The atomic_swap_32() function maps to atomic_xchg(), and
the atomic_swap_64() function maps to atomic64_xchg().
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#377
Added highbit64() and howmany() which are used in recent upstream
code. Both highbit() and highbit64() should at some point be
re-factored to use the optimized fls() and fls64() functions.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#363
Spl's debugging and assertion macros macro used the typical do/while(0)
form for if/else friendliness, however, this limits their use in contexts
where a do loop is not valid; such as within another multi-statement
style macro.
The following macros have been converted to not use do/while(0):
PANIC, ASSERT, ASSERTF, VERIFY, VERIFY3_IMPL
PANIC has been converted to a wrapper around the new spl_PANIC() function.
The other macros have been converted to use the "&&" operator for the
branch-predicition conditional and also to use spl_PANIC().
The __ASSERT() macro was not touched. It is only used by the debugging
infrastructure and that code, including this macro, will be retired when
the tracepoint patches are merged.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#367
The correct behavior for all registered shrinkers is to return the
number of objects in their cache. In theory this allows the Linux
VM to balance memory reclaim across all registered caches.
In commit b9b3715 this behavior was disabled in favor of returning
-1 which notifies the VM that no additional objects are available
for reclaim. This was done as a workaround to resolve thrashing
in shrink_slabs() which could occur when memory was low and numerous
core where in reclaim. Unfortunately, this has been observed to
increase the likelihood of OOM events when SPL slab consumers are
responsible for consuming the majority of memory.
Therefore, this patch makes this behavior tunable. Setting the
spl_kmem_cache_reclaim module option to 0x1 will result in the
shrinker only being called once. This is the default behavior.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Closes#358
For small objects the Linux slab allocator has several advantages
over its counterpart in the SPL. These include:
1) It is more memory-efficient and packs objects more tightly.
2) It is continually tuned to maximize performance.
Therefore it makes sense to layer the SPLs slab allocator on top
of the Linux slab allocator. This allows us to leverage the
advantages above while preserving the Illumos semantics we depend
on. However, there are some things we need to be careful of:
1) The Linux slab allocator was never designed to work well with
large objects. Because the SPL slab must still handle this use
case a cut off limit was added to transition from Linux slab
backed objects to kmem or vmem backed slabs.
spl_kmem_cache_slab_limit - Objects less than or equal to this
size in bytes will be backed by the Linux slab. By default
this value is zero which disables the Linux slab functionality.
Reasonable values for this cut off limit are in the range of
4096-16386 bytes.
spl_kmem_cache_kmem_limit - Objects less than or equal to this
size in bytes will be backed by a kmem slab. Objects over this
size will be vmem backed instead. This value defaults to
1/8 a page, or 512 bytes on an x86_64 architecture.
2) Be aware that using the Linux slab may inadvertently introduce
new deadlocks. Care has been taken previously to ensure that
all allocations which occur in the write path use GFP_NOIO.
However, there may be internal allocations performed in the
Linux slab which do not honor these flags. If this is the case
a deadlock may occur.
The path forward is definitely to start relying on the Linux slab.
But for that to happen we need to start building confidence that
there aren't any unexpected surprises lurking for us. And ideally
need to move completely away from using the SPLs slab for large
memory allocations. This patch is a first step.
NOTES:
1) The KMC_NOMAGAZINE flag was leveraged to support the Linux slab
backed caches but it is not supported for kmem/vmem backed caches.
2) Regardless of the spl_kmem_cache_*_limit settings a cache may
be explicitly set to a given type by passed the KMC_KMEM,
KMC_VMEM, or KMC_SLAB flags during cache creation.
3) The constructors, destructors, and reclaim callbacks are all
functional and will be called regardless of the cache type.
4) KMC_SLAB caches will not appear in /proc/spl/kmem/slab due to
the issues involved in presenting correct object accounting.
Instead they will appear in /proc/slabinfo under the same names.
5) Several kmem SPLAT tests needed to be fixed because they relied
incorrectly on internal kmem slab accounting. With the updated
test cases all the SPLAT tests pass as expected.
6) An autoconf test was added to ensure that the __GFP_COMP flag
was correctly added to the default flags used when allocating
a slab. This is required to ensure all pages in higher order
slabs are properly refcounted, see ae16ed9.
