external iput() as a callback
* zcp_synctask: don't use fnvlist_free() as a callback
* zvol: don't use ops->zv_free() as a callback for taskq_dispatch()

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Alexander Lobakin <alobakin@pm.me>
Closes #12260
2021-07-20 08:03:33 -06:00
наб e618e4a4ff include: move SPA_MINBLOCKSHIFT and zio_encrypt to sys/fs/zfs.h
These are used by userspace, so should live in a public header

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes #12116
2021-05-29 14:26:32 -07:00
Matthew Ahrens 330c6c0523
Clean up RAIDZ/DRAID ereport code
The RAIDZ and DRAID code is responsible for reporting checksum errors on
their child vdevs.  Checksum errors represent events where a disk
returned data or parity that should have been correct, but was not.  In
other words, these are instances of silent data corruption.  The
checksum errors show up in the vdev stats (and thus `zpool status`'s
CKSUM column), and in the event log (`zpool events`).

Note, this is in contrast with the more common "noisy" errors where a
disk goes offline, in which case ZFS knows that the disk is bad and
doesn't try to read it, or the device returns an error on the requested
read or write operation.

RAIDZ/DRAID generate checksum errors via three code paths:

1. When RAIDZ/DRAID reconstructs a damaged block, checksum errors are
reported on any children whose data was not used during the
reconstruction.  This is handled in `raidz_reconstruct()`.  This is the
most common type of RAIDZ/DRAID checksum error.

2. When RAIDZ/DRAID is not able to reconstruct a damaged block, that
means that the data has been lost.  The zio fails and an error is
returned to the consumer (e.g. the read(2) system call).  This would
happen if, for example, three different disks in a RAIDZ2 group are
silently damaged.  Since the damage is silent, it isn't possible to know
which three disks are damaged, so a checksum error is reported against
every child that returned data or parity for this read.  (For DRAID,
typically only one "group" of children is involved in each io.)  This
case is handled in `vdev_raidz_cksum_finish()`. This is the next most
common type of RAIDZ/DRAID checksum error.

3. If RAIDZ/DRAID is not able to reconstruct a damaged block (like in
case 2), but there happens to be additional copies of this block due to
"ditto blocks" (i.e. multiple DVA's in this blkptr_t), and one of those
copies is good, then RAIDZ/DRAID compares each sector of the data or
parity that it retrieved with the good data from the other DVA, and if
they differ then it reports a checksum error on this child.  This
differs from case 2 in that the checksum error is reported on only the
subset of children that actually have bad data or parity.  This case
happens very rarely, since normally only metadata has ditto blocks.  If
the silent damage is extensive, there will be many instances of case 2,
and the pool will likely be unrecoverable.

The code for handling case 3 is considerably more complicated than the
other cases, for two reasons:

1. It needs to run after the main raidz read logic has completed.  The
data RAIDZ read needs to be preserved until after the alternate DVA has
been read, which necessitates refcounts and callbacks managed by the
non-raidz-specific zio layer.

2. It's nontrivial to map the sections of data read by RAIDZ to the
correct data.  For example, the correct data does not include the parity
information, so the parity must be recalculated based on the correct
data, and then compared to the parity that was read from the RAIDZ
children.

Due to the complexity of case 3, the rareness of hitting it, and the
minimal benefit it provides above case 2, this commit removes the code
for case 3.  These types of errors will now be handled the same as case
2, i.e. the checksum error will be reported against all children that
returned data or parity.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11735
2021-03-19 16:22:10 -07:00
Brian Behlendorf b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Don Brady 4f07282786
Avoid posting duplicate zpool events
Duplicate io and checksum ereport events can misrepresent that 
things are worse than they seem. Ideally the zpool events and the 
corresponding vdev stat error counts in a zpool status should be 
for unique errors -- not the same error being counted over and over. 
This can be demonstrated in a simple example. With a single bad 
block in a datafile and just 5 reads of the file we end up with a 
degraded vdev, even though there is only one unique error in the pool.

The proposed solution to the above issue, is to eliminate duplicates 
when posting events and when updating vdev error stats. We now save 
recent error events of interest when posting events so that we can 
easily check for duplicates when posting an error. 

Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #10861
2020-09-04 10:34:28 -07:00
Michael Niewöhner 10b3c7f5e4 Add zstd support to zfs
This PR adds two new compression types, based on ZStandard:

- zstd: A basic ZStandard compression algorithm Available compression.
  Levels for zstd are zstd-1 through zstd-19, where the compression
  increases with every level, but speed decreases.

