Commit Graph

9 Commits

Author SHA1 Message Date
George Melikov f85c06bedf OpenZFS 7054 - dmu_tx_hold_t should use refcount_t to track space
Authored by: Igor Kozhukhov ikozhukhov@gmail.com
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: George Melikov mail@gmelikov.ru

OpenZFS-issue: https://www.illumos.org/issues/7054
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/0c779ad
Closes #5600
2017-01-23 09:36:24 -08:00
bzzz77 0eef1bde31 Add *_by-dnode routines
Add *_by_dnode() routines for accessing objects given their
dnode_t *, this is more efficient than accessing the object by 
(objset_t *, uint64_t object).  This change converts some but
not all of the existing consumers.  As performance-sensitive
code paths are discovered they should be converted to use
these routines.

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alex Zhuravlev <bzzz@whamcloud.com>
Closes #5534 
Issue #4802
2017-01-13 14:58:41 -08:00
Ned Bass 3d920a1567 dmu_tx kstat cleanup
A few counters in the dmu_tx kstats are obsolete or no longer
bumped properly.

- The sync task restructuring commit
  13fe019870 removed the code
  that bumpted dmu_tx_quota. The counter is now bumped in two
  cases, instead of just the one case as before (after the result
  of dsl_dataset_check_quota call). The second case is where
  we check the requested reservation against the actual pool size,
  as this is an implicit quota of sorts.

- The write throttle restructuring commit
  e8b96c6007 makes dmu_tx_how and
  dmu_tx_inflight obsolete, so they are removed.

Signed-off-by: Kohsuke Kawaguchi <kk@kohsuke.org>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1914
2014-03-04 12:22:24 -08:00
Michael Kjorling d1d7e2689d cstyle: Resolve C style issues
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written.  Others were
caused when the common code was slightly adjusted for Linux.

This patch contains no functional changes.  It only refreshes
the code to conform to style guide.

Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request.  The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1821
2013-12-18 16:46:35 -08:00
Matthew Ahrens e8b96c6007 Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work

1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver.  The scheduler
issues a number of concurrent i/os from each class to the device.  Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes).  The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is.  See the block comment in vdev_queue.c (reproduced
below) for more details.

2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load.  The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system.  When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount.  This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens.  One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync().  Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes.  See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.

This diff has several other effects, including:

 * the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.

 * the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently.  There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.

 * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc.  This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).

--matt

APPENDIX: problems with the current i/o scheduler

The current ZFS i/o scheduler (vdev_queue.c) is deadline based.  The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.

For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due".  One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).

If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os.  This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future.  If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due.  Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).

Notes on porting to ZFS on Linux:

- zio_t gained new members io_physdone and io_phys_children.  Because
  object caches in the Linux port call the constructor only once at
  allocation time, objects may contain residual data when retrieved
  from the cache. Therefore zio_create() was updated to zero out the two
  new fields.

- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
  (vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
  This tree has been replaced by vq->vq_active_tree which is now used
  for the same purpose.

- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
  the number of vdev I/O buffers to pre-allocate.  That global no longer
  exists, so we instead use the sum of the *_max_active values for each of
  the five I/O classes described above.

- The Illumos implementation of dmu_tx_delay() delays a transaction by
  sleeping in condition variable embedded in the thread
  (curthread->t_delay_cv).  We do not have an equivalent CV to use in
  Linux, so this change replaced the delay logic with a wrapper called
  zfs_sleep_until(). This wrapper could be adopted upstream and in other
  downstream ports to abstract away operating system-specific delay logic.

