This first phase brings over the ZFS SLM module, zfs_mod.c, to handle
auto operations in response to disk events. Disk event monitoring is
provided from libudev and generates the expected payload schema for
zfs_mod. This work leverages the recently added devid and phys_path
strings in the vdev label.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@intel.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#4673
Authored by: Hans Rosenfeld <hans.rosenfeld@nexenta.com>
Reviewed by: Dan Fields <dan.fields@nexenta.com>
Reviewed by: Josef Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Signed-off-by: Don Brady <don.brady@intel.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/5997
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/1437283
Porting Notes:
In addition to the OpenZFS changes this patch realigns the events
with those found in OpenZFS.
Events which would be logged as sysevents on illumos have been
been mapped to the 'sysevent' class for Linux. In addition, several
subclass names have been changed to match what is used in OpenZFS.
In all cases this means a '.' was changed to an '_' in the subclass.
The scripts provided by ZoL have been updated, however users which
provide scripts for any of the following events will need to rename
them based on the new subclass names.
ereport.fs.zfs.config.sync sysevent.fs.zfs.config_sync
ereport.fs.zfs.zpool.destroy sysevent.fs.zfs.pool_destroy
ereport.fs.zfs.zpool.reguid sysevent.fs.zfs.pool_reguid
ereport.fs.zfs.vdev.remove sysevent.fs.zfs.vdev_remove
ereport.fs.zfs.vdev.clear sysevent.fs.zfs.vdev_clear
ereport.fs.zfs.vdev.check sysevent.fs.zfs.vdev_check
ereport.fs.zfs.vdev.spare sysevent.fs.zfs.vdev_spare
ereport.fs.zfs.vdev.autoexpand sysevent.fs.zfs.vdev_autoexpand
ereport.fs.zfs.resilver.start sysevent.fs.zfs.resilver_start
ereport.fs.zfs.resilver.finish sysevent.fs.zfs.resilver_finish
ereport.fs.zfs.scrub.start sysevent.fs.zfs.scrub_start
ereport.fs.zfs.scrub.finish sysevent.fs.zfs.scrub_finish
ereport.fs.zfs.bootfs.vdev.attach sysevent.fs.zfs.bootfs_vdev_attach
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
New functionality:
- Preserves existing scalar implementation.
- Adds AVX2 optimized Fletcher-4 computation.
- Fastest routines selected on module load (benchmark).
- Test case for Fletcher-4 added to ztest.
New zcommon module parameters:
- zfs_fletcher_4_impl (str): selects the implementation to use.
"fastest" - use the fastest version available
"cycle" - cycle trough all available impl for ztest
"scalar" - use the original version
"avx2" - new AVX2 implementation if available
Performance comparison (Intel i7 CPU, 1MB data buffers):
- Scalar: 4216 MB/s
- AVX2: 14499 MB/s
See contents of `/sys/module/zcommon/parameters/zfs_fletcher_4_impl`
to get list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Andreas Dilger <andreas.dilger@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4330
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
5349 verify that block pointer is plausible before reading
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Xin Li <delphij@FreeBSD.org>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References:
https://www.illumos.org/issues/5349https://github.com/illumos/illumos-gate/commit/f63ab3d5
Porting notes:
* Several variable declarations were moved due to C style needs
Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3373
5056 ZFS deadlock on db_mtx and dn_holds
Author: Justin Gibbs <justing@spectralogic.com>
Reviewed by: Will Andrews <willa@spectralogic.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5056https://github.com/illumos/illumos-gate/commit/bc9014e
Porting Notes:
sa_handle_get_from_db():
- the original patch includes an otherwise unmentioned fix for a
possible usage of an uninitialised variable
dmu_objset_open_impl():
- Under Illumos list_link_init() is the same as filling a list_node_t
with NULLs, so they don't notice if they miss doing list_link_init()
on a zero'd containing structure (e.g. allocated with kmem_zalloc as
here). Under Linux, not so much: an uninitialised list_node_t goes
"Boom!" some time later when it's used or destroyed.
dmu_objset_evict_dbufs():
- reduce stack usage using kmem_alloc()
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This isn't required for the Linux port because the kernel tracks
if a module is busy. The prototype for spa_busy() is also removed
since its definition was already removed.