- zstd-fast: A faster version of the ZStandard compression algorithm
  zstd-fast is basically a "negative" level of zstd. The compression
  decreases with every level, but speed increases.

  Available compression levels for zstd-fast:
   - zstd-fast-1 through zstd-fast-10
   - zstd-fast-20 through zstd-fast-100 (in increments of 10)
   - zstd-fast-500 and zstd-fast-1000

For more information check the man page.

Implementation details:

Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.

The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers).  The upper bits are used to store the compression level.

It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.

All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables.  Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).

The userspace tools all use the combined/bit-shifted value.

Additional notes:

zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.

ZSTD is included with all current tests and new tests are added
as-needed.

Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born.  This is currently only used by zstd but can be
extended as needed.

Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes #6247
Closes #9024
Closes #10277
Closes #10278
2020-08-20 10:30:06 -07:00
Ryan Moeller 60265072e0
Improve compatibility with C++ consumers
C++ is a little picky about not using keywords for names, or string
constness.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes #10409
2020-06-06 12:54:04 -07:00
Paul Zuchowski bc67cba7c0
Fix zdb -R with 'b' flag
zdb -R :b fails due to the indirect block being compressed,
and the 'b' and 'd' flag not working in tandem when specified.
Fix the flag parsing code and create a zfs test for zdb -R
block display.  Also fix the zio flags where the dotted notation
for the vdev portion of DVA (i.e. 0.0:offset:length) fails.

Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes #9640
Closes #9729
2020-02-10 14:00:05 -08:00
Attila Fülöp 31b160f0a6
ICP: Improve AES-GCM performance
Currently SIMD accelerated AES-GCM performance is limited by two
factors:

a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.

b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.

To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.

Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.

Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #9749
2020-02-10 12:59:50 -08:00
Matthew Macy 3c502d3b75 Exclude data from cores unconditionally and metadata conditionally
This change allows us to align the code dump logic across platforms.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9691
2019-12-09 12:29:56 -08:00
Matthew Macy f95704ca5e Disable EDONR on FreeBSD
FreeBSD uses its own crypto framework in-kernel which, at this time,
has no EDONR implementation.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes #9664
2019-12-05 13:10:29 -08:00
Matthew Macy d6f67df63c Minor diff reduction with ZoF in include/sys
- move linux/ includes to platform headers
- add void * io_bio to zio for tracking the underlying bio
- add freebsd specific fields to abd_scatter

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9615
2019-11-27 11:11:03 -08:00
Matthew Macy 1952fe0e25 Move platform dependent errno aliases
EBADE, EBADR, and ENOANO do not exist on FreeBSD

The libspl errno.h is similarly platform dependent.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9498
2019-10-25 13:40:50 -07:00
Matthew Ahrens 050d720c43 Remove dedupditto functionality
If dedup is in use, the `dedupditto` property can be set, causing ZFS to
keep an extra copy of data that is referenced many times (>100x).  The
idea was that this data is more important than other data and thus we
want to be really sure that it is not lost if the disk experiences a
small amount of random corruption.

ZFS (and system administrators) rely on the pool-level redundancy to
protect their data (e.g. mirroring or RAIDZ).  Since the user/sysadmin
doesn't have control over what data will be offered extra redundancy by
dedupditto, this extra redundancy is not very useful.  The bulk of the
data is still vulnerable to loss based on the pool-level redundancy.
For example, if particle strikes corrupt 0.1% of blocks, you will either
be saved by mirror/raidz, or you will be sad.  This is true even if
dedupditto saved another 0.01% of blocks from being corrupted.

Therefore, the dedupditto functionality is rarely enabled (i.e. the
property is rarely set), and it fulfills its promise of increased
redundancy even more rarely.

Additionally, this feature does not work as advertised (on existing
releases), because scrub/resilver did not repair the extra (dedupditto)
copy (see https://github.com/zfsonlinux/zfs/pull/8270).

In summary, this seldom-used feature doesn't work, and even if it did it
wouldn't provide useful data protection.  It has a non-trivial
maintenance burden (again see https://github.com/zfsonlinux/zfs/pull/8270).

