As of the 0.5.2 tag, names of whole-disk vdevs must be specified to
the command line tools without partition identifiers. This commit
fixes a 'zpool online' command in zfault.sh that incorrectly includes
he partition in the vdev name, causing test 9 to fail.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When adding this functionality originally the options to only
run specific tests (-t), or conversely skip specific tests (-s)
were omitted from the usage page. This commit adds the missing
documentation.
The idea behind the '-c' flag is to cleanup everything from a
previous test run which might cause the test script to fail.
This should also include removing the previously loaded module.
This makes it a little easier to run 'zconfig.sh -c', however
remember this is a test script and it will take all of your
other zpools offline for the purposes of the test. This notion
has also been extended to the default 'make check' behavior.
Loading and unloading the zlib modules as part of the zfs.sh
script has proven a little problematic for a few reasons.
* First, your kernel may not need to load either zlib_inflate
or zlib_deflate. This functionality may be built directly in
to your kernel. It depends entirely on what your distribution
decided was the right thing to do.
* Second, even if you do manage to load the correct modules you
may not be able to unload them. There may other consumers
of the modules with a reference preventing the unload.
To avoid both of these issues the test scripts have been updated to
attempt to unconditionally load all modules listed in KERNEL_MODULES.
If the module is successfully loaded you must have needed it. If
the module can't be loaded that almost certainly means either it is
built in to your kernel or is already being used by another consumer.
In both cases this is not an issue and we can move on to the spl/zfs
modules.
Finally, by removing these kernel modules from the MODULES list
we ensure they are never unloaded during 'zfs.sh -u'. This avoids
the issue of the script failing because there is another consumer
using the module we were not aware of. In other words the script
restricts unloading modules to only the spl/zfs modules.
Closes#78
The lustre zpios-test simulates a reasonable lustre workload. It will
create 128 threads, the same as a Lustre OSS, and then 4096 individual
objects. Each objects is 16MiB in size and will be written/read in 1MiB
from a random thread. This is fundamentally how we expect Lustre to behave
for large IO intensive workloads.
To streamline testing I have in the past added several custom configs
to the zpool-config directory. This change reverts those custom configs
and replaces them with three generic config which can do the same thing.
The generic config behavior can be set by setting various environment
variables when calling either the zpool-create.sh or zpios.sh scripts.
For example if you wanted to create and test a single 4-disk Raid-Z2
configuration using disks [A-D]1 with dedicated ZIL and L2ARC devices
you could run the following.
$ ZIL="log A2" L2ARC="cache B2" RANKS=1 CHANNELS=4 LEVEL=2 \
zpool-create.sh -c zpool-raidz
$ zpool status tank
pool: tank
state: ONLINE
scan: none requested
config:
NAME STATE READ WRITE CKSUM
tank ONLINE 0 0 0
raidz2-0 ONLINE 0 0 0
A1 ONLINE 0 0 0
B1 ONLINE 0 0 0
C1 ONLINE 0 0 0
D1 ONLINE 0 0 0
logs
A2 ONLINE 0 0 0
cache
B2 ONLINE 0 0 0
errors: No known data errors
This test performs a sanity check of the zpool add and remove commands. It
tests adding and removing both a cache disk and a log disk to and from a zpool.
Usage of both a shorthand device path and a full path is covered. The test
uses a scsi_debug device as the disk to be added and removed. This is done so
that zpool will see it as a whole disk and partition it, which it does not
currently done for loopback devices. We want to verify that the manipulation
done to whole disks paths to hide the parition information does not break the
add/remove interface.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Eleven new zpool configurations were added to allow testing of various
failure cases. The first 5 zpool configurations leverage the 'faulty'
md device type which allow us to simuluate IO errors at the block layer.
The last 6 zpool configurations leverage the scsi_debug module provided
by modern kernels. This device allows you to create virtual scsi
devices which are backed by a ram disk. With this setup we can verify
the full IO stack by injecting faults at the lowest layer. Both methods
of fault injection are important to verifying the IO stack.
The zfs code itself also provides a mechanism for error injection
via the zinject command line tool. While we should also take advantage
of this appraoch to validate the code it does not address any of the
Linux integration issues which are the most concerning. For the
moment we're trusting that the upstream Solaris guys are running
zinject and would have caught internal zfs logic errors.