Signed-off-by: Isaac Huang <he.huang@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3262
5695 dmu_sync'ed holes do not retain birth time
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5695https://github.com/illumos/illumos-gate/commit/70163ac
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3229
By marking DMU transaction processing contexts with PF_FSTRANS
we can revert the KM_PUSHPAGE -> KM_SLEEP changes. This brings
us back in line with upstream. In some cases this means simply
swapping the flags back. For others fnvlist_alloc() was replaced
by nvlist_alloc(..., KM_PUSHPAGE) and must be reverted back to
fnvlist_alloc() which assumes KM_SLEEP.
The one place KM_PUSHPAGE is kept is when allocating ARC buffers
which allows us to dip in to reserved memory. This is again the
same as upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Callers of kmem_alloc() which passed the KM_NODEBUG flag to suppress
the large allocation warning have been replaced by vmem_alloc() as
appropriate. The updated vmem_alloc() call will not print a warning
regardless of the size of the allocation.
A careful reader will notice that not all callers have been changed
to vmem_alloc(). Some have only had the KM_NODEBUG flag removed.
This was possible because the default warning threshold has been
increased to 32k. This is desirable because it minimizes the need
for Linux specific code changes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/4753https://github.com/illumos/illumos-gate/commit/73527f4
Comments by Matt Ahrens from the issue tracker:
When a sync task is waiting for a txg to complete, we should hurry
it along by increasing the number of outstanding async writes
(i.e. make vdev_queue_max_async_writes() return a larger number).
Initially we might just have a tunable for "minimum async writes
while a synctask is waiting" and set it to 3.
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2716
4914 zfs on-disk bookmark structure should be named *_phys_t
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
https://www.illumos.org/issues/4914https://github.com/illumos/illumos-gate/commit/7802d7b
Porting notes:
There were a number of zfsonlinux-specific uses of zbookmark_t which
needed to be updated. This should reduce the likelihood of further
problems like issue #2094 from occurring.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2558
4757 ZFS embedded-data block pointers ("zero block compression")
4913 zfs release should not be subject to space checks
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4757https://www.illumos.org/issues/4913https://github.com/illumos/illumos-gate/commit/5d7b4d4
Porting notes:
For compatibility with the fastpath code the zio_done() function
needed to be updated. Because embedded-data block pointers do
not require DVAs to be allocated the associated vdevs will not
be marked and therefore should not be unmarked.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2544
4370 avoid transmitting holes during zfs send
4371 DMU code clean up
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Approved by: Garrett D'Amore <garrett@damore.org>a
References:
https://www.illumos.org/issues/4370https://www.illumos.org/issues/4371https://github.com/illumos/illumos-gate/commit/43466aa
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2529
The nreserved column in the txgs kstat file always contains 0
following the write throttle restructuring of commit
e8b96c6007.
Prior to that commit, the nreserved column showed the number of bytes
temporarily reserved in the pool by a transaction group at sync time.
The new write throttle did away with temporary reservations and uses
the amount of dirty data instead. To approximate the old output of
the txgs kstat, the number of dirty bytes per-txg was passed in as
the nreserved value to spa_txg_history_set_io(). This approach did
not work as intended, because the per-txg dirty value is decremented
as data is written out to disk, so it is zero by the time we call
spa_txg_history_set_io(). To fix this, save the number of dirty
bytes before calling spa_sync(), and pass this value in to
spa_txg_history_set_io().
Also, since the name "nreserved" is now a misnomer, the column
heading is now labeled "ndirty".
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1696
When transitioning current open TXG into QUIESCE state and opening
a new one txg_quiesce() calls gethrtime():
- to mark the birth time of the new TXG
- to record the SPA txg history kstat
- implicitely inside spa_txg_history_add()
These timestamps are practically the same, so that the first one
can be used instead of the other two. The only visible difference
is that inside spa_txg_history_add() the time spent in kmem_zalloc()
will be counted towards the opened TXG.
Since at this point the new TXG already exists (tx->tx_open_txg
has been already incremented) it is actually a correct accounting.
In any case this extra work is only happening when spa_txg_history
kstat is activated (i.e. zfs_txg_history > 0) and doesn't affect
the normal processing in any way.
Signed-off-by: Cyril Plisko <cyril.plisko@mountall.com>
Issue #2075
In several cases when digging into kstats we can found two txgs
in SYNC state, e.g.
txg birth state nreserved nread nwritten ...
985452 258127184872561 C 0 373948416 2376272384 ...
985453 258129016180616 C 0 378173440 28793344 ...
985454 258129016271523 S 0 0 0 ...
985455 258130864245986 S 0 0 0 ...
985456 258130867458851 O 0 0 0 ...
However only first txg (985454) is really syncing at this moment.