We should remove the dedupditto functionality.  For backwards
compatibility with the existing CLI, "zpool set dedupditto" will still
"succeed" (exit code zero), but won't have any effect.  For backwards
compatibility with existing pools that had dedupditto enabled at some
point, the code will still be able to understand dedupditto blocks and
free them when appropriate.  However, ZFS won't write any new dedupditto
blocks.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Issue #8270 
Closes #8310
2019-06-19 14:54:02 -07:00
Brian Behlendorf 1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8419 
Closes #598
2019-03-29 09:13:20 -07:00
Tony Hutter ad796b8a3b Add zpool status -s (slow I/Os) and -p (parseable)
This patch adds a new slow I/Os (-s) column to zpool status to show the
number of VDEV slow I/Os. This is the number of I/Os that didn't
complete in zio_slow_io_ms milliseconds. It also adds a new parsable
(-p) flag to display exact values.

 	NAME         STATE     READ WRITE CKSUM  SLOW
 	testpool     ONLINE       0     0     0     -
	  mirror-0   ONLINE       0     0     0     -
 	    loop0    ONLINE       0     0     0    20
 	    loop1    ONLINE       0     0     0     0

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes #7756
Closes #6885
2018-11-08 16:47:24 -08:00
Don Brady cc99f275a2 Pool allocation classes
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #5182
2018-09-05 18:33:36 -07:00
Matthew Ahrens 62840030a7 Reduce taskq and context-switch cost of zio pipe
When doing a read from disk, ZFS creates 3 ZIO's: a zio_null(), the
logical zio_read(), and then a physical zio. Currently, each of these
results in a separate taskq_dispatch(zio_execute).

On high-read-iops workloads, this causes a significant performance
impact. By processing all 3 ZIO's in a single taskq entry, we reduce the
overhead on taskq locking and context switching.  We accomplish this by
allowing zio_done() to return a "next zio to execute" to zio_execute().

This results in a ~12% performance increase for random reads, from
96,000 iops to 108,000 iops (with recordsize=8k, on SSD's).

Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-59292
Closes #7736
2018-08-02 15:51:45 -07:00
Paul Dagnelie 492f64e941 OpenZFS 9112 - Improve allocation performance on high-end systems
Overview
========

We parallelize the allocation process by creating the concept of
"allocators". There are a certain number of allocators per metaslab
group, defined by the value of a tunable at pool open time.  Each
allocator for a given metaslab group has up to 2 active metaslabs; one
"primary", and one "secondary". The primary and secondary weight mean
the same thing they did in in the pre-allocator world; primary metaslabs
are used for most allocations, secondary metaslabs are used for ditto
blocks being allocated in the same metaslab group.  There is also the
CLAIM weight, which has been separated out from the other weights, but
that is less important to understanding the patch.  The active metaslabs
for each allocator are moved from their normal place in the metaslab
tree for the group to the back of the tree. This way, they will not be
selected for use by other allocators searching for new metaslabs unless
all the passive metaslabs are unsuitable for allocations.  If that does
happen, the allocators will "steal" from each other to ensure that IOs
don't fail until there is truly no space left to perform allocations.

In addition, the alloc queue for each metaslab group has been broken
into a separate queue for each allocator. We don't want to dramatically
increase the number of inflight IOs on low-end systems, because it can
significantly increase txg times. On the other hand, we want to ensure
that there are enough IOs for each allocator to allow for good
coalescing before sending the IOs to the disk.  As a result, we take a
compromise path; each allocator's alloc queue max depth starts at a
certain value for every txg. Every time an IO completes, we increase the
max depth. This should hopefully provide a good balance between the two
failure modes, while not dramatically increasing complexity.

We also parallelize the spa_alloc_tree and spa_alloc_lock, which cause
very similar contention when selecting IOs to allocate. This
parallelization uses the same allocator scheme as metaslab selection.

Performance Results
===================

Performance improvements from this change can vary significantly based
on the number of CPUs in the system, whether or not the system has a
NUMA architecture, the speed of the drives, the values for the various
tunables, and the workload being performed. For an fio async sequential
write workload on a 24 core NUMA system with 256 GB of RAM and 8 128 GB
SSDs, there is a roughly 25% performance improvement.

Future Work
===========

Analysis of the performance of the system with this patch applied shows
that a significant new bottleneck is the vdev disk queues, which also
need to be parallelized.  Prototyping of this change has occurred, and
there was a performance improvement, but more work needs to be done
before its stability has been verified and it is ready to be upstreamed.

Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>

Porting Notes:
* Fix reservation test failures by increasing tolerance.