7) When using the SLUB allocator there is no need to attempt to
set the __GFP_COMP flag. This has been the default behavior
for the SLUB since Linux 2.6.25.
8) When using the SLUB it may be desirable to set the slub_nomerge
kernel parameter to prevent caches from being merged.
Original-patch-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#356
These macro's were exposed to make them available to other
parts of the kernel and modules.
References:
torvalds/linux@6b6350f
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #355
Using the ARM reference simulation (fast model foundation v8) I
cross compiled spl and zfs, to confirm it works on ARMv8 (64 bit
arm architecture, called aarch64 in Linux).
As it is based on previous ARM porting, the resulting patch is
disappointingly small, there was very little to do. The code fixes
the compile issues and has light testing done.
Signed-off-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#351
When comparing times gotten from ddi_get_lbolt, we have to take account of
wrap around of jiffies. Therefore, we cannot use 't1 < t2'. Instead we should
use 't1 - t2 < 0'.
This patch add ddi_time_after and friends to address this issue. They have
strict type restriction, clock_t for vanilla and int64_t for 64 version, to
prevent type conversion from screwing things.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#335
This macro makes the compile to spit "mixed definition and code"
warning, I can't find a way to avoid it.
This patch lays some groundwork for the persistent l2arc feature.
See https://www.illumos.org/issues/3525.
Signed-off-by: Yuxuan Shui <yshuiv7@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#303
There is plenty of compatibility code for a hw_hostid
that isn't used by anything. At the same time, there are apparently
issues with the current hostid logic. coredumb in #zfsonlinux on
freenode reported that Fedora 17 changes its hostid on every boot, which
required force importing his pool. A suggestion by wca was to adopt
FreeBSD's behavior, where it treats hostid as zero if /etc/hostid does
not exist
Adopting FreeBSD's behavior permits us to eliminate plenty of code,
including a userland helper that invokes the system's hostid as a
fallback.
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#224
The function was defined as a static inline with variable arguments
which causes gcc to generate errors on some distros.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#346
Provide spl_kthread_create() as a wrapper to the kernel's kthread_create()
to provide pre-3.13 semantics. Re-try if the call is interrupted or if it
would have returned -ENOMEM. Otherwise return NULL.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#339
Add the minimum required ISA types to support the Sparc
architecture.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: marku89 <mar42@kola.li>
Closes#317
Related to issue #257 which added Linux 3.10 compatibility. For
ARM and Sparc architectures we must explicitly include the
<linux/vmalloc.h> header to ensure the vmalloc_info structure
is always defined when available.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #257Closes#291
torvalds/linux@24f7c6 introduced a new shrinker API while
torvalds/linux@a0b021 dropped support for the old shrinker API.
This patch adds support for the new shrinker API by wrapping
the old one with the new one.
This change also reorganizes the autotools checks on the shrinker
API such that the configure script will fail early if an unknown
API is encountered in the future.
Support for the set_shrinker() API which was used by Linux 2.6.22
and older has been dropped. As a general rule compatibility is
only maintained back to Linux 2.6.26.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes zfsonlinux/zfs#1732
Closes zfsonlinux/zfs#1822
Closes#293Closes#307
Needed for Illumos #3582. This interface is supposed to support
a variable-resolution timeout with nanosecond granularity. This
implementation rounds up to microsecond resolution, as nanosecond-
precision timing is rarely needed for real-world performance
tuning and may incur unnecessary busy-waiting. usleep_range() is
used if available, otherwise udelay() or msleep() are used
depending on the length of the delay interval.
Add flags from sys/callo.h as these are used to control the behavior of
cv_timedwait_hires(). Specifically,
CALLOUT_FLAG_ABSOLUTE
Normally, the expiration passed to the timeout API functions is
an expiration interval. If this flag is specified, then it is
interpreted as the expiration time itself.
CALLOUT_FLAG_ROUNDUP
Roundup the expiration time to the next resolution boundary. If this
flag is not specified, the expiration time is rounded down.