- These tunables are added as module parameters, and descriptions added
  to the zfs-module-parameters.5 man page.

  spa_asize_inflation
  zfs_deadman_synctime_ms
  zfs_vdev_max_active
  zfs_vdev_async_write_active_min_dirty_percent
  zfs_vdev_async_write_active_max_dirty_percent
  zfs_vdev_async_read_max_active
  zfs_vdev_async_read_min_active
  zfs_vdev_async_write_max_active
  zfs_vdev_async_write_min_active
  zfs_vdev_scrub_max_active
  zfs_vdev_scrub_min_active
  zfs_vdev_sync_read_max_active
  zfs_vdev_sync_read_min_active
  zfs_vdev_sync_write_max_active
  zfs_vdev_sync_write_min_active
  zfs_dirty_data_max_percent
  zfs_delay_min_dirty_percent
  zfs_dirty_data_max_max_percent
  zfs_dirty_data_max
  zfs_dirty_data_max_max
  zfs_dirty_data_sync
  zfs_delay_scale

  The latter four have type unsigned long, whereas they are uint64_t in
  Illumos.  This accommodates Linux's module_param() supported types, but
  means they may overflow on 32-bit architectures.

  The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
  likely to overflow on 32-bit systems, since they express physical RAM
  sizes in bytes.  In fact, Illumos initializes zfs_dirty_data_max_max to
  2^32 which does overflow. To resolve that, this port instead initializes
  it in arc_init() to 25% of physical RAM, and adds the tunable
  zfs_dirty_data_max_max_percent to override that percentage.  While this
  solution doesn't completely avoid the overflow issue, it should be a
  reasonable default for most systems, and the minority of affected
  systems can work around the issue by overriding the defaults.

- Fixed reversed logic in comment above zfs_delay_scale declaration.

- Clarified comments in vdev_queue.c regarding when per-queue minimums take
  effect.

- Replaced dmu_tx_write_limit in the dmu_tx kstat file
  with dmu_tx_dirty_delay and dmu_tx_dirty_over_max.  The first counts
  how many times a transaction has been delayed because the pool dirty
  data has exceeded zfs_delay_min_dirty_percent.  The latter counts how
  many times the pool dirty data has exceeded zfs_dirty_data_max (which
  we expect to never happen).

- The original patch would have regressed the bug fixed in
  zfsonlinux/zfs@c418410, which prevented users from setting the
  zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
  A similar fix is added to vdev_queue_aggregate().

- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
  heap instead of the stack.  In Linux we can't afford such large
  structures on the stack.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  http://www.illumos.org/issues/4045
  illumos/illumos-gate@69962b5647

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-12-06 09:32:43 -08:00
Matthew Ahrens 13fe019870 Illumos #3464
3464 zfs synctask code needs restructuring
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/3464
  illumos/illumos-gate@3b2aab1880

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1495
2013-09-04 16:01:24 -07:00
Brian Behlendorf 1c5de20ae2 Add --enable-debug-dmu-tx configure option
Allow rigorous (and expensive) tx validation to be enabled/disabled
indepentantly from the standard zfs debugging.  When enabled these
checks ensure that all txs are constructed properly and that a dbuf
is never dirtied without taking the correct tx hold.

This checking is particularly helpful when adding new dmu consumers
like Lustre.  However, for established consumers such as the zpl
with no known outstanding tx construction problems this is just
overhead.

--enable-debug-dmu-tx  - Enable/disable validation of each tx as
--disable-debug-dmu-tx   it is constructed.  By default validation
                         is disabled due to performance concerns.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-03-23 12:25:17 -07:00
Brian Behlendorf 570827e129 Add 'dmu_tx' kstats entry
Keep counters for the various reasons that a thread may end up
in txg_wait_open() waiting on a new txg.  This can be useful
when attempting to determine why a particular workload is
under performing.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-02-27 08:59:10 -08:00
Brian Behlendorf 6283f55ea1 Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory.  The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.

For example, this project is designed to work on various different
Linux distributions each of which work slightly differently.  This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.

Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution.  When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.

wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z

------------------------- run concurrently ----------------------
<ubuntu system>  <fedora system>  <debian system>  <rhel6 system>
mkdir ubuntu     mkdir fedora     mkdir debian     mkdir rhel6
cd ubuntu        cd fedora        cd debian        cd rhel6
../configure     ../configure     ../configure     ../configure
make             make             make             make
make check       make check       make check       make check

This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory.  This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
2010-09-08 12:38:56 -07:00