OpenZFS-issue: https://illumos.org/issues/9112
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/3f3cc3c3
Closes #7682
2018-07-31 10:52:33 -07:00
Serapheim Dimitropoulos d2734cce68 OpenZFS 9166 - zfs storage pool checkpoint
Details about the motivation of this feature and its usage can
be found in this blogpost:

    https://sdimitro.github.io/post/zpool-checkpoint/

A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM

Implementation details can be found in big block comment of
spa_checkpoint.c

Side-changes that are relevant to this commit but not explained
elsewhere:

* renames members of "struct metaslab trees to be shorter without
  losing meaning

* space_map_{alloc,truncate}() accept a block size as a
  parameter. The reason is that in the current state all space
  maps that we allocate through the DMU use a global tunable
  (space_map_blksz) which defauls to 4KB. This is ok for metaslab
  space maps in terms of bandwirdth since they are scattered all
  over the disk. But for other space maps this default is probably
  not what we want. Examples are device removal's vdev_obsolete_sm
  or vdev_chedkpoint_sm from this review. Both of these have a
  1:1 relationship with each vdev and could benefit from a bigger
  block size.

Porting notes:

* The part of dsl_scan_sync() which handles async destroys has
  been moved into the new dsl_process_async_destroys() function.

* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
  to block device backed pools.

* ZTS:
  * Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".

  * Don't use large dd block sizes on /dev/urandom under Linux in
    checkpoint_capacity.

  * Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
    SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
    its attempts to fill the pool

  * Create the base and nested pools with sync=disabled to speed up
    the "setup" phase.

  * Clear labels in test pool between checkpoint tests to avoid
    duplicate pool issues.

  * The import_rewind_device_replaced test has been marked as "known
    to fail" for the reasons listed in its DISCLAIMER.

  * New module parameters:

      zfs_spa_discard_memory_limit,
      zfs_remove_max_bytes_pause (not documented - debugging only)
      vdev_max_ms_count (formerly metaslabs_per_vdev)
      vdev_min_ms_count

Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8
Closes #7570
2018-06-26 10:07:42 -07:00
Tom Caputi be9a5c355c Add support for decryption faults in zinject
This patch adds the ability for zinject to trigger decryption
and authentication faults in the ZIO and ARC layers. This
functionality is exposed via the new "decrypt" error type, which
may be provided for "data" object types.

This patch also refactors some of the core encryption / decryption
functions so that they have consistent prototypes, handle errors
consistently, and do not have unused arguments.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7474
2018-05-02 15:36:20 -07:00
Matthew Ahrens 9e052db462 OpenZFS 9290 - device removal reduces redundancy of mirrors
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.

There are two underlying problems:

1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.

The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).

2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.

Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.

The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).

The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.

This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).

Porting notes:

* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
  to dsl_scan_needs_resilver(), which was added to ZoL as part of the
  sequential scrub work.

* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
  parameter.  The extra parameter is unique to ZoL.

* When posting indirect checksum errors the ABD can be passed directly,
  zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591
Closes #6900
2018-04-14 12:21:39 -07:00
Matthew Ahrens a1d477c24c OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete

This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk.  The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.

The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool.  An entry becomes obsolete when all the blocks that use
it are freed.  An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones).  Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible.  This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.

Note that when a device is removed, we do not verify the checksum of
the data that is copied.  This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.

At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.

Porting Notes:

* Avoid zero-sized kmem_alloc() in vdev_compact_children().

    The device evacuation code adds a dependency that
    vdev_compact_children() be able to properly empty the vdev_child
    array by setting it to NULL and zeroing vdev_children.  Under Linux,
    kmem_alloc() and related functions return a sentinel pointer rather
    than NULL for zero-sized allocations.

* Remove comment regarding "mpt" driver where zfs_remove_max_segment
  is initialized to SPA_MAXBLOCKSIZE.

  Change zfs_condense_indirect_commit_entry_delay_ticks to
  zfs_condense_indirect_commit_entry_delay_ms for consistency with
  most other tunables in which delays are specified in ms.

