* Remove 'zfs snap' from zfs help message (OpenZFS sync)
* Update zfs(8) to suggest 'snap' can be used as an alias for 'snapshot'
* Enforce 80 columns limit in help messages
* Remove zfs_disable_dup_eviction from zfs-module-parameters(5)
* Expose zfs_scan_max_ext_gap as a kernel module parameter.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#7087
The intent of this patch is extend the existing deadman code
such that it's flexible enough to be used by both ztest and
on production systems. The proposed changes include:
* Added a new `zfs_deadman_failmode` module option which is
used to dynamically control the behavior of the deadman. It's
loosely modeled after, but independant from, the pool failmode
property. It can be set to wait, continue, or panic.
* wait - Wait for the "hung" I/O (default)
* continue - Attempt to recover from a "hung" I/O
* panic - Panic the system
* Added a new `zfs_deadman_ziotime_ms` module option which is
analogous to `zfs_deadman_synctime_ms` except instead of
applying to a pool TXG sync it applies to zio_wait(). A
default value of 300s is used to define a "hung" zio.
* The ztest deadman thread has been re-enabled by default,
aligned with the upstream OpenZFS code, and then extended
to terminate the process when it takes significantly longer
to complete than expected.
* The -G option was added to ztest to print the internal debug
log when a fatal error is encountered. This same option was
previously added to zdb in commit fa603f82. Update zloop.sh
to unconditionally pass -G to obtain additional debugging.
* The FM_EREPORT_ZFS_DELAY event which was previously posted
when the deadman detect a "hung" pool has been replaced by
a new dedicated FM_EREPORT_ZFS_DEADMAN event.
* The proposed recovery logic attempts to restart a "hung"
zio by calling zio_interrupt() on any outstanding leaf zios.
We may want to further restrict this to zios in either the
ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages.
Calling zio_interrupt() is expected to only be useful for
cases when an IO has been submitted to the physical device
but for some reasonable the completion callback hasn't been
called by the lower layers. This shouldn't be possible but
has been observed and may be caused by kernel/driver bugs.
* The 'zfs_deadman_synctime_ms' default value was reduced from
1000s to 600s.
* Depending on how ztest fails there may be no cache file to
move. This should not be considered fatal, collect the logs
which are available and carry on.
* Add deadman test cases for spa_deadman() and zio_wait().
* Increase default zfs_deadman_checktime_ms to 60s.
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6999
Authored by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Porting Notes:
- Brought #defines in eventdefs.h in line with ZFS on Linux format.
- Updated zfs-events.5 with the new events.
OpenZFS-issue: https://www.illumos.org/issues/8959
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c862b93eeaCloses#7049
Parameter was removed in d3c2ae1c08
(OpenZFS 6950 - ARC should cache compressed data)
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#7043
Replace "percent" with "%", add bold to default values.
Reviewed-by: bunder2015 <omfgbunder@gmail.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#7018
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: John Kennedy <jwk404@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>
PROBLEM
=======
There's a race condition that exists if `zil_free_lwb` races with either
`zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`.
Here's an example panic due to this bug:
> ::status
debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40
operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc)
image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513
panic message:
BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference
dump content: kernel pages only
> $c
zio_shrink+0x12()
zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20)
zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8)
zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8)
zil_commit+0x80(ffffff03dcd15cc0, 9a9)
zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
write+0x250(42, fffffd7ff4832000, 2000)
sys_syscall+0x177()
If there's an outstanding lwb that's in `zil_commit_waiter_timeout`
waiting to timeout, waiting on it's waiter's CV, we must be sure not to
call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB
may be freed and can result in a use-after-free situation where the
stale lwb pointer stored in the `zil_commit_waiter_t` structure of the
thread waiting on the waiter's CV is used.
A similar situation can occur if an lwb is issued to disk, and thus in
the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the
disk is servicing that lwb. In this situation, the lwb will be freed by
`zil_free_lwb`, which will result in a use-after-free situation when the
lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called.
This race condition is prevented in `zil_close` by calling `zil_commit`
before `zil_free_lwb` is called, which will ensure all outstanding (i.e.
all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states)
reach the `LWB_STATE_DONE` state before the lwb's are freed
(`zil_commit` will not return untill all the lwb's are
`LWB_STATE_DONE`).
Further, this race condition is prevented in `zil_sync` by only calling
`zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set.
All lwb's not in the `LWB_STATE_DONE` state will have a non-null value
for this pointer; the pointer is only cleared in
`zil_lwb_flush_vdevs_done`, at which point the lwb's state will be
changed to `LWB_STATE_DONE`.
This race *is* present in `zil_suspend`, leading to this bug.
At first glance, it would appear as though this would not be true
because `zil_suspend` will call `zil_commit`, just like `zil_close`, but
the problem is that `zil_suspend` will set the zilog's `zl_suspend`
field prior to calling `zil_commit`. Further, in `zil_commit`, if
`zl_suspend` is set, `zil_commit` will take a special branch of logic
and use `txg_wait_synced` instead of performing the normal `zil_commit`
logic.
This call to `txg_wait_synced` might be good enough for the data to
reach disk safely before it returns, but it does not ensure that all
outstanding lwb's reach the `LWB_STATE_DONE` state before it returns.
This is because, if there's an lwb "stuck" in
`zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will
maintain a non-null value for it's `lwb_buf` field and thus `zil_sync`
will not free that lwb. Thus, even though the lwb's data is already on
disk, the lwb will be left lingering, waiting on the CV, and will
eventually timeout and be issued to disk even though the write is
unnecessary.
So, after `zil_commit` is called from `zil_suspend`, we incorrectly
assume that there are not outstanding lwb's, and proceed to free all
lwb's found on the zilog's lwb list. As a result, we free the lwb that
will later be used `zil_commit_waiter_timeout`.
SOLUTION
========
The solution to this, is to ensure all outstanding lwb's complete before
calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch
accomplishes this goal by forcing the normal `zil_commit` logic when
called from `zil_sync`.
Now, `zil_suspend` will call `zil_commit_impl` which will always use the
normal logic of waiting/issuing lwb's to disk before it returns. As a
result, any lwb's outstanding when `zil_commit_impl` is called will be
guaranteed to reach the `LWB_STATE_DONE` state by the time it returns.
Further, no new lwb's will be created via `zil_commit` since the zilog's
`zl_suspend` flag will be set. This will force all new callers of
`zil_commit` to use `txg_wait_synced` instead of creating and issuing
new lwb's.
Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is
called will be in the `LWB_STATE_DONE` state, and we'll avoid this race
condition.
OpenZFS-issue: https://www.illumos.org/issues/8909
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8dCloses#6940
This extends vdev_id to support a new slot type, ses, for SCSI Enclosure
Services. With slot type ses, the disk slot numbers are determined by
using the device slot number reported by sg_ses for the device with
matching SAS address, found by querying all available enclosures.
This is primarily of use on systems with a deficient driver omitting
support for bay_identifier in /sys/devices. In my testing, I found that
the existing slot types of port and id were not stable across disk
replacement, so an alternative was required.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Simon Guest <simon.guest@tesujimath.org>
Closes#6956
Currently, scrubs and resilvers can take an extremely
long time to complete. This is largely due to the fact
that zfs scans process pools in logical order, as
determined by each block's bookmark. This makes sense
from a simplicity perspective, but blocks in zfs are
often scattered randomly across disks, particularly
due to zfs's copy-on-write mechanisms.
This patch improves performance by splitting scrubs
and resilvers into a metadata scanning phase and an IO
issuing phase. The metadata scan reads through the
structure of the pool and gathers an in-memory queue
of I/Os, sorted by size and offset on disk. The issuing
phase will then issue the scrub I/Os as sequentially as
possible, greatly improving performance.
This patch also updates and cleans up some of the scan
code which has not been updated in several years.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Authored-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Authored-by: Alek Pinchuk <apinchuk@datto.com>
Authored-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#3625Closes#6256
Update zfs module parameters man5 with missing parameter details
for multiple tunings.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Alex Braunegg <alex.braunegg@gmail.com>
Closes#6785
Update spl module parameters man5 with the following missing parameter
details for spl_panic_halt.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alex Braunegg <alex.braunegg@gmail.com>
Closes#664
8558 lwp_create() returns EAGAIN on system with more than 80K ZFS filesystems
On a system with more than 80K ZFS filesystems, we've seen cases
where lwp_create() will start to fail by returning EAGAIN. The
problem being, for each of those 80K ZFS filesystems, a taskq will
be created for each dataset as part of the ZIL for each dataset.
Porting Notes:
- The new nomem taskq kstat was dropped.
- Added module options and documentation for new tunings
zfs_zil_clean_taskq_nthr_pct, zfs_zil_clean_taskq_minalloc,
zfs_zil_clean_taskq_maxalloc, and zfs_sync_taskq_batch_pct.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/8558
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/216d772
8602 remove unused "dp_early_sync_tasks" field from "dsl_pool" structure
Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/8602
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2bcb545Closes#6779
It's often useful to have access to txg history for debugging
purposes. This patch changes the default from 0 to 100 TXGs
worth of history preserved.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#6691
With HPE hardware and hpsa-driven SAS adapters, only a single phy is
reported, but no individual per-port phys (ie. no phy* entry below
port_dir), which breaks topology detection in the current sas_handler
code. Instead, slot information can be derived directly from the port
number. This change implements a new slot keyword "port" similar to
"id" and "lun", and assumes a default phy/port of 0 if no individual
phy entry can be found. It allows to use the "sas_direct" topology with
current HPE Dxxxx and Apollo 45xx JBODs.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Daniel Kobras <d.kobras@science-computing.de>
Closes#6484
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
* ztest.1 man page: fix typo
* zfs-module-parameters.5 man page: fix grammar
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Closes#6492
There is no '.sh' macro in troff/groff/man, only '.SH' for section
headers. I assume .sp for a line break was intended here like
in the rest of the man page.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#643
Redefine the SET_ERROR macro in terms of __dprintf() so the error
return codes get logged as both tracepoint events (if tracepoints are
enabled) and as ZFS debug log entries. This also allows us to use
the same definition of SET_ERROR() in kernel and user space.
Define a new debug flag ZFS_DEBUG_SET_ERROR=512 that may be bitwise
or'd into zfs_flags. Setting this flag enables both dprintf() and
SET_ERROR() messages in the debug log. That is, setting
ZFS_DEBUG_SET_ERROR and ZFS_DEBUG_DPRINTF|ZFS_DEBUG_SET_ERROR are
equivalent (this was done for sake of simplicity). Leaving
ZFS_DEBUG_SET_ERROR unset suppresses the SET_ERROR() messages which
helps avoid cluttering up the logs.
To enable SET_ERROR() logging, run:
echo 1 > /sys/module/zfs/parameters/zfs_dbgmsg_enable
echo 512 > /sys/module/zfs/parameters/zfs_flags
Remove the zfs_set_error_class tracepoints event class since
SET_ERROR() now uses __dprintf(). This sacrifices a bit of
granularity when selecting individual tracepoint events to enable but
it makes the code simpler.
Include file, function, and line number information in debug log
entries. The information is now added to the message buffer in
__dprintf() and as a result the zfs_dprintf_class tracepoints event
class was changed from a 4 parameter interface to a single parameter.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#6400
The userobj_accounting feature described in the zpool-features.5
man page was incorrectly indented. Fix it.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6402
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#745Closes#6279
The volmode property may be set to control the visibility of ZVOL
block devices.
This allow switching ZVOL between three modes:
full - existing fully functional behaviour (default)
dev - hide partitions on ZVOL block devices
none - not exposing volumes outside ZFS
Additionally the new zvol_volmode module parameter can be used to
control the default behaviour.
This functionality can be used, for instance, on "backup" pools to
avoid cluttering /dev with unneeded zd* devices.
Original-patch-by: mav <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
FreeBSD-commit: https://github.com/freebsd/freebsd/commit/dd28e6bbCloses#1796Closes#3438Closes#6233
In arc_evict_state() we start pruning when arc_dnode_size >
arc_dnode_limit, i.e. arc_dnode_limit is a ceiling rather than a
floor.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chris Dunlop <chris@onthe.net.au>
Closes#6228
- After some ZIL changes 6 years ago zil_slog_limit got partially broken
due to zl_itx_list_sz not updated when async itx'es upgraded to sync.
Actually because of other changes about that time zl_itx_list_sz is not
really required to implement the functionality, so this patch removes
some unneeded broken code and variables.
- Original idea of zil_slog_limit was to reduce chance of SLOG abuse by
single heavy logger, that increased latency for other (more latency critical)
loggers, by pushing heavy log out into the main pool instead of SLOG. Beside
huge latency increase for heavy writers, this implementation caused double
write of all data, since the log records were explicitly prepared for SLOG.