References:
https://www.illumos.org/issues/3582illumos/illumos-gate@0689f76
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#304
These kstat interfaces are required to port
"Illumos #3537 want pool io kstats" to ZFS on Linux.
kstat_waitq_enter()
kstat_waitq_exit()
kstat_runq_enter()
kstat_runq_exit()
Additionally, zero out the ks_data buffer in __kstat_create() so
that the kstat_io_t counters are initialized to zero.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
While porting Illumos #3537 I found that ks_lock member of kstat_t
structure is different between Illumos and SPL. It is a pointer to
the kmutex_t in Illumos, but the mutex lock itself in SPL.
Apparently Illumos kstat API allows consumer to override the lock
if required. With SPL implementation it is not possible anymore.
Things were alright until the first attempt to actually override
the lock. Porting of Illumos #3537 introduced such code for the
first time.
In order to provide the Solaris/Illumos like functionality we:
1. convert ks_lock to "kmutex_t *ks_lock"
2. create a new field "kmutex_t ks_private_lock"
3. On kstat_create() ks_lock = &ks_private_lock
Thus if consumer doesn't care we still have our internal lock in use.
If, however, consumer does care she has a chance to set ks_lock to
anything else before calling kstat_install().
The rest of the code will use ks_lock regardless of its origin.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #286
This reverts commit dba79fcbf2 in
favor of using the generic KSTAT_TYPE_RAW callbacks. The advantage
of this approach is that arbitrary types can be added without the
need to add them to the SPL.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #296
This change adds simple wrappers for accessing a thread's PID and
command character string.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #296
The current implementation for displaying kstats of type KSTAT_TYPE_RAW
is rather crude. This patch attempts to enhance this handling by
allowing a kstat user to register formatting callbacks which can
optionally be used.
The callbacks allow the user to implement functions for interpreting
their data and transposing it into a character buffer. This buffer,
containing a string representation of the raw data, is then be displayed
through the current /proc textual interface.
Additionally the kstats are made writable because it's now possible
to provide a useful handler via the existing ks_update() interface.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #296
This is needed for the Illumos #4045 write throttle patch. It is used
in the arc eviction code to avoid blocking all arc activity by sitting on
arcs_mtx too long.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #286
When CONFIG_UIDGID_STRICT_TYPE_CHECKS is enabled uid_t/git_t are
replaced by kuid_t/kgid_t, which are structures instead of integral
types. This causes any code that uses an integral type to fail to build.
The User Namespace functionality introduced in Linux 3.8 requires
CONFIG_UIDGID_STRICT_TYPE_CHECKS, so we could not build against any
kernel that supported it.
We resolve this by converting between the new kuid_t/kgid_t structures
and the original uid_t/gid_t types.
Original-patch-by: DHE
Rewrite-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#260
num_physpages was removed by
torvalds/linux@cfa11e08ed, so lets replace
it with totalram_pages.
This is a bug fix as much as it is a compatibility fix because
num_physpages did not reflect the number of pages actually available to
the kernel:
http://lkml.indiana.edu/hypermail/linux/kernel/0908.2/01001.html
Also, there are known issues with memory calculations when ZFS is in a
Xen dom0. There is a chance that using totalram_pages could resolve
them. This conjecture is untested at the time of writing.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#273
Linux kernel commit torvalds/linux#59d8053f moved the definition of
struct proc_dir_entry from include/linux/proc_fs.h to the private
header fs/proc/internal.h. The SPL relied on that to map Solaris'
kstat to entries in /proc/spl/kstat.
Since the proc_dir_entry structure is now private the only safe
thing to do is wrap the opaque proc handle with our own structure.
This actually ends up simplify the code and is good because it
moves us away from depending on implementation details of /proc.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #257
Linux kernel commmit torvalds/linux@db3808c1 moved the
vmalloc_info structure from a private to a public header.
Now that it's available for kernel modules use it.
Signed-off-by: Yuxuan Shui <yshuiv7@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #257
Ensure the value is cast to a 'long long' for printing purposes. The
expectation is that ASSERT0/VERIFY0 are mostly used for validating
return values and thus may commonly be negative.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #246
The Illumos code introduced the ASSERT0 and VERIFY0 macros which
are to be used instead of ASSERT3S(x, ==, 0) and VERIFY3S(x, ==, 0).
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Madhav Suresh <madhav.suresh@delphix.com>
Closes#246
Somewhat amazingly it went unnoticed that the delay() function
doesn't actually cause the task to block. Since the task state
is never changed from TASK_RUNNING before schedule_timeout() the
scheduler allows to task to continue running without any delay.