* ZTS changes:

    Use set_tunable rather than mdb
    Use zpool sync as appropriate
    Use sync_pool instead of sync
    Kill jobs during test_removal_with_operation to allow unmount/export
    Don't add non-disk names such as "mirror" or "raidz" to $DISKS
    Use $TEST_BASE_DIR instead of /tmp
    Increase HZ from 100 to 1000 which is more common on Linux

    removal_multiple_indirection.ksh
        Reduce iterations in order to not time out on the code
        coverage builders.

    removal_resume_export:
        Functionally, the test case is correct but there exists a race
        where the kernel thread hasn't been fully started yet and is
        not visible.  Wait for up to 1 second for the removal thread
        to be started before giving up on it.  Also, increase the
        amount of data copied in order that the removal not finish
        before the export has a chance to fail.

* MMP compatibility, the concept of concrete versus non-concrete devices
  has slightly changed the semantics of vdev_writeable().  Update
  mmp_random_leaf_impl() accordingly.

* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
  feature which is not supported by OpenZFS.

* Added support for new vdev removal tracepoints.

* Test cases removal_with_zdb and removal_condense_export have been
  intentionally disabled.  When run manually they pass as intended,
  but when running in the automated test environment they produce
  unreliable results on the latest Fedora release.

  They may work better once the upstream pool import refectoring is
  merged into ZoL at which point they will be re-enabled.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2018-04-14 12:16:17 -07:00
Tom Caputi a2c2ed1bd4 Decryption error handling improvements
Currently, the decryption and block authentication code in
the ZIO / ARC layers is a bit inconsistent with regards to
the ereports that are produces and the error codes that are
passed to calling functions. This patch ensures that all of
these errors (which begin as ECKSUM) are converted to EIO
before they leave the ZIO or ARC layer and that ereports
are correctly generated on each decryption / authentication
failure.

In addition, this patch fixes a bug in zio_decrypt() where
ECKSUM never gets written to zio->io_error.

Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #7372
2018-03-31 11:12:51 -07:00
Olaf Faaland cec3a0a1bb Report pool suspended due to MMP
When the pool is suspended, record whether it was due to an I/O error or
due to MMP writes failing to succeed within the required time.

Change spa_suspended from uint8_t to zio_suspend_reason_t to store the
reason.

When userspace queries pool status via spa_tryimport(), report the
reason the pool was suspended in a new key,
ZPOOL_CONFIG_SUSPENDED_REASON.

In libzfs, when interpreting the returned config nvlist, report
suspension due to MMP with a new pool status enum value,
ZPOOL_STATUS_IO_FAILURE_MMP.

In status_callback(), which generates and emits the message when 'zpool
status' is executed, add a case to print an appropriate message for the
new pool status enum value.

Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #7296
2018-03-15 10:56:55 -07:00
George Wilson ddc751d56b OpenZFS 8857 - zio_remove_child() panic due to already destroyed parent zio
PROBLEM
=======
It's possible for a parent zio to complete even though it has children
which have not completed. This can result in the following panic:
    > $C
    ffffff01809128c0 vpanic()
    ffffff01809128e0 mutex_panic+0x58(fffffffffb94c904, ffffff597dde7f80)
    ffffff0180912950 mutex_vector_enter+0x347(ffffff597dde7f80)
    ffffff01809129b0 zio_remove_child+0x50(ffffff597dde7c58, ffffff32bd901ac0,
    ffffff3373370908)
    ffffff0180912a40 zio_done+0x390(ffffff32bd901ac0)
    ffffff0180912a70 zio_execute+0x78(ffffff32bd901ac0)
    ffffff0180912b30 taskq_thread+0x2d0(ffffff33bae44140)
    ffffff0180912b40 thread_start+8()
    > ::status
    debugging crash dump vmcore.2 (64-bit) from batfs0390
    operating system: 5.11 joyent_20170911T171900Z (i86pc)
    image uuid: (not set)
    panic message: mutex_enter: bad mutex, lp=ffffff597dde7f80
    owner=ffffff3c59b39480 thread=ffffff0180912c40
    dump content: kernel pages only
The problem is that dbuf_prefetch along with l2arc can create a zio tree
which confuses the parent zio and allows it to complete with while children
still exist. Here's the scenario:
    zio tree:
        pio
         |--- lio
The parent zio, pio, has entered the zio_done stage and begins to check its
children to see there are still some that have not completed. In zio_done(),
the children are checked in the following order:
    zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE)
    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE)
    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE)
    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE)
If pio, finds any child which has not completed then it stops executing and
goes to sleep. Each call to zio_wait_for_children() will grab the io_lock
while checking the particular child.
In this scenario, the pio has completed the first call to
zio_wait_for_children() to check for any ZIO_CHILD_VDEV children. Since
the only zio in the zio tree right now is the logical zio, lio, then it
completes that call and prepares to check the next child type.
In the meantime, the lio completes and in its callback creates a child vdev
zio, cio. The zio tree looks like this:
    zio tree:
        pio
         |--- lio
         |--- cio
The lio then grabs the parent's io_lock and removes itself.
    zio tree:
        pio
         |--- cio
The pio continues to run but has already completed its check for ZIO_CHILD_VDEV
and will erroneously complete. When the child zio, cio, completes it will panic
the system trying to reference the parent zio which has been destroyed.
SOLUTION
========
The fix is to rework the zio_wait_for_children() logic to accept a bitfield
for all the children types that it's interested in checking. The
io_lock will is held the entire time we check all the children types. Since
the function now accepts a bitfield, a simple ZIO_CHILD_BIT() macro is provided
to allow for the conversion between a ZIO_CHILD type and the bitfield used by
the zio_wiat_for_children logic.