Since we now have I/O scheduler, I've found it can be much more efficient
to reduce priority of heavy logger SLOG writes from ZIO_PRIORITY_SYNC_WRITE
to ZIO_PRIORITY_ASYNC_WRITE, while still leave them on SLOG.
- Existing ZIL implementation had problem with space efficiency when it
has to write large chunks of data into log blocks of limited size. In some
cases efficiency stopped to almost as low as 50%. In case of ZIL stored on
spinning rust, that also reduced log write speed in half, since head had to
uselessly fly over allocated but not written areas. This change improves
the situation by offloading problematic operations from z*_log_write() to
zil_lwb_commit(), which knows real situation of log blocks allocation and
can split large requests into pieces much more efficiently. Also as side
effect it removes one of two data copy operations done by ZIL code WR_COPIED
case.
- While there, untangle and unify code of z*_log_write() functions.
Also zfs_log_write() alike to zvol_log_write() can now handle writes crossing
block boundary, that may also improve efficiency if ZPL is made to do that.
Sponsored by: iXsystems, Inc.
Authored by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/7578
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aeb13acCloses#6191
Change the default ZVOL behavior so requests are handled asynchronously.
This behavior is functionally the same as in the zfs-0.6.4 release.
Reviewed-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #5902
When multiple filesystems are in use, memory pressure causes arc_cache
to collapse to a minimum. Allow arc_cache to maintain proportional size
even when hit rates are disproportionate. We do this only via evictable
size from the kernel shrinker, thus it's only in effect under memory
pressure.
AKAMAI: zfs: CR 3695072
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Debabrata Banerjee <dbanerje@akamai.com>
Closes#6035
Commit 37f9dac removed the zvol_taskq for processing zvol requests.
This was removed as part of switching to make_request_fn and was
motivated by a concern at the time over dispatch latency.
However, this also made all bio request synchronous, and caused
serious performance issues as the bio submitter would wait for
every bio it submitted, effectively making the IO depth 1.
This patch reinstate zvol_taskq, and to make sure overlapped I/Os
are ordered properly, we take range lock in zvol_request, and pass
it along with bio to the I/O functions zvol_{write,discard,read}.
In order to facilitate benchmarks a zvol_request_sync module
option was added to switch between sync and async request handling.
For the moment, the default behavior is synchronous but this is
likely to change pending additional testing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes#5824
It was documented as being related to zfs_vdev_async_max_active
when it is actually related to zfs_vdev_async_write_max_active.
Also, expand the documentation to describe the allocation throttle
which was introduced as part of OpenZFS 7090 in 3dfb57a.
Reviewed-by: Richard Yao <ryao@gentoo.org>
Reviewed-by: Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#6064
Resilver operations frequently cause only a small amount of dirty data
to be written to disk at a time, resulting in the IO scheduler to only
issue 1 write at a time to the resilvering disk. When it is rotational
media the drive will often travel past the next sector to be written
before receiving a write command from ZFS, significantly delaying the
write of the next sector.
Raise zfs_vdev_async_write_min_active so that drives are kept fed
during resilvering.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Issue #4825Closes#5926
Force flushing of txg's can be painfully slow when competing for disk
IO, since this is a process meant to execute asynchronously. Optimize
this path via allowing data/hole seeking if the file is clean, but if
dirty fall back to old logic. This is a compromise to disabling the
feature entirely.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Debabrata Banerjee <dbanerje@akamai.com>
Closes#4306Closes#5962
Authored by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/2932
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/810e43bCloses#5984Closes#5216
Update documentation in zfs-module-parameters.5 for new
parameter "zfs_qat_disable" which was introduced by #5846.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Weigang Li <weigang.li@intel.com>
Closes#5914
The global tunable zfs_arc_num_sublists_per_state is used by the ARC and
the dbuf cache, and other users are planned. We should change this
tunable to be common to all multilists. This tuning may be overridden
on a per-multilist basis.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#5764
When the code was added this tunable was not exposed via module params. Also it
was not documented. This patch changes the type from a uint32 to a ulong as
done with other percentage tunables and also documents it in the
zfs-module-parameters man page.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: David Quigley <david.quigley@intel.com>
Closes#5750
The deadman in ZoL didn't behave quite as it did in upstream
OpenZFS. In addition to the 2 purposes for which OpenZFS used the
zfs_deadman_synctime_ms parameter, ZoL also used it to determine how
frequently the deadman would fire once it has been triggered.
This patch adds the zfs_deadman_checktime_ms parameter to control how
frequently the subsequent checks are performed.
The deadman is now disabled for suspended pools.
As had been the case, unlike upstream OpenZFS, ZoL will not panic when
a hung IO is detected.
The module parameter documentation has been upated to include the new
parameter and to better describe the operation of the deadmen.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#5695
fB -> \fB in zpool.8 (Properties -> cachefile)
\fN -> \fB in zfs-module-parameters.5 (zfs_dirty_data_max_max_percent)
Three | -> \fR|\fI fixes for arguments of diff and inherit in zfs.8.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Haakan T Johansson <f96hajo@chalmers.se>
Closes#5645
This change introduces a new weighting algorithm to improve
metaslab selection. The new weighting algorithm relies on the
SPACEMAP_HISTOGRAM feature. As a result, the metaslab weight
now encodes the type of weighting algorithm used (size-based
vs segment-based).
Porting Notes: The metaslab allocation tracing code is conditionally
removed on linux (dependent on mdb debugger).
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Pavel Zakharov pavel.zakharov@delphix.com
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Don Brady <don.brady@intel.com>
OpenZFS-issue: https://www.illumos.org/issues/7303
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d5190931bdCloses#5404
Enable zio_dva_throttle_enabled=1 by default. Subsequent
testing has been unable to reproduce the suspected regression.
Tested-by: kernelOfTruth kerneloftruth@gmail.com
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf behlendorf1@llnl.gov
Reverts #5335Closes#5289Closes#5457
To prevent holding tq_lock for too long.
Before zfsonlinux/zfs@8e71ab9, hogging delay tasks and cat /proc/spl/taskq
would easily cause a lockup. While that bug has been fixed. It's probably
still a good idea to do this just in case task lists grow too large.