The other one (985455) marked as SYNCED is actually in a post-QUIESCED
state and waiting to start sync. So, the new TXG_STATE_WAIT_FOR_SYNC
state between TXG_STATE_QUIESCED and TXG_STATE_SYNCED was added to
reveal this situation.
txg birth state nreserved nread nwritten ...
1086896 235261068743969 C 0 163577856 8437248 ...
1086897 235262870830801 C 0 280625152 822594048 ...
1086898 235264172219064 S 0 0 0 ...
1086899 235264936134407 W 0 0 0 ...
1086900 235264936296156 O 0 0 0 ...
Signed-off-by: Igor Lvovsky <ilvovsky@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2075
3537 want pool io kstats
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Sa?o Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Gordon Ross <gwr@nexenta.com>
References:
http://www.illumos.org/issues/3537illumos/illumos-gate@c3a6601
Ported by: Cyril Plisko <cyril.plisko@mountall.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Porting Notes:
1. The patch was restructured to take advantage of the existing
spa statistics infrastructure. To accomplish this the kstat
was moved in to spa->io_stats and the init/destroy code moved
to spa_stats.c.
2. The I/O kstat was simply named <pool> which conflicted with the
pool directory we had already created. Therefore it was renamed
to <pool>/io
3. An update handler was added to allow the kstat to be zeroed.
This change adds a new kstat to gain some visibility into the
amount of time spent in each call to dmu_tx_assign. A histogram
is exported via the new dmu_tx_assign file. The information
contained in this histogram is the frequency dmu_tx_assign
took to complete given an interval range.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This change is an attempt to add visibility in to how txgs are being
formed on a system, in real time. To do this, a list was added to the
in memory SPA data structure for a pool, with each element on the list
corresponding to txg. These entries are then exported through the kstat
interface, which can then be interpreted in userspace.
For each txg, the following information is exported:
* Unique txg number (uint64_t)
* The time the txd was born (hrtime_t)
(*not* wall clock time; relative to the other entries on the list)
* The current txg state ((O)pen/(Q)uiescing/(S)yncing/(C)ommitted)
* The number of reserved bytes for the txg (uint64_t)
* The number of bytes read during the txg (uint64_t)
* The number of bytes written during the txg (uint64_t)
* The number of read operations during the txg (uint64_t)
* The number of write operations during the txg (uint64_t)
* The time the txg was closed (hrtime_t)
* The time the txg was quiesced (hrtime_t)
* The time the txg was synced (hrtime_t)
Note that while the raw kstat now stores relative hrtimes for the
open, quiesce, and sync times. Those relative times are used to
calculate how long each state took and these deltas and printed by
output handlers.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This change is an attempt to add visibility into the arc_read calls
occurring on a system, in real time. To do this, a list was added to the
in memory SPA data structure for a pool, with each element on the list
corresponding to a call to arc_read. These entries are then exported
through the kstat interface, which can then be interpreted in userspace.
For each arc_read call, the following information is exported:
* A unique identifier (uint64_t)
* The time the entry was added to the list (hrtime_t)
(*not* wall clock time; relative to the other entries on the list)
* The objset ID (uint64_t)
* The object number (uint64_t)
* The indirection level (uint64_t)
* The block ID (uint64_t)
* The name of the function originating the arc_read call (char[24])
* The arc_flags from the arc_read call (uint32_t)
* The PID of the reading thread (pid_t)
* The command or name of thread originating read (char[16])
From this exported information one can see, in real time, exactly what
is being read, what function is generating the read, and whether or not
the read was found to be already cached.
There is still some work to be done, but this should serve as a good
starting point.
Specifically, dbuf_read's are not accounted for in the currently
exported information. Thus, a follow up patch should probably be added
to export these calls that never call into arc_read (they only hit the
dbuf hash table). In addition, it might be nice to create a utility
similar to "arcstat.py" to digest the exported information and display
it in a more readable format. Or perhaps, log the information and allow
for it to be "replayed" at a later time.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2882 implement libzfs_core
2883 changing "canmount" property to "on" should not always remount dataset
2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>
References:
https://www.illumos.org/issues/2882https://www.illumos.org/issues/2883https://www.illumos.org/issues/2900illumos/illumos-gate@4445fffbbb
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1293
Porting notes:
WARNING: This patch changes the user/kernel ABI. That means that
the zfs/zpool utilities built from master are NOT compatible with
the 0.6.2 kernel modules. Ensure you load the matching kernel
modules from master after updating the utilities. Otherwise the
zfs/zpool commands will be unable to interact with your pool and
you will see errors similar to the following:
$ zpool list
failed to read pool configuration: bad address
no pools available
$ zfs list
no datasets available
Add zvol minor device creation to the new zfs_snapshot_nvl function.