Using schedule_timeout_interruptible() resolves the issue by
correctly setting TASK_UNINTERRUPTIBLE.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Add wrappers for the Solaris MSEC_TO_TICK, USEC_TO_TICK, and
NSEC_TO_TICK conversion functions. They are mapped directly to
their Linux counterparts with the exception of NSEC_TO_TICK
can cannot use usecs_to_jiffies() because it is not exported
by the kernel.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Install the common spl kernel development headers under
/usr/src/spl-<version>/ rather than in a kernel specific
directory. The kernel specific build products such as
spl_config.h and Modules.symvers are left installed under
/usr/src/spl-<version>/<kernel>.
This was done to be consistent with where dkms expects
kernel module source to be packaged. It also allows for
a common spl-kmod-devel package which includes the headers,
and per-kernel spl-kmod-devel-<kernel> packages.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Linux 3.9 reorganized sched.h, splitting it into numerous files.
torvalds/linux@8bd75c77b7 moved MAX_PRIO
and MAX_RT_PRIO to linux/sched/rt.h.
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Update links to refer to the official ZFS on Linux website instead of
@behlendorf's personal fork on github.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Rather than use a custom install target it is cleaner to define
a 'kerneldir' and set 'kernel_HEADERS' appropriately. This
allows us to leverage the standing configure install support.
Additionally, I took this opertunity add the missing make files
to the include subdirectories.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The default permissions used by install are 755. Since this
file isn't executable 644 is more appropriate.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The new lz4 compression algorithm, zfsonlinux/zfs@9759c60, requires
the generic BE_IN16 and BE_IN32 functions. These are added to the SPL
for other consumers to take advantage of.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Cache aging was implemented because it was part of the default Solaris
kmem_cache behavior. The idea is that per-cpu objects which haven't been
accessed in several seconds should be returned to the cache. On the other
hand Linux slabs never move objects back to the slabs unless there is
memory pressure on the system.
This behavior is now configurable through the 'spl_kmem_cache_expire'
module option. The value is a bit mask with the following meaning.
0x1 - Solaris style cache aging eviction is enabled.
0x2 - Linux style low memory eviction is enabled.
Both methods may be safely enabled simultaneously, but by default
both are disabled. It has never been clear if the kmem cache aging
(which has been around from day one) actually does any good. It has
however been the source of numerous bugs so I wouldn't mind retiring
it entirely.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes zfsonlinux/zfs#1227
Closes#210
This functionality is no longer required by ZFS, see commit
zfsonlinux/zfs@7b3e34ba5a.
Since there are no other consumers, and because it adds
additional autoconf complexity which must be maintained
the spl_invalidate_inodes() function has been removed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#795
In the upstream kernel the FALLOC_FL_PUNCH_HOLE #define was
introduced after the fallocate() function was moved from the
inode_operations to the file_operations structure. Therefore,
the SPL code assumed that if FALLOC_FL_PUNCH_HOLE was defined
it was safe to use f_ops->fallocate().
Unfortunately, the RHEL6.4 kernel has only backported the
FALLOC_FL_PUNCH_HOLE #define and not the fallocate() change.
To address this compatibility issue the spl_filp_fallocate()
helper function was added to properly detect which interface
is available.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Under Linux when a task is waiting on I/O it should call the
io_schedule() function for proper accounting. The Solaris
cv_wait() function provides no way to specify what the cv
is waiting on therefore cv_wait_io() is introduced.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#206
Due to I/O buffering the helper may return successfully before
the proc handler has a chance to execute. To catch this case
wait up to 1 second to verify spl_kallsyms_lookup_name_fn was
updated to a non SYMBOL_POISON value.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closeszfsonlinux/zfs#699Closeszfsonlinux/zfs#859
All consumers of the kernel delayed work queues have been shifted
over to rely on the taskq implementation. This compatibility code
can now be removed. Any new callers which need this functionality
should use the taskq interfaces for delayed work items.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Shift the asynchronous allocations over to use the taskq interfaces.
This allows us to abandon the kernels delayed work queue interface
and all the compatibility code it requires.