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes#586
Bold and Normal codes were mixed up in a few places resulting in
bad highlighting.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#5397
avx512f should work on all AVX512 hardware, since it only uses
Foundation instructions.
avx512bw should be faster on hardware supporting the AVW512BW
extension. We can use full-width pshufb (instead of relying on the 256
bits AVX2 pshufb). As a side-effect, the code is also unrolled more.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Jinshan Xiong <jinshan.xiong@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.github@dolbeau.name>
Closes#5219
Until it can be determined definitively that a performance
regression wasn't introduced accidentally by 3dfb57a this
functionality is being disabled by default. It can be re-
enabled by setting zio_dva_throttle_enabled=1.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5335
Issue #5289
This is not useful on micro-architecture with a weak NEON
implementation (only 64 bits); the native version is slower &
the byteswap barely faster than scalar. On A53 or A57, it's
a small improvement on scalar but OK for byteswap.
Results from an A53 system:
0 0 0x01 -1 0 1499068294333000 1499101101878000
implementation native byteswap
scalar 1008227510 755880264
aarch64_neon 1198098720 1044818671
fastest aarch64_neon aarch64_neon
Results from a A57 system:
0 0 0x01 -1 0 4407214734807033 4407233933777404
implementation native byteswap
scalar 2302071241 1124873346
aarch64_neon 2542214946 2245570352
fastest aarch64_neon aarch64_neon
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes#5248
OpenZFS 7090 - zfs should throttle allocations
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
Ported-by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
When write I/Os are issued, they are issued in block order but the ZIO
pipeline will drive them asynchronously through the allocation stage
which can result in blocks being allocated out-of-order. It would be
nice to preserve as much of the logical order as possible.
In addition, the allocations are equally scattered across all top-level
VDEVs but not all top-level VDEVs are created equally. The pipeline
should be able to detect devices that are more capable of handling
allocations and should allocate more blocks to those devices. This
allows for dynamic allocation distribution when devices are imbalanced
as fuller devices will tend to be slower than empty devices.
The change includes a new pool-wide allocation queue which would
throttle and order allocations in the ZIO pipeline. The queue would be
ordered by issued time and offset and would provide an initial amount of
allocation of work to each top-level vdev. The allocation logic utilizes
a reservation system to reserve allocations that will be performed by
the allocator. Once an allocation is successfully completed it's
scheduled on a given top-level vdev. Each top-level vdev maintains a
maximum number of allocations that it can handle (mg_alloc_queue_depth).
The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth)
are distributed across the top-level vdevs metaslab groups and round
robin across all eligible metaslab groups to distribute the work. As
top-levels complete their work, they receive additional work from the
pool-wide allocation queue until the allocation queue is emptied.
OpenZFS-issue: https://www.illumos.org/issues/7090
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7Closes#5258
Porting Notes:
- Maintained minimal stack in zio_done
- Preserve linux-specific io sizes in zio_write_compress
- Added module params and documentation
- Updated to use optimize AVL cmp macros
The following new test cases need to have execute permissions set:
userquota/groupspace_003_pos.ksh
userquota/userquota_013_pos.ksh
userquota/userspace_003_pos.ksh
upgrade/upgrade_userobj_001_pos.ksh
upgrade/setup.ksh
upgrade/cleanup.ksh
The following source files accidentally were marked executable:
lib/libzpool/kernel.c
lib/libshare/nfs.c
lib/libzfs/libzfs_dataset.c
lib/libzfs/libzfs_util.c
tests/zfs-tests/cmd/rm_lnkcnt_zero_file/rm_lnkcnt_zero_file.c
tests/zfs-tests/cmd/dir_rd_update/dir_rd_update.c
cmd/zed/zed_exec.c
module/icp/core/kcf_sched.c
module/zfs/dsl_pool.c
module/zfs/arc.c
module/nvpair/nvpair.c
man/man5/zfs-module-parameters.5
Reviewed-by: GeLiXin <ge.lixin@zte.com.cn>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5241
This patch tracks dnode usage for each user/group in the
DMU_USER/GROUPUSED_OBJECT ZAPs. ZAP entries dedicated to dnode
accounting have the key prefixed with "obj-" followed by the UID/GID
in string format (as done for the block accounting).
A new SPA feature has been added for dnode accounting as well as
a new ZPL version. The SPA feature must be enabled in the pool
before upgrading the zfs filesystem. During the zfs version upgrade,
a "quotacheck" will be executed by marking all dnode as dirty.
ZoL-bug-id: https://github.com/zfsonlinux/zfs/issues/3500
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Johann Lombardi <johann.lombardi@intel.com>
Authored by: ilovezfs <ilovezfs@icloud.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported by: Tony Hutter <hutter2@llnl.gov>
In any pool without the extensible dataset feature flag already enabled,
creating a dataset with dedup set to use one of the new checksums would
result in the following panic as soon as any data was added:
panic[cpu0]/thread=ffffff0006761c40: feature_get_refcount(spa, feature,
&refcount) != 48 (0x30 != 0x30), file: ../../common/fs/zfs/zfeature.c
line 390
Inpsection showed that feature->fi_feature was 7, which is the value of
SPA_FEATURE_EXTENSIBLE_DATASET in the spa_feature enum. This commit
adds extensible dataset as a dependency for the sha512, edonr, and skein
feature flags, which prevents the panic.
OpenZFS-issue: https://www.illumos.org/issues/6585
OpenZFS-commit: 892586e8a1
Porting Notes:
This code was originally from Illumos, but I actually ported it from:
openzfsonosx/zfs@b62a652
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported by: Tony Hutter <hutter2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/4185
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee
Porting Notes:
This code is ported on top of the Illumos Crypto Framework code:
b5e030c8db
The list of porting changes includes:
- Copied module/icp/include/sha2/sha2.h directly from illumos
- Removed from module/icp/algs/sha2/sha2.c:
#pragma inline(SHA256Init, SHA384Init, SHA512Init)
- Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since
it now takes in an extra parameter.
- Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c
- Added skein & edonr to libicp/Makefile.am
- Added sha512.S. It was generated from sha512-x86_64.pl in Illumos.
- Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument.
- In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section
to not #include the non-existant endian.h.
- In skein_test.c, renane NULL to 0 in "no test vector" array entries to get
around a compiler warning.
- Fixup test files:
- Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>,
- Remove <note.h> and define NOTE() as NOP.
- Define u_longlong_t
- Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p"
- Rename NULL to 0 in "no test vector" array entries to get around a
compiler warning.
- Remove "for isa in $($ISAINFO); do" stuff
- Add/update Makefiles
- Add some userspace headers like stdio.h/stdlib.h in places of
sys/types.h.
- EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules.