Remove the logging of the "release" operation in
dsl_dataset_user_release_sync(). The logging caused a null dereference
because ds->ds_dir is zeroed in dsl_dataset_destroy_sync() and the
logging functions try to get the ds name via the dsl_dataset_name()
function. I've got no idea why this particular code would have worked
in Illumos. This code has subsequently been completely reworked in
Illumos commit 3b2aab1 (3464 zfs synctask code needs restructuring).
Squash some "may be used uninitialized" warning/erorrs.
Fix some printf format warnings for %lld and %llu.
Apply a few spa_writeable() changes that were made to Illumos in
illumos/illumos-gate.git@cd1c8b8 as part of the 3112, 3113, 3114 and
3115 fixes.
Add a missing call to fnvlist_free(nvl) in log_internal() that was added
in Illumos to fix issue 3085 but couldn't be ported to ZoL at the time
(zfsonlinux/zfs@9e11c73) because it depended on future work.
3329 spa_sync() spends 10-20% of its time in spa_free_sync_cb()
3330 space_seg_t should have its own kmem_cache
3331 deferred frees should happen after sync_pass 1
3335 make SYNC_PASS_* constants tunable
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Eric Schrock <eric.schrock@delphix.com>
References:
illumos/illumos-gate@01f55e48fbhttps://www.illumos.org/issues/3329https://www.illumos.org/issues/3330https://www.illumos.org/issues/3331https://www.illumos.org/issues/3335
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>
NOTES: This patch has been reworked from the original in the
following ways to accomidate Linux ZFS implementation
*) Usage of the cyclic interface was replaced by the delayed taskq
interface. This avoids the need to implement new compatibility
code and allows us to rely on the existing taskq implementation.
*) An extern for zfs_txg_synctime_ms was added to sys/dsl_pool.h
because declaring externs in source files as was done in the
original patch is just plain wrong.
*) Instead of panicing the system when the deadman triggers a
zevent describing the blocked vdev and the first pending I/O
is posted. If the panic behavior is desired Linux provides
other generic methods to panic the system when threads are
observed to hang.
*) For reference, to delay zios by 30 seconds for testing you can
use zinject as follows: 'zinject -d <vdev> -D30 <pool>'
References:
illumos/illumos-gate@283b84606bhttps://www.illumos.org/issues/3246
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1396
2619 asynchronous destruction of ZFS file systems
2747 SPA versioning with zfs feature flags
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>
References:
illumos/illumos-gate@53089ab7c8illumos/illumos-gate@ad135b5d64
illumos changeset: 13700:2889e2596bd6
https://www.illumos.org/issues/2619https://www.illumos.org/issues/2747
NOTE: The grub specific changes were not ported. This change
must be made to the Linux grub packages.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.
* The txg_sync thread
* The zvol write/discard threads
* The zpl_putpage() VFS callback
This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages. If a lock is held over this operation the potential exists to
deadlock the system. To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.
Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread. However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA. This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.
This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:
21ade34 Disable direct reclaim for z_wr_* threads
cfc9a5c Fix zpl_writepage() deadlock
eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com>
Reviewed by: Alexander Eremin <alexander.eremin@nexenta.com>
Reviewed by: Alexander Stetsenko <ams@nexenta.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
https://www.illumos.org/issues/1748
This commit modifies the user to kernel space ioctl ABI. Extra
care should be taken when updating to ensure both the kernel
modules and utilities are updated. If only the user space
component is updated both the 'zpool events' command and the
'zpool reguid' command will not work until the kernel modules
are updated.
Ported by: Martin Matuska <martin@matuska.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#665
Today zfs tries to allocate blocks evenly across all devices.
This means when devices are imbalanced zfs will use lots of
CPU searching for space on devices which tend to be pretty
full. It should instead fail quickly on the full LUNs and
move onto devices which have more availability.
Reviewed by: Eric Schrock <Eric.Schrock@delphix.com>
Reviewed by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: Adam Leventhal <Adam.Leventhal@delphix.com>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Gordon Ross <gwr@nexenta.com>
Approved by: Garrett D'Amore <garrett@nexenta.com>
References to Illumos issue and patch:
- https://www.illumos.org/issues/510
- https://github.com/illumos/illumos-gate/commit/5ead3ed965
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #340
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.