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Youzhong Yang <youzhong@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>

OpenZFS-issue: https://www.illumos.org/issues/8857
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/862ff6d99c
Issue #5918
Closes #7168
2018-02-14 15:30:09 -08:00
Brian Behlendorf 8fb1ede146 Extend deadman logic
The intent of this patch is extend the existing deadman code
such that it's flexible enough to be used by both ztest and
on production systems.  The proposed changes include:

* Added a new `zfs_deadman_failmode` module option which is
  used to dynamically control the behavior of the deadman.  It's
  loosely modeled after, but independant from, the pool failmode
  property.  It can be set to wait, continue, or panic.

    * wait     - Wait for the "hung" I/O (default)
    * continue - Attempt to recover from a "hung" I/O
    * panic    - Panic the system

* Added a new `zfs_deadman_ziotime_ms` module option which is
  analogous to `zfs_deadman_synctime_ms` except instead of
  applying to a pool TXG sync it applies to zio_wait().  A
  default value of 300s is used to define a "hung" zio.

* The ztest deadman thread has been re-enabled by default,
  aligned with the upstream OpenZFS code, and then extended
  to terminate the process when it takes significantly longer
  to complete than expected.

* The -G option was added to ztest to print the internal debug
  log when a fatal error is encountered.  This same option was
  previously added to zdb in commit fa603f82.  Update zloop.sh
  to unconditionally pass -G to obtain additional debugging.

* The FM_EREPORT_ZFS_DELAY event which was previously posted
  when the deadman detect a "hung" pool has been replaced by
  a new dedicated FM_EREPORT_ZFS_DEADMAN event.

* The proposed recovery logic attempts to restart a "hung"
  zio by calling zio_interrupt() on any outstanding leaf zios.
  We may want to further restrict this to zios in either the
  ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages.
  Calling zio_interrupt() is expected to only be useful for
  cases when an IO has been submitted to the physical device
  but for some reasonable the completion callback hasn't been
  called by the lower layers.  This shouldn't be possible but
  has been observed and may be caused by kernel/driver bugs.

* The 'zfs_deadman_synctime_ms' default value was reduced from
  1000s to 600s.

* Depending on how ztest fails there may be no cache file to
  move.  This should not be considered fatal, collect the logs
  which are available and carry on.

* Add deadman test cases for spa_deadman() and zio_wait().

* Increase default zfs_deadman_checktime_ms to 60s.

Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #6999
2018-01-25 13:40:38 -08:00
Prakash Surya 2fe61a7ecc OpenZFS 8909 - 8585 can cause a use-after-free kernel panic
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: John Kennedy <jwk404@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>

PROBLEM
=======

There's a race condition that exists if `zil_free_lwb` races with either
`zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`.

Here's an example panic due to this bug:

    > ::status
    debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40
    operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc)
    image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513
    panic message:
    BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference
    dump content: kernel pages only

    > $c
    zio_shrink+0x12()
    zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20)
    zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8)
    zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8)
    zil_commit+0x80(ffffff03dcd15cc0, 9a9)
    zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
    fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
    write+0x250(42, fffffd7ff4832000, 2000)
    sys_syscall+0x177()

If there's an outstanding lwb that's in `zil_commit_waiter_timeout`
waiting to timeout, waiting on it's waiter's CV, we must be sure not to
call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB
may be freed and can result in a use-after-free situation where the
stale lwb pointer stored in the `zil_commit_waiter_t` structure of the
thread waiting on the waiter's CV is used.