- Update scripts/zfs2zol-patch.sed
- include <sys/sha2.h> in sha2_impl.h
- Add sha2.h to include/sys/Makefile.am
- Add skein and edonr dirs to icp Makefile
- Add new checksums to zpool_get.cfg
- Move checksum switch block from zfs_secpolicy_setprop() to
zfs_check_settable()
- Fix -Wuninitialized error in edonr_byteorder.h on PPC
- Fix stack frame size errors on ARM32
- Don't unroll loops in Skein on 32-bit to save stack space
- Add memory barriers in sha2.c on 32-bit to save stack space
- Add filetest_001_pos.ksh checksum sanity test
- Add option to write psudorandom data in file_write utility
This re-use the framework established for SSE2, SSSE3 and
AVX2. However, GCC is using FP registers on Aarch64, so
unlike SSE/AVX2 we can't rely on the registers being left alone
between ASM statements. So instead, the NEON code uses
C variables and GCC extended ASM syntax. Note that since
the kernel explicitly disable vector registers, they
have to be locally re-enabled explicitly.
As we use the variable's number to define the symbolic
name, and GCC won't allow duplicate symbolic names,
numbers have to be unique. Even when the code is not
going to be used (e.g. the case for 4 registers when
using the macro with only 2). Only the actually used
variables should be declared, otherwise the build
will fails in debug mode.
This requires the replacement of the XOR(X,X) syntax
by a new ZERO(X) macro, which does the same thing but
without repeating the argument. And perhaps someday
there will be a machine where there is a more efficient
way to zero a register than XOR with itself. This affects
scalar, SSE2, SSSE3 and AVX2 as they need the new macro.
It's possible to write faster implementations (different
scheduling, different unrolling, interleaving NEON and
scalar, ...) for various cores, but this one has the
advantage of fitting in the current state of the code,
and thus is likely easier to review/check/merge.
The only difference between aarch64-neon and aarch64-neonx2
is that aarch64-neonx2 unroll some functions some more.
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes#4801
Enable ignore_hole_birth by default until all known hole birth bugs
have been resolved and relevant test cases added.
Reviewed-by: Boris Protopopov <boris.protopopov@actifio.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4809Closes#5099
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>
This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.
I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.
Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.
Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.
When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.
OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
ARC will evict meta buffers that exceed the arc_meta_limit. Before a further
investigating on whether we should take special protection on meta buffers,
this tunable make arc_meta_limit adjustable for different workloads.
People can set zfs_arc_meta_limit_percent to any value while insmod zfs.ko,
so some range check is added to guarantee a suitable arc_meta_limit.
Suggested by Tim Chase, zfs_arc_dnode_limit is changed to a percent-style
tunable as well.
Signed-off-by: GeLiXin <ge.lixin@zte.com.cn>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4957
Adds a module option which disables the hole_birth optimization
which has been responsible for several recent bugs, including
issue #4050.
Original-patch: https://gist.github.com/pcd1193182/2c0cd47211f3aee623958b4698836c48
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4833
Metadata-intensive workloads can cause the ARC to become permanently
filled with dnode_t objects as they're pinned by the VFS layer.
Subsequent data-intensive workloads may only benefit from about
25% of the potential ARC (arc_c_max - arc_meta_limit).
In order to help track metadata usage more precisely, the other_size
metadata arcstat has replaced with dbuf_size, dnode_size and bonus_size.
The new zfs_arc_dnode_limit tunable, which defaults to 10% of
zfs_arc_meta_limit, defines the minimum number of bytes which is desirable
to be consumed by dnodes. Attempts to evict non-metadata will trigger
async prune tasks if the space used by dnodes exceeds this limit.
The new zfs_arc_dnode_reduce_percent tunable specifies the amount by
which the excess dnode space is attempted to be pruned as a percentage of
the amount by which zfs_arc_dnode_limit is being exceeded. By default,
it tries to unpin 10% of the dnodes.
The problem of dnode metadata pinning was observed with the following
testing procedure (in this example, zfs_arc_max is set to 4GiB):
- Create a large number of small files until arc_meta_used exceeds
arc_meta_limit (3GiB with default tuning) and arc_prune
starts increasing.
- Create a 3GiB file with dd. Observe arc_mata_used. It will still
be around 3GiB.
- Repeatedly read the 3GiB file and observe arc_meta_limit as before.
It will continue to stay around 3GiB.
With this modification, space for the 3GiB file is gradually made
available as subsequent demands on the ARC are made. The previous behavior
can be restored by setting zfs_arc_dnode_limit to the same value as the
zfs_arc_meta_limit.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4345
Issue #4512
Issue #4773Closes#4858
- Implementation lock replaced with atomic variable
- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`
- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813
- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392
- Minor fixes and cleanups
- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
Builds off of 1eeb4562 (Implementation of AVX2 optimized Fletcher-4)
This commit adds another implementation of the Fletcher-4 algorithm.
It is automatically selected at module load if it benchmarks higher
than all other available implementations.
The module benchmark was also amended to analyze the performance of
the byteswap-ed version of Fletcher-4, as well as the non-byteswaped
version. The average performance of the two is used to select the
the fastest implementation available on the host system.
Adds a pair of fields to an existing zcommon module parameter:
- zfs_fletcher_4_impl (str)
"sse2" - new SSE2 implementation if available
"ssse3" - new SSSE3 implementation if available
Signed-off-by: Tyler J. Stachecki <stachecki.tyler@gmail.com>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4789
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4328
New functionality:
- Preserves existing scalar implementation.
- Adds AVX2 optimized Fletcher-4 computation.
- Fastest routines selected on module load (benchmark).
- Test case for Fletcher-4 added to ztest.
New zcommon module parameters:
- zfs_fletcher_4_impl (str): selects the implementation to use.
"fastest" - use the fastest version available
"cycle" - cycle trough all available impl for ztest
"scalar" - use the original version
"avx2" - new AVX2 implementation if available
Performance comparison (Intel i7 CPU, 1MB data buffers):
- Scalar: 4216 MB/s
- AVX2: 14499 MB/s
See contents of `/sys/module/zcommon/parameters/zfs_fletcher_4_impl`
to get list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Andreas Dilger <andreas.dilger@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4330
Various rewrites to the descriptions of module parameters. Corrects
spelling mistakes, makes descriptions them more user-friendly and
describes some ZFS quirks which should be understood before changing
parameter values.
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4671
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
References:
https://github.com/freebsd/freebsd@5c7a6f5dhttps://github.com/freebsd/freebsd@31b7f68dhttps://github.com/freebsd/freebsd@e186f564
Performance Testing:
https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141
Porting notes:
- The tunables were adjusted to have ZoL-style names.
- The code was modified to use ZoL's vd_nonrot.
