Commit Graph

10 Commits

Author SHA1 Message Date
Tomohiro Kusumi d5bf1cf179 Fix build break by "Implement Redacted Send/Receive"
30af21b025 broke build on Fedora. gcc can detect potential overflow
on compile-time. Consider strlen of already copied string.

Also change strn to strl variants per suggestion from @behlendorf
and @ofaaland.

--
libzfs_input_check.c: In function 'test_redact':
libzfs_input_check.c:711:2: error: 'strncat' specified bound 288 equals
 destination size [-Werror=stringop-overflow=]
  strncat(bookmark, "#testbookmark", sizeof (bookmark));
  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8939
2019-06-22 16:30:59 -07:00
Paul Dagnelie 30af21b025 Implement Redacted Send/Receive
Redacted send/receive allows users to send subsets of their data to 
a target system. One possible use case for this feature is to not 
transmit sensitive information to a data warehousing, test/dev, or 
analytics environment. Another is to save space by not replicating 
unimportant data within a given dataset, for example in backup tools 
like zrepl.

Redacted send/receive is a three-stage process. First, a clone (or 
clones) is made of the snapshot to be sent to the target. In this 
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction 
snapshot" (or snapshots). Second, the new zfs redact command is used 
to create a redaction bookmark. The redaction bookmark stores the 
list of blocks in a snapshot that were modified by the redaction 
snapshot(s). Finally, the redaction bookmark is passed as a parameter 
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive 
or unwanted information, and those blocks are not included in the send 
stream.  When sending from the redaction bookmark, the blocks it 
contains are considered as candidate blocks in addition to those 
blocks in the destination snapshot that were modified since the 
creation_txg of the redaction bookmark.  This step is necessary to 
allow the target to rehydrate data in the case where some blocks are 
accidentally or unnecessarily modified in the redaction snapshot.

The changes to bookmarks to enable fast space estimation involve 
adding deadlists to bookmarks. There is also logic to manage the 
life cycles of these deadlists.

The new size estimation process operates in cases where previously 
an accurate estimate could not be provided. In those cases, a send 
is performed where no data blocks are read, reducing the runtime 
significantly and providing a byte-accurate size estimate.

Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #7958
2019-06-19 09:48:12 -07:00
Tomohiro Kusumi 703f791d35 Don't hard-code number of ioctls for portability
Use (ZFS_IOC_LAST - ZFS_IOC_FIRST) instead of 256.
It seems 256 is just a number large enough to hold ioctls
at the moment.

Using 256 also causes compile-time warning or error
on platfoms whose enum zfs_ioc definition differs.

Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Tomohiro Kusumi <kusumi.tomohiro@gmail.com>
Closes #8598
2019-04-14 11:13:34 -07:00
Brian Behlendorf 1b939560be
Add TRIM support
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends.  By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.

This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool.  The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience.  The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.

The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq.  This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c.  These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.

In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property.  It relies on the exact same infrastructure as the
manual TRIM.  However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab.  When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree.  The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.

Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`.  This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them.  An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8419 
Closes #598
2019-03-29 09:13:20 -07:00
Lorenz Brun bf90948daf Reorder ZFS ioctls to fix cross-version compatibility
Reorder ZFS ioctls to fix cross-version compatibility.

Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Lorenz Brun <lorenz@dolansoft.org>
Closes #8484
2019-03-09 13:39:31 -08:00
George Wilson 619f097693 OpenZFS 9102 - zfs should be able to initialize storage devices
PROBLEM
========

The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.

SOLUTION
=========

This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.

When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
        - new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
                - start, suspend, or cancel initialization
        - Creates new open-context thread for each vdev
        - Thread iterates through all metaslabs in this vdev
        - Each metaslab:
                - select a metaslab
                - load the metaslab
                - mark the metaslab as being zeroed
                - walk all free ranges within that metaslab and translate
                  them to ranges on the leaf vdev
                - issue a "zeroing" I/O on the leaf vdev that corresponds to
                  a free range on the metaslab we're working on
                - continue until all free ranges for this metaslab have been
                  "zeroed"
                - reset/unmark the metaslab being zeroed
                - if more metaslabs exist, then repeat above tasks.
                - if no more metaslabs, then we're done.