A similar situation can occur if an lwb is issued to disk, and thus in
the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the
disk is servicing that lwb. In this situation, the lwb will be freed by
`zil_free_lwb`, which will result in a use-after-free situation when the
lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called.

This race condition is prevented in `zil_close` by calling `zil_commit`
before `zil_free_lwb` is called, which will ensure all outstanding (i.e.
all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states)
reach the `LWB_STATE_DONE` state before the lwb's are freed
(`zil_commit` will not return untill all the lwb's are
`LWB_STATE_DONE`).

Further, this race condition is prevented in `zil_sync` by only calling
`zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set.
All lwb's not in the `LWB_STATE_DONE` state will have a non-null value
for this pointer; the pointer is only cleared in
`zil_lwb_flush_vdevs_done`, at which point the lwb's state will be
changed to `LWB_STATE_DONE`.

This race *is* present in `zil_suspend`, leading to this bug.

At first glance, it would appear as though this would not be true
because `zil_suspend` will call `zil_commit`, just like `zil_close`, but
the problem is that `zil_suspend` will set the zilog's `zl_suspend`
field prior to calling `zil_commit`. Further, in `zil_commit`, if
`zl_suspend` is set, `zil_commit` will take a special branch of logic
and use `txg_wait_synced` instead of performing the normal `zil_commit`
logic.

This call to `txg_wait_synced` might be good enough for the data to
reach disk safely before it returns, but it does not ensure that all
outstanding lwb's reach the `LWB_STATE_DONE` state before it returns.
This is because, if there's an lwb "stuck" in
`zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will
maintain a non-null value for it's `lwb_buf` field and thus `zil_sync`
will not free that lwb. Thus, even though the lwb's data is already on
disk, the lwb will be left lingering, waiting on the CV, and will
eventually timeout and be issued to disk even though the write is
unnecessary.

So, after `zil_commit` is called from `zil_suspend`, we incorrectly
assume that there are not outstanding lwb's, and proceed to free all
lwb's found on the zilog's lwb list. As a result, we free the lwb that
will later be used `zil_commit_waiter_timeout`.

SOLUTION
========

The solution to this, is to ensure all outstanding lwb's complete before
calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch
accomplishes this goal by forcing the normal `zil_commit` logic when
called from `zil_sync`.

Now, `zil_suspend` will call `zil_commit_impl` which will always use the
normal logic of waiting/issuing lwb's to disk before it returns. As a
result, any lwb's outstanding when `zil_commit_impl` is called will be
guaranteed to reach the `LWB_STATE_DONE` state by the time it returns.

Further, no new lwb's will be created via `zil_commit` since the zilog's
`zl_suspend` flag will be set. This will force all new callers of
`zil_commit` to use `txg_wait_synced` instead of creating and issuing
new lwb's.

Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is
called will be in the `LWB_STATE_DONE` state, and we'll avoid this race
condition.

OpenZFS-issue: https://www.illumos.org/issues/8909
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8d
Closes #6940
2017-12-28 10:18:04 -08:00
Tom Caputi a8b2e30685 Support re-prioritizing asynchronous prefetches
When sequential scrubs were merged, all calls to arc_read()
(including prefetch IOs) were given ZIO_PRIORITY_ASYNC_READ.
Unfortunately, this behaves badly with an existing issue where
prefetch IOs cannot be re-prioritized after the issue. The
result is that synchronous reads end up in the same vdev_queue
as the scrub IOs and can have (in some workloads) multiple
seconds of latency.

This patch incorporates 2 changes. The first ensures that all
scrub IOs are given ZIO_PRIORITY_SCRUB to allow the vdev_queue
code to differentiate between these I/Os and user prefetches.
Second, this patch introduces zio_change_priority() to provide
the missing capability to upgrade a zio's priority.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes #6921 
Closes #6926
2017-12-21 09:13:06 -08:00
Prakash Surya 1ce23dcaff OpenZFS 8585 - improve batching done in zil_commit()
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>

Problem
=======

The current implementation of zil_commit() can introduce significant
latency, beyond what is inherent due to the latency of the underlying
storage. The additional latency comes from two main problems:

 1. When there's outstanding ZIL blocks being written (i.e. there's
    already a "writer thread" in progress), then any new calls to
    zil_commit() will block waiting for the currently oustanding ZIL
    blocks to complete. The blocks written for each "writer thread" is
    coined a "batch", and there can only ever be a single "batch" being
    written at a time. When a batch is being written, any new ZIL
    transactions will have to wait for the next batch to be written,
    which won't occur until the current batch finishes.