- Fixes were done to make cstyle.pl happy
- Merge conflicts were handled manually
- freebsd/freebsd@e186f564bc by my
collegue Andriy Gapon has been included. It applied perfectly, but
added a cstyle regression.
- This replaces 556011dbec entirely.
- A typo "IO'a" has been corrected to say "IO's"
- Descriptions of new tunables were added to man/man5/zfs-module-parameters.5.
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4334
Set a limit for the largest compressed block which can be written
to an L2ARC device. By default this limit is set to 16M so there
is no change in behavior.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#4323
This patch add a module parameter spl_taskq_kick. When writing non-zero value
to it, it will scan all the taskq, if a taskq contains a task pending for more
than 5 seconds, it will be forced to spawn a new thread. This is use as an
emergency recovery from deadlock, not a general solution.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#529
Reintroduce a slightly adapted version of the Illumos logic for
synchronous unlinks. The basic idea here is that only files
smaller than zfs_delete_blocks (20480) blocks should be deleted
synchronously. Unlinking larger files should be handled
asynchronously to minimize impact to the caller.
To accomplish this iput() which is responsible for calling
zfs_znode_delete() on Linux is only called in the delete_now
path. Otherwise zfs_async_iput() is used which allows the
last reference to be dropped by a taskq thread effectively
making the removal asynchronous.
Porting notes:
- Add zfs_delete_blocks module option for performance analysis.
The default value is DMU_MAX_DELETEBLKCNT which is the same
as upstream. Reducing this value means that smaller files
will be unlinked asynchronously like large files.
- All occurrences of zfsvfs changes to zsb.
Ported-by: KernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The spl_kmem_cache_kmem_threads module option was accidentally
omitted from the documentation. Add it.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#512
Adds zio_taskq_batch_pct as an exported module parameter,
allowing users to modify it at module load time.
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4110
Correct some misspelled words and grammatical errors, and remove
trailing white space in the man pages.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4115
When adding a zvol to the system prefetch zvol_prefetch_bytes from the
start and end of the volume. Prefetching these regions of the volume is
desirable because they are likely to be accessed immediately by blkid(8),
the kernel scanning for a partition table, or another task which probes
the devices.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3659
Internally ZFS keeps a small log to facilitate debugging. By default
the log is disabled, to enable it set zfs_dbgmsg_enable=1. The contents
of the log can be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file.
Writing 0 to this proc file clears the log.
$ echo 1 >/sys/module/zfs/parameters/zfs_dbgmsg_enable
$ echo 0 >/proc/spl/kstat/zfs/dbgmsg
$ zpool import tank
$ cat /proc/spl/kstat/zfs/dbgmsg
1 0 0x01 -1 0 2492357525542 2525836565501
timestamp message
1441141408 spa=tank async request task=1
1441141408 txg 70 open pool version 5000; software version 5000/5; ...
1441141409 spa=tank async request task=32
1441141409 txg 72 import pool version 5000; software version 5000/5; ...
1441141414 command: lt-zpool import tank
Note the zfs_dbgmsg() and dprintf() functions are both now mapped to
the same log. As mentioned above the kernel debug log can be accessed
though the /proc/spl/kstat/zfs/dbgmsg kstat. For user space consumers
log messages are immediately written to stdout after applying the
ZFS_DEBUG environment variable.
$ ZFS_DEBUG=on ./cmd/ztest/ztest -V
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#3728
This patch is based on the previous work done by @andrey-ve and
@yshui. It triggers the automount by using kern_path() to traverse
to the known snapshout mount point. Once the snapshot is mounted
NFS can access the contents of the snapshot.
Allowing NFS clients to access to the .zfs/snapshot directory would
normally mean that a root user on a client mounting an export with
'no_root_squash' would be able to use mkdir/rmdir/mv to manipulate
snapshots on the server. To prevent configuration mistakes a
zfs_admin_snapshot module option was added which disables the
mkdir/rmdir/mv functionally. System administators desiring this
functionally must explicitly enable it.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2797Closes#1655Closes#616
Internally, zvols are files exposed through the block device API. This
is intended to reduce overhead when things require block devices.
However, the ZoL zvol code emulates a traditional block device in that
it has a top half and a bottom half. This is an unnecessary source of
overhead that does not exist on any other OpenZFS platform does this.
This patch removes it. Early users of this patch reported double digit
performance gains in IOPS on zvols in the range of 50% to 80%.
Comments in the code suggest that the current implementation was done to
obtain IO merging from Linux's IO elevator. However, the DMU already
does write merging while arc_read() should implicitly merge read IOs
because only 1 thread is permitted to fetch the buffer into ARC. In
addition, commercial ZFSOnLinux distributions report that regular files
are more performant than zvols under the current implementation, and the
main consumers of zvols are VMs and iSCSI targets, which have their own
elevators to merge IOs.
Some minor refactoring allows us to register zfs_request() as our
->make_request() handler in place of the generic_make_request()
function. This eliminates the layer of code that broke IO requests on
zvols into a top half and a bottom half. This has several benefits:
1. No per zvol spinlocks.
2. No redundant IO elevator processing.
3. Interrupts are disabled only when actually necessary.
4. No redispatching of IOs when all taskq threads are busy.
5. Linux's page out routines will properly block.
6. Many autotools checks become obsolete.
An unfortunate consequence of eliminating the layer that
generic_make_request() is that we no longer calls the instrumentation
hooks for block IO accounting. Those hooks are GPL-exported, so we
cannot call them ourselves and consequently, we lose the ability to do
IO monitoring via iostat. Since zvols are internally files mapped as
block devices, this should be okay. Anyone who is willing to accept the
performance penalty for the block IO layer's accounting could use the
loop device in between the zvol and its consumer. Alternatively, perf
and ftrace likely could be used. Also, tools like latencytop will still
work. Tools such as latencytop sometimes provide a better view of
performance bottlenecks than the traditional block IO accounting tools
do.
Lastly, if direct reclaim occurs during spacemap loading and swap is on
a zvol, this code will deadlock. That deadlock could already occur with
sync=always on zvols. Given that swap on zvols is not yet production
ready, this is not a blocker.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Allow for easy turning of a pools reserved free space. Previous
versions of ZFS (v0.6.4 and earlier) held 1/64 of the pools capacity
in reserve. Commits 3d45fdd and 0c60cc3 increased this to 1/32.
Setting spa_slop_shift=6 will restore the previous default setting.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3724
Add new keyword 'slot' to vdev_id.conf
This selects from where to get the slot number for a SAS/SATA disk
Needed to enable access to the physical position of a disk in a
Supermicro 2027R-AR24NV .