        - progress for the initialization is stored on-disk in the vdev’s
          leaf zap object. The following information is stored:
                - the last offset that has been initialized
                - the state of the initialization process (i.e. active,
                  suspended, or canceled)
                - the start time for the initialization

        - progress is reported via the zpool status command and shows
          information for each of the vdevs that are initializing

Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
  written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.

Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210eb
Closes #8230
2019-01-07 10:37:26 -08:00
Andriy Gapon dc1c630b8a OpenZFS 9630 - add lzc_rename and lzc_destroy to libzfs_core
Porting Notes:
* Additional changes to recv_rename_impl() were required due to
  encryption code not being merged in OpenZFS yet.
* libzfs_core python bindings (pyzfs) were updated to fully support
  both lzc_rename() and lzc_destroy()

Authored by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Andy Stormont <astormont@racktopsystems.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: loli10K <ezomori.nozomu@gmail.com>

OpenZFS-issue: https://www.illumos.org/issues/9630
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/049ba63
Closes #8207
2018-12-14 09:49:45 -08:00
Brian Behlendorf 4b70290163
Check for strlcat and strlcpy
This partially reverts commit 8005ca4 by moving the strlcat()
and strlcpy() compatibility implementations back to their original
location.

In addition, these two functions were added to the AC_CHECK_FUNCS
macro. When these functions are available from the C library,
HAVE_STRLCAT and HAVE_STRLCPY will be defined and library version
used. Otherwise the compatibility version is built.

Reviewed-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8157 
Closes #8202
2018-12-11 16:01:41 -08:00
Brian Behlendorf 8005ca4f74
Move strlcat, strlcpy, and strnlen
Move strlcat() and strlcpy() from .c source files in to the libspl
string.h header.  By changing these compatibility functions to static
inline functions they can included as needed without requiring linking
with the libspl.so library.

Remove strnlen() which is barely used in the source, and has been
provided by glibc since v2.10.

Finally, convert four instances of strncpy() to strlcpy() in
libzfs_input_check.c which were causing build warnings when compiling
with gcc 8.2.1.  For example:

  libzfs_input_check.c: In function ‘zfs_destroy’:
  libzfs_input_check.c:651:9: error: ‘strncpy’ specified bound \
      4096 equals destination size [-Werror=stringop-truncation]
    (void) strncpy(zc.zc_name, dataset, sizeof (zc.zc_name));
         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8116
2018-11-20 10:37:49 -08:00
Don Brady b83a0e2dc1 Add basic zfs ioc input nvpair validation
We want newer versions of libzfs_core to run against an existing
zfs kernel module (i.e. a deferred reboot or module reload after
an update).

Programmatically document, via a zfs_ioc_key_t, the valid arguments 
for the ioc commands that rely on nvpair input arguments (i.e. non 
legacy commands from libzfs_core). Automatically verify the expected 
pairs before dispatching a command.

This initial phase focuses on the non-legacy ioctls. A follow-on 
change can address the legacy ioctl input from the zfs_cmd_t.

The zfs_ioc_key_t for zfs_keys_channel_program looks like:

static const zfs_ioc_key_t zfs_keys_channel_program[] = {
       {"program",     DATA_TYPE_STRING,               0},
       {"arg",         DATA_TYPE_UNKNOWN,              0},
       {"sync",        DATA_TYPE_BOOLEAN_VALUE,        ZK_OPTIONAL},
       {"instrlimit",  DATA_TYPE_UINT64,               ZK_OPTIONAL},
       {"memlimit",    DATA_TYPE_UINT64,               ZK_OPTIONAL},
};

Introduce four input errors to identify specific input failures
(in addition to generic argument value errors like EINVAL, ERANGE, 
EBADF, and E2BIG).

ZFS_ERR_IOC_CMD_UNAVAIL the ioctl number is not supported by kernel
ZFS_ERR_IOC_ARG_UNAVAIL an input argument is not supported by kernel
ZFS_ERR_IOC_ARG_REQUIRED a required input argument is missing
ZFS_ERR_IOC_ARG_BADTYPE an input argument has an invalid type

Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes #7780
2018-09-02 12:14:01 -07:00