Commit Graph

4 Commits

Author SHA1 Message Date
Brian Behlendorf 10fa254539
Linux 4.14, 4.19, 5.0+ compat: SIMD save/restore
Contrary to initial testing we cannot rely on these kernels to
invalidate the per-cpu FPU state and restore the FPU registers.
Nor can we guarantee that the kernel won't modify the FPU state
which we saved in the task struck.

Therefore, the kfpu_begin() and kfpu_end() functions have been
updated to save and restore the FPU state using our own dedicated
per-cpu FPU state variables.

This has the additional advantage of allowing us to use the FPU
again in user threads.  So we remove the code which was added to
use task queues to ensure some functions ran in kernel threads.

Reviewed-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue 
Closes 
2019-10-24 10:17:33 -07:00
Brian Behlendorf 8062b7686a
Minor style cleanup
Resolve an assortment of style inconsistencies including
use of white space, typos, capitalization, and line wrapping.
There is no functional change.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2019-07-16 17:22:31 -07:00
Brian Behlendorf e5db313494
Linux 5.0 compat: SIMD compatibility
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS,
and 5.0 and newer kernels.  This is accomplished by leveraging
the fact that by definition dedicated kernel threads never need
to concern themselves with saving and restoring the user FPU state.
Therefore, they may use the FPU as long as we can guarantee user
tasks always restore their FPU state before context switching back
to user space.

For the 5.0 and 5.1 kernels disabling preemption and local
interrupts is sufficient to allow the FPU to be used.  All non-kernel
threads will restore the preserved user FPU state.

For 5.2 and latter kernels the user FPU state restoration will be
skipped if the kernel determines the registers have not changed.
Therefore, for these kernels we need to perform the additional
step of saving and restoring the FPU registers.  Invalidating the
per-cpu global tracking the FPU state would force a restore but
that functionality is private to the core x86 FPU implementation
and unavailable.

In practice, restricting SIMD to kernel threads is not a major
restriction for ZFS.  The vast majority of SIMD operations are
already performed by the IO pipeline.  The remaining cases are
relatively infrequent and can be handled by the generic code
without significant impact.  The two most noteworthy cases are:

  1) Decrypting the wrapping key for an encrypted dataset,
     i.e. `zfs load-key`.  All other encryption and decryption
     operations will use the SIMD optimized implementations.

  2) Generating the payload checksums for a `zfs send` stream.

In order to avoid making any changes to the higher layers of ZFS
all of the `*_get_ops()` functions were updated to take in to
consideration the calling context.  This allows for the fastest
implementation to be used as appropriate (see kfpu_allowed()).

The only other notable instance of SIMD operations being used
outside a kernel thread was at module load time.  This code
was moved in to a taskq in order to accommodate the new kernel
thread restriction.

Finally, a few other modifications were made in order to further
harden this code and facilitate testing.  They include updating
each implementations operations structure to be declared as a
constant.  And allowing "cycle" to be set when selecting the
preferred ops in the kernel as well as user space.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes  
Closes  
Closes 
2019-07-12 09:31:20 -07:00
Nathan Lewis 010d12474c Add support for selecting encryption backend
- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
  that control the crypto implementation.  At the moment there is a
  choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
  15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
  with as key schedules generated with various implementations
  are not necessarily interchangable.

Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes  
Closes 
2018-08-02 11:59:24 -07:00