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#3693
This brings the behavior of arc_memory_throttle() back in sync with
illumos. The updated memory throttling policy roughly goes like this:
* Never throttle if more than 10% of memory is free. This threshold
is configurable with the zfs_arc_lotsfree_percent module option.
* Minimize any throttling of kswapd even when free memory is below
the set threshold. Allow it to write out pages as quickly as
possible to help alleviate the memory pressure.
* Delay all other threads when free memory is below the set threshold
in order to avoid compounding the memory pressure. Buffers will be
evicted from the ARC to reduce the issue.
The Linux specific zfs_arc_memory_throttle_disable module option has
been removed in favor of the existing zfs_arc_lotsfree_percent tuning.
Setting zfs_arc_lotsfree_percent=0 will have the same effect as
zfs_arc_memory_throttle_disable and it was therefore redundant.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3637
While Linux doesn't provide detailed information about the state of
the VM it does provide us total free pages. This information should
be incorporated in to the arc_available_memory() calculation rather
than solely relying on a signal from direct reclaim. Conceptually
this brings arc_available_memory() back in sync with illumos.
It is also desirable that the target amount of free memory be tunable
on a system. While the default values are expected to work well
for most workloads there may be cases where custom values are needed.
The zfs_arc_sys_free module option was added for this purpose.
zfs_arc_sys_free - The target number of bytes the ARC should leave
as free memory on the system. This value can
checked in /proc/spl/kstat/zfs/arcstats and
setting this module option will override the
default value.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3637
The zvol_threads module option should be bounded to a reasonable
range. The taskq must have at least 1 thread and shouldn't have
more than 1,024 at most. The default value of 32 is a reasonable
default.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3614
Add a new defclsyspri macro which can be used to request the default
Linux scheduler priority. Neither the minclsyspri or maxclsyspri map
to the default Linux kernel thread priority. This makes it awkward to
create taskqs which run with the same priority as the rest of the kernel
threads on the system which can lead to performance issues.
All SPL callers which previously used minclsyspri or maxclsyspri have
been changed to use defclsyspri. The vast majority of callers were
part of the test suite which won't have an external impact. The few
places where it could impact performance the change was from maxclsyspri
to defclsyspri. This makes it more likely the process will be scheduled
which may help performance.
To facilitate further performance analysis the spl_taskq_thread_priority
module option has been added. When disabled (0) all newly created kernel
threads will use the default kernel thread priority. When enabled (1)
the specified taskq priority will be used. By default this value is
enabled (1).
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Commit f521ce1 removed the minimum value for "arc_p" allowing it to
drop to zero or grow to "arc_c". This was done to improve specific
workload which constantly dirties new "metadata" but also frequently
touches a "small" amount of mfu data (e.g. mkdir's).
This change may still be desirable but it needs to be re-investigated.
in the context of the recent ARC changes from upstream. Therefore
this code is being restored to facilitate benchmarking. By setting
"zfs_arc_p_min_shift=64" we easily compare the performance.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3533
A few minor mistakes than should be fixed:
zpool:
compatability -> compatibility
zfs:
accessable -> accessible
availible -> available
zfs-events:
availible -> available
zfs-module-parameters:
proceding -> proceeding
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3544
Setting the TASKQ_DYNAMIC flag will create a taskq with dynamic
semantics. Initially only a single worker thread will be created
to service tasks dispatched to the queue. As additional threads
are needed they will be dynamically spawned up to the max number
specified by 'nthreads'. When the threads are no longer needed,
because the taskq is empty, they will automatically terminate.
Due to the low cost of creating and destroying threads under Linux
by default new threads and spawned and terminated aggressively.
There are two modules options which can be tuned to adjust this
behavior if needed.
* spl_taskq_thread_sequential - The number of sequential tasks,
without interruption, which needed to be handled by a worker
thread before a new worker thread is spawned. Default 4.
* spl_taskq_thread_dynamic - Provides the ability to completely
disable the use of dynamic taskqs on the system. This is provided
for the purposes of debugging and troubleshooting. Default 1
(enabled).
This behavior is fundamentally consistent with the dynamic taskq
implementation found in both illumos and FreeBSD.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#458
This seems generally useful. metaslab_aliquot is the ZFS allocation
granularity, which is roughly equivalent to what is called the stripe
size in traditional RAID arrays. It seems relevant to performance
tuning.
Signed-off-by: Etienne Dechamps <etienne@edechamps.fr>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Porting notes and other significant code changes:
The illumos 5368 patch (ARC should cache more metadata), which
was never picked up by ZoL, is mostly reverted by this patch.
Since ZoL relies on the kernel asynchronously calling the shrinker to
actually reap memory, the shrinker wakes up arc_reclaim_waiters_cv every
time it runs.
The arc_adapt_thread() function no longer calls arc_do_user_evicts()
since the newly-added arc_user_evicts_thread() calls it periodically.
Notable conflicting ZoL commits which conflicted with this patch or
whose effects are either duplicated or un-done by this patch:
302f753 - Integrate ARC more tightly with Linux
39e055c - Adjust arc_p based on "bytes" in arc_shrink
f521ce1 - Allow "arc_p" to drop to zero or grow to "arc_c"
77765b5 - Remove "arc_meta_used" from arc_adjust calculation
94520ca - Prune metadata from ghost lists in arc_adjust_meta
Trace support for multilist_insert() and multilist_remove() has been
added and produces the following output:
fio-12498 [077] .... 112936.448324: zfs_multilist__insert: ml { offset 240 numsublists 80 sublistidx 63 }
fio-12498 [077] .... 112936.448347: zfs_multilist__remove: ml { offset 240 numsublists 80 sublistidx 29 }
The following arcstats have been removed:
recycle_miss - Used by arcstat.py and arc_summary.py, both of which
have been updated appropriately.
l2_writes_hdr_miss
The following arcstats have been added:
evict_not_enough - Number of times arc_evict_state() was unable to
evict enough buffers to reach its target amount.
evict_l2_skip - Number of times arc_evict_hdr() skipped eviction
because it was being written to the l2arc.
l2_writes_lock_retry - Replaces l2_writes_hdr_miss. Number of times
l2arc_write_done() failed to acquire hash_lock (and re-tries).
arc_meta_min - Shows the value of the zfs_arc_meta_min module
parameter (see below).