    As a result, the underlying storage may not be used as efficiently
    as possible. While "new" threads enter zil_commit() and are blocked
    waiting for the next batch, it's possible that the underlying
    storage isn't fully utilized by the current batch of ZIL blocks. In
    that case, it'd be better to allow these new threads to generate
    (and issue) a new ZIL block, such that it could be serviced by the
    underlying storage concurrently with the other ZIL blocks that are
    being serviced.

 2. Any call to zil_commit() must wait for all ZIL blocks in its "batch"
    to complete, prior to zil_commit() returning. The size of any given
    batch is proportional to the number of ZIL transaction in the queue
    at the time that the batch starts processing the queue; which
    doesn't occur until the previous batch completes. Thus, if there's a
    lot of transactions in the queue, the batch could be composed of
    many ZIL blocks, and each call to zil_commit() will have to wait for
    all of these writes to complete (even if the thread calling
    zil_commit() only cared about one of the transactions in the batch).

To further complicate the situation, these two issues result in the
following side effect:

 3. If a given batch takes longer to complete than normal, this results
    in larger batch sizes, which then take longer to complete and
    further drive up the latency of zil_commit(). This can occur for a
    number of reasons, including (but not limited to): transient changes
    in the workload, and storage latency irregularites.

Solution
========

The solution attempted by this change has the following goals:

 1. no on-disk changes; maintain current on-disk format.
 2. modify the "batch size" to be equal to the "ZIL block size".
 3. allow new batches to be generated and issued to disk, while there's
    already batches being serviced by the disk.
 4. allow zil_commit() to wait for as few ZIL blocks as possible.
 5. use as few ZIL blocks as possible, for the same amount of ZIL
    transactions, without introducing significant latency to any
    individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks.

In theory, with these goals met, the new allgorithm will allow the
following improvements:

 1. new ZIL blocks can be generated and issued, while there's already
    oustanding ZIL blocks being serviced by the storage.
 2. the latency of zil_commit() should be proportional to the underlying
    storage latency, rather than the incoming synchronous workload.

Porting Notes
=============

Due to the changes made in commit 119a394ab0, the lifetime of an itx
structure differs than in OpenZFS. Specifically, the itx structure is
kept around until the data associated with the itx is considered to be
safe on disk; this is so that the itx's callback can be called after the
data is committed to stable storage. Since OpenZFS doesn't have this itx
callback mechanism, it's able to destroy the itx structure immediately
after the itx is committed to an lwb (before the lwb is written to
disk).

To support this difference, and to ensure the itx's callbacks can still
be called after the itx's data is on disk, a few changes had to be made:

  * A list of itxs was added to the lwb structure. This list contains
    all of the itxs that have been committed to the lwb, such that the
    callbacks for these itxs can be called from zil_lwb_flush_vdevs_done(),
    after the data for the itxs is committed to disk.

  * A list of itxs was added on the stack of the zil_process_commit_list()
    function; the "nolwb_itxs" list. In some circumstances, an itx may
    not be committed to an lwb (e.g. if allocating the "next" ZIL block
    on disk fails), so this list is used to keep track of which itxs
    fall into this state, such that their callbacks can be called after
    the ZIL's writer pipeline is "stalled".

  * The logic to actually call the itx's callback was moved into the
    zil_itx_destroy() function. Since all consumers of zil_itx_destroy()
    were effectively performing the same logic (i.e. if callback is
    non-null, call the callback), it seemed like useful code cleanup to
    consolidate this logic into a single function.

Additionally, the existing Linux tracepoint infrastructure dealing with
the ZIL's probes and structures had to be updated to reflect these code
changes. Specifically:

  * The "zil__cw1" and "zil__cw2" probes were removed, so they had to be
    removed from "trace_zil.h" as well.

  * Some of the zilog structure's fields were removed, which affected
    the tracepoint definitions of the structure.

  * New tracepoints had to be added for the following 3 new probes:
      * zil__process__commit__itx
      * zil__process__normal__itx
      * zil__commit__io__error

OpenZFS-issue: https://www.illumos.org/issues/8585
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5d95a3a
Closes #6566
2017-12-05 09:39:16 -08:00