Currently, there are 6 r/w test cases layered on top of the 'faulty'
md devices. They include 3 writes tests for soft/transient errors,
hard/permenant errors, and all writes error to the device. There
are 3 matching read tests for soft/transient errors, hard/permenant
errors, and fixable read error with a write. Although for this last
case zfs doesn't do anything special.
The seventh test case verifies zfs detects and corrects checksum
errors. In this case one of the drives is extensively damaged and
by dd'ing over large sections of it. We then ensure zfs logs the
issue and correctly rebuilds the damage.
The next test cases use the scsi_debug configuration to injects error
at the bottom of the scsi stack. This ensures we find any flaws in the
scsi midlayer or our usage of it. Plus it stresses the device specific
retry, timeout, and error handling outside of zfs's control.
The eighth test case is to verify that the system correctly handles an
intermittent device timeout. Here the scsi_debug device drops 1 in N
requests resulting in a retry either at the block level. The ZFS code
does specify the FAILFAST option but it turns out that for this case
the Linux IO stack with still retry the command. The FAILFAST logic
located in scsi_noretry_cmd() does no seem to apply to the simply
timeout case. It appears to be more targeted to specific device or
transport errors from the lower layers.
The ninth test case handles a persistent failure in which the device
is removed from the system by Linux. The test verifies that the failure
is detected, the device is made unavailable, and then can be successfully
re-add when brought back online. Additionally, it ensures that errors
and events are logged to the correct places and the no data corruption
has occured due to the failure.
ZFS works best when it is notified as soon as possible when a device
failure occurs. This allows it to immediately start any recovery
actions which may be needed. In theory Linux supports a flag which
can be set on bio's called FAILFAST which provides this quick
notification by disabling the retry logic in the lower scsi layers.
That's the theory at least. In practice is turns out that while the
flag exists you oddly have to set it with the BIO_RW_AHEAD flag.
And even when it's set it you may get retries in the low level
drivers decides that's the right behavior, or if you don't get the
right error codes reported to the scsi midlayer.
Unfortunately, without additional kernels patchs there's not much
which can be done to improve this. Basically, this just means that
it may take 2-3 minutes before a ZFS is notified properly that a
device has failed. This can be improved and I suspect I'll be
submitting patches upstream to handle this.
By default the zpool_layout command would always use the slot
number assigned by Linux when generating the zdev.conf file.
This is a reasonable default there are cases when it makes
sense to remap the slot id assigned by Linux using your own
custom mapping.
This commit adds support to zpool_layout to provide a custom
slot mapping file. The file contains in the first column the
Linux slot it and in the second column the custom slot mapping.
By passing this map file with '-m map' to zpool_config the
mapping will be applied when generating zdev.conf.
Additionally, two sample mapping have been added which reflect
different ways to map the slots in the dragon drawers.
Occasional failures were observed in zconfig.sh because udev
could be delayed for a few seconds. To handle this the wait_udev
function has been added to wait for timeout seconds for an
expected device before returning an error. By default callers
currently use a 30 seconds timeout which should be much longer
than udev ever needs but not so long to worry the test suite
is hung.
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
This script is now dynamically generated at configure time
from scripts/common.sh.in. This change was made by commit
26e61dd074 but we accidentally
kept the common.sh file around.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Add the initial products from autogen.sh. These products will
be updated incrementally after this point as development occurs.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This branch contains the majority of the changes required to cleanly
intergrate with Linux style special devices (/dev/zfs). Mainly this
means dropping all the Solaris style callbacks and replacing them
with the Linux equivilants.
This patch also adds the onexit infrastructure needed to track
some minimal state between ioctls. Under Linux it would be easy
to do this simply using the file->private_data. But under Solaris
they apparent need to pass the file descriptor as part of the ioctl
data and then perform a lookup in the kernel. Once again to keep
code change to a minimum I've implemented the Solaris solution.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Add autoconf style build infrastructure to the ZFS tree. This
includes autogen.sh, configure.ac, m4 macros, some scripts/*,
and makefiles for all the core ZFS components.
The script has been updated to download the latest documentations
packages for Solaris and extract the needed ZFS man pages. These
will still need a little markup to handle changes between the
Solaris and Linux versions of ZFS. Howver, they should be pretty
minor I've tried hard to keep the interface the same.
In additional to the script update the zdb, zfs, and zpool man
pages have been added to the repo.