The "index" column of the "dbuf" kstat has been removed since it doesn't
have a direct analog in the new multilist scheme. Additional multilist-
related stats could be added in the future but would likely require
extensions to the mulilist API.
The following module parameters have been added:
zfs_arc_evict_batch_limit - Number of ARC headers to free per sub-list
before moving on to the next sub-list.
zfs_arc_meta_min - Enforce a floor on the amount of metadata in
the ARC.
zfs_arc_num_sublists_per_state - Number of multilist sub-lists per
ARC state.
zfs_arc_overflow_shift - Controls amount by which the ARC must exceed
the target size to be considered "overflowing".
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov
* Add information about the 'zpool events' command in zpool(8).
* More events and payloads defined in zfs-events(5).
* I/O Stages and I/O Flags sections added.
* Remove unused legacy "zio_deadline" payload define.
Signed-off-by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3467
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
3897 zfs filesystem and snapshot limits
Author: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://www.illumos.org/issues/3897https://github.com/illumos/illumos-gate/commit/a2afb61
Porting Notes:
dsl_dataset_snapshot_check(): reduce stack usage using kmem_alloc().
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The default was changed in #2820.
Signed-off-by: cburroughs <chris.burroughs@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3341
Commit b738bc5 should have updated the default value of zfs_pd_bytes_max
in the zfs(8) man page. The correct default value is 50*1024*1024.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
5694 traverse_prefetcher does not prefetch enough
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/5694https://github.com/illumos/illumos-gate/commit/34d7ce05
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3230
The zio_inject.c keeps zio_injection_enabled as a counter of
fault handlers, so it should not be exported to user space as
a module option.
Several EXPORT_SYMBOLs are moved from zio.c to zio_inject.c,
where the symbols are defined.
Signed-off-by: Isaac Huang <he.huang@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3199
The goal of this function is to evict enough meta data buffers from the
ARC in order to enforce the arc_meta_limit. Achieving this is slightly
more complicated than it appears because it is common for data buffers
to have holds on meta data buffers. In addition, dnode meta data buffers
will be held by the dnodes in the block preventing them from being freed.
This means we can't simply traverse the ARC and expect to always find
enough unheld meta data buffer to release.
Therefore, this function has been updated to make alternating passes
over the ARC releasing data buffers and then newly unheld meta data
buffers. This ensures forward progress is maintained and arc_meta_used
will decrease. Normally this is sufficient, but if required the ARC
will call the registered prune callbacks causing dentry and inodes to
be dropped from the VFS cache. This will make dnode meta data buffers
available for reclaim. The number of total restarts in limited by
zfs_arc_meta_adjust_restarts to prevent spinning in the rare case
where all meta data is pinned.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Issue #3160
Originally when the ARC prune callback was introduced the idea was
to register a single callback for the ZPL. The ARC could invoke this
call back if it needed the ZPL to drop dentries, inodes, or other
cache objects which might be pinning buffers in the ARC. The ZPL
would iterate over all ZFS super blocks and perform the reclaim.
For the most part this design has worked well but due to limitations
in 2.6.35 and earlier kernels there were some problems. This patch
is designed to address those issues.
1) iterate_supers_type() is not provided by all kernels which makes
it impossible to safely iterate over all zpl_fs_type filesystems in
a single callback. The most straight forward and portable way to
resolve this is to register a callback per-filesystem during mount.
The arc_*_prune_callback() functions have always supported multiple
callbacks so this is functionally a very small change.
2) Commit 050d22b removed the non-portable shrink_dcache_memory()
and shrink_icache_memory() functions and didn't replace them with
equivalent functionality. This meant that for Linux 3.1 and older
kernels the ARC had no mechanism to drop dentries and inodes from
the caches if needed. This patch adds that missing functionality
by calling shrink_dcache_parent() to release dentries which may be
pinning inodes. This will result in all unused cache entries being
dropped which is a bit heavy handed but it's the only interface
available for old kernels.
3) A zpl_drop_inode() callback is registered for kernels older than
2.6.35 which do not support the .evict_inode callback. This ensures
that when the last reference on an inode is dropped it is immediately
removed from the cache. If this isn't done than inode can end up on
the global unused LRU with no mechanism available to ZFS to drop them.
Since the ARC buffers are not dropped the hottest inodes can still
be recreated without performing disk IO.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Issue #3160
Long ago the zio_bulk_flags module parameter was introduced to
facilitate debugging and profiling the zio_buf_caches. Today
this code works well and there's no compelling reason to keep
this functionality. In fact it's preferable to revert this so
the code is more consistent with other ZFS implementations.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Issue #3063
This change is designed to improve the memory utilization of
slabs by more carefully setting their size. The way the code
currently works is problematic for slabs which contain large
objects (>1MB). This is due to slabs being unconditionally
rounded up to a power of two which may result in unused space
at the end of the slab.
The reason the existing code rounds up every slab is because it
assumes it will backed by the buddy allocator. Since the buddy
allocator can only performs power of two allocations this is
desirable because it avoids wasting any space. However, this
logic breaks down if slab is backed by vmalloc() which operates
at a page level granularity. In this case, the optimal thing to
do is calculate the minimum required slab size given certain
constraints (object size, alignment, objects/slab, etc).
Therefore, this patch reworks the spl_slab_size() function so
that it sizes KMC_KMEM slabs differently than KMC_VMEM slabs.
KMC_KMEM slabs are rounded up to the nearest power of two, and
KMC_VMEM slabs are allowed to be the minimum required size.
This change also reduces the default number of objects per slab.
This reduces how much memory a single cache object can pin, which
can result in significant memory saving for highly fragmented
caches. But depending on the workload it may result in slabs
being allocated and freed more frequently. In practice, this
has been shown to be a better default for most workloads.
Also the maximum slab size has been reduced to 4MB on 32-bit
systems. Due to the limited virtual address space it's critical
the we be as frugal as possible. A limit of 4M still lets us
reasonably comfortably allocate a limited number of 1MB objects.
Finally, the kmem:slab_small and kmem:slab_large SPLAT tests
were extended to provide better test coverage of various object
sizes and alignments. Caches are created with random parameters
and their basic functionality is verified by allocating several
slabs worth of objects.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The spl-module-parameters(5) was not kept up to date. Refresh
the man page so that it lists all the possible module options,
describes what the do, and justify why the default values are
set they way the are.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Many people have noticed that the kmem cache implementation is slow
to release its memory. This patch makes the reclaim behavior more
aggressive by immediately freeing a slab once it is empty. Unused
objects which are cached in the magazines will still prevent a slab
from being freed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>