This code never actually used the delay functionality it was just
done this way to leverage the existing compatibility code. All that
is required is a thread context to perform the allocation in. The
only thing clever in this change is that we take advantage of the
preallocated task queue entries to avoid a memory allocation.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Shift the cache and magazine ageing functionality over to the new
delayed taskq interfaces. This allows us to abandon the kernels
delayed work queue interface and all the compatibility code it
requires.
However, the delayed taskq interface does not allow us to schedule
a task for a specfic cpu so the ageing code was slightly reworked.
The magazine ageing delay has been directly linked to the cache
ageing function. The spl_cache_age() function invokes on_each_cpu()
in order to run spl_magazine_age() on each cpu. It then blocks
waiting for them to complete and promptly reclaims any free slabs.
When restructing the code wasn't the primary goal I think the
new code is far more understable and maintainable. It also should
help minimize magazine thrashing because free slabs are immediately
released after the magazine is aged.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Add the ability to dispatch a delayed task to a taskq. The desired
behavior is for the task to be queued but not executed by a worker
thread until the expiration time is reached. To achieve this two
new functions were added.
* taskq_dispatch_delay() -
This function behaves exactly like taskq_dispatch() however it
takes a third 'expire_time' argument. The caller should pass the
desired time the task should be executed as an absolute value in
jiffies. The task is guarenteed not to run before this time, it
may run slightly latter if all the worker threads are busy.
* taskq_cancel_id() -
Given a task id attempt to cancel the task before it gets executed.
This is primarily useful for canceling delay tasks but can be used for
canceling any previously dispatched task. There are three possible
return values.
0 - The task was found and canceled before it was executed.
ENOENT - The task was not found, either it was already run or an
invalid task id was supplied by the caller.
EBUSY - The task is currently executing any may not be canceled.
This function will block until the task has been completed.
* taskq_wait_all() -
The taskq_wait_id() function was renamed taskq_wait_all() to more
clearly reflect its actual behavior. It is only curreny used by
the splat taskq regression tests.
* taskq_wait_id() -
Historically, the only difference between this function and
taskq_wait() was that you passed the task id. In both functions you
would block until ALL lower task ids which executed. This was
semantically correct but could be very slow particularly if there
were delay tasks submitted.
To better accomidate the delay tasks this function was reimplemnted.
It will now only block until the passed task id has been completed.
This is actually a fairly low risk change for a few reasons.
* Only new ZFS callers will make use of the new interfaces and
very little common code was changed to support the new functions.
* The existing taskq_wait() implementation was not changed just
slightly refactored.
* The newly optimized taskq_wait_id() implementation was never
used by ZFS we can't accidentally introduce a new bug there.
NOTE: This functionality does not exist in the Illumos taskqs.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When the taskq implementation was originally written I wrapped all
the API functions in #define's. This was done as a preventative
measure to ensure that a taskq symbol never conflicted with an
existing kernel symbol.
However, in practice the taskq symbols never conflicted. The only
major conflicts occured with the kmem cache API. Since this added
layer of obfuscation never bought us anything for the taskq's I'm
removing it.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Update the taskq implementation to conform with the style used
throughout the rest of the code. There are no functional
changes in this commit.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
In the initial implementation emergency objects were tracked on a
per-cache list. The assumption was that under normal operation we
would never allocate more than a handful of these objects. So the
cost of walking the list during free was expected to be negligible.
However real world usage has shown that emergency objects tend to
be allocated in batches. A deadlock will be detected and several
thousand emergency objects will be allocated before the original
blocked slab allocation can complete.
Therefore the original list has been replaced by a red black tree
which is sorted by the memory address of each allocated object.
This bounds the worst case insertion and removal time to O(log n)
which minimize contention on the assoicated spin lock.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The entire goal of performing the slab allocations asynchronously
is to be able to detect when a vmalloc() deadlocks. In this case,
and only this case, do we want to start allocating emergency objects.
The trick here is to minimize false positives because the overhead
of tracking emergency objects is far higher than normal slab objects.
With that goal in mind the code was reworked to be less sensitive
to slow allocations by increasing the wait time. Once a cache is
is marked deadlocked all subsequent allocations which can not be
satisfied with existing cache objects will immediately allocate new
emergency objects. This behavior persists until the asynchronous
allocation completes and clears the deadlocked flag.
The result of these tweaks is that far fewer emergency objects
get created which is important because this minimizes the cost of
releasing them latter in kmem_cache_free().
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>