Commit Graph

7 Commits

Author SHA1 Message Date
Brian Behlendorf 6575defc52 Verify dRAID empty sectors
Verify that all empty sectors are zero filled before using them to
calculate parity.  Failure to do so can result in incorrect parity
columns being generated and written to disk if the contents of an
empty sector are non-zero.  This was possible because the checksum
only protects the data portions of the buffer, not the empty sector
padding.

This issue has been addressed by updating raidz_parity_verify() to
check that all dRAID empty sectors are zero filled.  Any sectors
which are non-zero will be fixed, repair IO issued, and a checksum
error logged.  They can then be safely used to verify the parity.

This specific type of damage is unlikely to occur since it requires
a disk to have silently returned bad data, for an empty sector, while
performing a scrub.  However, if a pool were to have been damaged
in this way, scrubbing the pool with this change applied will repair
both the empty sector and parity columns as long as the data checksum
is valid.  Checksum errors will be reported in the `zpool status`
output for any repairs which are made.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #12857
2022-02-03 15:28:01 -08:00
Matthew Ahrens 330c6c0523
Clean up RAIDZ/DRAID ereport code
The RAIDZ and DRAID code is responsible for reporting checksum errors on
their child vdevs.  Checksum errors represent events where a disk
returned data or parity that should have been correct, but was not.  In
other words, these are instances of silent data corruption.  The
checksum errors show up in the vdev stats (and thus `zpool status`'s
CKSUM column), and in the event log (`zpool events`).

Note, this is in contrast with the more common "noisy" errors where a
disk goes offline, in which case ZFS knows that the disk is bad and
doesn't try to read it, or the device returns an error on the requested
read or write operation.

RAIDZ/DRAID generate checksum errors via three code paths:

1. When RAIDZ/DRAID reconstructs a damaged block, checksum errors are
reported on any children whose data was not used during the
reconstruction.  This is handled in `raidz_reconstruct()`.  This is the
most common type of RAIDZ/DRAID checksum error.

2. When RAIDZ/DRAID is not able to reconstruct a damaged block, that
means that the data has been lost.  The zio fails and an error is
returned to the consumer (e.g. the read(2) system call).  This would
happen if, for example, three different disks in a RAIDZ2 group are
silently damaged.  Since the damage is silent, it isn't possible to know
which three disks are damaged, so a checksum error is reported against
every child that returned data or parity for this read.  (For DRAID,
typically only one "group" of children is involved in each io.)  This
case is handled in `vdev_raidz_cksum_finish()`. This is the next most
common type of RAIDZ/DRAID checksum error.

3. If RAIDZ/DRAID is not able to reconstruct a damaged block (like in
case 2), but there happens to be additional copies of this block due to
"ditto blocks" (i.e. multiple DVA's in this blkptr_t), and one of those
copies is good, then RAIDZ/DRAID compares each sector of the data or
parity that it retrieved with the good data from the other DVA, and if
they differ then it reports a checksum error on this child.  This
differs from case 2 in that the checksum error is reported on only the
subset of children that actually have bad data or parity.  This case
happens very rarely, since normally only metadata has ditto blocks.  If
the silent damage is extensive, there will be many instances of case 2,
and the pool will likely be unrecoverable.

The code for handling case 3 is considerably more complicated than the
other cases, for two reasons:

1. It needs to run after the main raidz read logic has completed.  The
data RAIDZ read needs to be preserved until after the alternate DVA has
been read, which necessitates refcounts and callbacks managed by the
non-raidz-specific zio layer.

2. It's nontrivial to map the sections of data read by RAIDZ to the
correct data.  For example, the correct data does not include the parity
information, so the parity must be recalculated based on the correct
data, and then compared to the parity that was read from the RAIDZ
children.

Due to the complexity of case 3, the rareness of hitting it, and the
minimal benefit it provides above case 2, this commit removes the code
for case 3.  These types of errors will now be handled the same as case
2, i.e. the checksum error will be reported against all children that
returned data or parity.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes #11735
2021-03-19 16:22:10 -07:00
Brian Behlendorf b2255edcc0
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID.  This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.

A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`.  No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.

    zpool create <pool> draid[1,2,3] <vdevs...>

Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons.  The supported options include:

    zpool create <pool> \
        draid[<parity>][:<data>d][:<children>c][:<spares>s] \
        <vdevs...>

    - draid[parity]       - Parity level (default 1)
    - draid[:<data>d]     - Data devices per group (default 8)
    - draid[:<children>c] - Expected number of child vdevs
    - draid[:<spares>s]   - Distributed hot spares (default 0)

Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.

```
  pool: tank
 state: ONLINE
config:

    NAME                  STATE     READ WRITE CKSUM
    slag7                 ONLINE       0     0     0
      draid2:8d:68c:2s-0  ONLINE       0     0     0
        L0                ONLINE       0     0     0
        L1                ONLINE       0     0     0
        ...
        U25               ONLINE       0     0     0
        U26               ONLINE       0     0     0
        spare-53          ONLINE       0     0     0
          U27             ONLINE       0     0     0
          draid2-0-0      ONLINE       0     0     0
        U28               ONLINE       0     0     0
        U29               ONLINE       0     0     0
        ...
        U42               ONLINE       0     0     0
        U43               ONLINE       0     0     0
    special
      mirror-1            ONLINE       0     0     0
        L5                ONLINE       0     0     0
        U5                ONLINE       0     0     0
      mirror-2            ONLINE       0     0     0
        L6                ONLINE       0     0     0
        U6                ONLINE       0     0     0
    spares
      draid2-0-0          INUSE     currently in use
      draid2-0-1          AVAIL
```

When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command.  These options are leverages
by zloop.sh to test a wide range of dRAID configurations.

    -K draid|raidz|random - kind of RAID to test
    -D <value>            - dRAID data drives per group
    -S <value>            - dRAID distributed hot spares
    -R <value>            - RAID parity (raidz or dRAID)

The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.

Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-13 13:51:51 -08:00
Brian Behlendorf e5db313494
Linux 5.0 compat: SIMD compatibility
Restore the SIMD optimization for 4.19.38 LTS, 4.14.120 LTS,
and 5.0 and newer kernels.  This is accomplished by leveraging
the fact that by definition dedicated kernel threads never need
to concern themselves with saving and restoring the user FPU state.
Therefore, they may use the FPU as long as we can guarantee user
tasks always restore their FPU state before context switching back
to user space.

For the 5.0 and 5.1 kernels disabling preemption and local
interrupts is sufficient to allow the FPU to be used.  All non-kernel
threads will restore the preserved user FPU state.

For 5.2 and latter kernels the user FPU state restoration will be
skipped if the kernel determines the registers have not changed.
Therefore, for these kernels we need to perform the additional
step of saving and restoring the FPU registers.  Invalidating the
per-cpu global tracking the FPU state would force a restore but
that functionality is private to the core x86 FPU implementation
and unavailable.

In practice, restricting SIMD to kernel threads is not a major
restriction for ZFS.  The vast majority of SIMD operations are
already performed by the IO pipeline.  The remaining cases are
relatively infrequent and can be handled by the generic code
without significant impact.  The two most noteworthy cases are:

  1) Decrypting the wrapping key for an encrypted dataset,
     i.e. `zfs load-key`.  All other encryption and decryption
     operations will use the SIMD optimized implementations.

  2) Generating the payload checksums for a `zfs send` stream.

In order to avoid making any changes to the higher layers of ZFS
all of the `*_get_ops()` functions were updated to take in to
consideration the calling context.  This allows for the fastest
implementation to be used as appropriate (see kfpu_allowed()).

The only other notable instance of SIMD operations being used
outside a kernel thread was at module load time.  This code
was moved in to a taskq in order to accommodate the new kernel
thread restriction.

Finally, a few other modifications were made in order to further
harden this code and facilitate testing.  They include updating
each implementations operations structure to be declared as a
constant.  And allowing "cycle" to be set when selecting the
preferred ops in the kernel as well as user space.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8754 
Closes #8793 
Closes #8965
2019-07-12 09:31:20 -07:00
Brian Behlendorf 02730c333c Use cstyle -cpP in `make cstyle` check
Enable picky cstyle checks and resolve the new warnings.  The vast
majority of the changes needed were to handle minor issues with
whitespace formatting.  This patch contains no functional changes.

Non-whitespace changes are as follows:

* 8 times ; to { } in for/while loop
* fix missing ; in cmd/zed/agents/zfs_diagnosis.c
* comment (confim -> confirm)
* change endline , to ; in cmd/zpool/zpool_main.c
* a number of /* BEGIN CSTYLED */ /* END CSTYLED */ blocks
* /* CSTYLED */ markers
* change == 0 to !
* ulong to unsigned long in module/zfs/dsl_scan.c
* rearrangement of module_param lines in module/zfs/metaslab.c
* add { } block around statement after for_each_online_node

Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #5465
2016-12-12 10:46:26 -08:00
Gvozden Neskovic c9187d867f Fixes and enhancements of SIMD raidz parity
- Implementation lock replaced with atomic variable

- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`

- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813

- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392

- Minor fixes and cleanups

- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
2016-07-19 16:43:07 -07:00
Gvozden Neskovic ab9f4b0b82 SIMD implementation of vdev_raidz generate and reconstruct routines
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.

Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite

New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
  module load, the parameter will only accept first 3 options, and
  the other implementations can be set once module is finished
  loading. Possible values for this option are:
    "fastest" - use the fastest math available
    "original" - use the original raidz code
    "scalar" - new scalar impl
    "sse" - new SSE impl if available
    "avx2" - new AVX2 impl if available

See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.

Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4328
2016-06-21 09:27:26 -07:00