zfsonlinux/spl@2092cf68d8 used
PF_MEMALLOC to workaround a bug in the Linux kernel where
allocations did not honor the gfp flags passed to vmalloc().
Unfortunately, PF_MEMALLOC has the side effect of permitting
allocations to allocate pages outside of ZONE_NORMAL. This
has been observed to result in the depletion of ZONE_DMA32.
A kernel patch is available in the Gentoo bug tracker for
this issue.
https://bugs.gentoo.org/show_bug.cgi?id=416685
This negates any benefit PF_MEMALLOC provides, so we introduce
an autotools check to disable the use of PF_MEMALLOC on
systems with patched kernels.
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#126
This prevents warnings in ZFS that were caused by changes necessary to
support PaX patched kernels. When debugging is enabled, these warnings
become build failures.
Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#131
Usage of get_current() is not supported across all architectures.
The correct interface to use is the '#define current' which will
map to the appropriate function, usually current_thread_info().
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#119
torvalds/linux@1dce27c5aa introduced
__clear_close_on_exec() as a replacement for FD_CLR. Further commits
appear to have removed FD_CLR from the Linux source tree. This
causes the following failure:
error: implicit declaration of function '__FD_CLR'
[-Werror=implicit-function-declaration]
To correct this we update the code to use the current
__clear_close_on_exec() interface for readability. Then we introduce
an autotools check to determine if __clear_close_on_exec() is available.
If it isn't then we define some compatibility logic which used the older
FD_CLR() interface.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#124
Gcc version 4.7.0 reports the delta.tv_sec in the slab reclaim test
as potentially unitialized. In practice this will never occur but
to keep gcc happy we initialize the variable to zero.
Signed-off-by: Brian Behlendorf <behlendo@fedora-17-amd64.(none)>
In the module unload path the vm_file_cache was being destroyed
under a spin lock. Because this operation might sleep it was
possible, although very very unlikely, that this could result
in a deadlock.
This issue was indentified by using a Linux debug kernel and
has been fixed by moving the kmem_cache_destroy() out from under
the spin lock. There is no need to lock this operation here.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closeszfsonlinux/zfs#771
Correctly implementating 64-bit division for ARM requires more than
just providing the __aeabi_uldivmod() and __aeabi_ldivmod() symbols.
They are need to be implemented is such a way that the quotient and
remainder and left in specific registers after the division operation
completes. This change updates the wrapper functions to accomplish
this according to the official ARM Run-time ABI.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closeszfsonlinux/zfs#706
Originally I believed that these interfaces would be needed.
However, in practice it turned out that it was more straight
forward and maintainable to use the native Linux interfaces.
As such, this is all dead code and can be safely removed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#109
This test is designed to verify that direct reclaim is functioning as
expected. We allocate a large number of objects thus creating a large
number of slabs. We then apply memory pressure and expect that the
direct reclaim path can easily recover those slabs. The registered
reclaim function will free the objects and the slab shrinker will call
it repeatedly until at least a single slab can be freed.
Note it may not be possible to reclaim every last slab via direct reclaim
without a failure because the shrinker_rwsem may be contended. For this
reason, quickly reclaiming 3/4 of the slabs is considered a success.
This should all be possible within 10 seconds. For reference, on a
system with 2G of memory this test takes roughly 0.2 seconds to run.
It may take longer on larger memory systems but should still easily
complete in the alloted 10 seconds.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#107
To minimize the chance of triggering an OOM during direct reclaim.
The kmem caches have been improved to make a best effort to reclaim
at least one slab when a reclaim function is registered. This helps
avoid the case where objects are released but they are spread over
multiple slabs so no memory gets reclaimed.
Care has been taken to avoid deadlocking if the reclaim function
is unable to make forward progress. Additionally, the reclaim
function may be skipped entirely if there are already free slabs
which can be safely reaped.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#107
The Linux direct reclaim path uses this out of band value to
determine if forward progress is being made. Normally this is
incremented by kmem_freepages() which is part of the various
Linux slab implementations. However, since we are using none
of that infrastructure we're responsible for incrementing this
count.
If no forward progress is detected and a subsequent allocation
fails the OOM killer will be invoked. If there was forward
progress additional reclaim will be attempted via the page
cache and registerd shrinker until the allocation succeeds.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#107
When memory pressure triggers direct memory reclaim, a slabs age
and delay should not prevent it from being freed. This patch ensures
these values are ignored, allowing an empty slab to be freed in this
code path no matter the value of its age and delay.
This prevents needless scanning of the partial slabs and has been
observed to significantly reduce the total cpu usage. In addition,
it should allow for snappier reclaim under memory pressure.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#102
Previously, the SPL tried to maintain Solaris semantics by freeing
all available (empty) slabs from its slab caches when the shrinker
was called. This is not desirable when running on Linux. To make
the SPL shrinker more Linux friendly, the actual number of freed
slabs from each of the slab caches is now derived from nr_to_scan
and skc_slab_objs.
Additionally, an accounting bug was fixed in spl_slab_reclaim()
which could cause us to reclaim one more slab than requested.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#101
Leverage the existing generic 64-bit division operations which
were originally implemented for x86 to support ARM. All that is
required is to make the symbols available to the linker with the
expected names.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
As of the removal of the taskq work list made in commit:
commit 2c02b71b14
Author: Prakash Surya <surya1@llnl.gov>
Date: Mon Dec 5 17:32:48 2011 -0800
Replace tq_work_list and tq_threads in taskq_t
To lay the ground work for introducing the taskq_dispatch_prealloc()
interface, the tq_work_list and tq_threads fields had to be replaced
with new alternatives in the taskq_t structure.
the comment above taskq_wait_check has been incorrect. This change is an
attempt at bringing that description more in line with the current
implementation. Essentially, references to the old task work list had to
be updated to reference the new taskq thread active list.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
Long ago I added support to the spl for condition variable names
because I thought they might be needed. It turns out they aren't.
In fact the official Solaris cv_init(9F) man page discourages
their use in the kernel.
cv_init(9F)
Parameters
name - Descriptive string. This is obsolete and should be
NULL. (Non-NULL strings are legal, but they're a
waste of kernel memory.)
Therefore, I'm removing them from the spl to reclaim this memory
and adding an ASSERT() to ensure no new consumers are added which
make use of the name.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Include the ZFS_META_RELEASE in the module load/unload messages
to more clearly indicate exactly what version of the SPL has
been loaded.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Add the bare minimum functionality to support dynamic kstats. A
complete kstat implementation should be done as part of issue #84.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #84
Until now the notion of an internal debug logging infrastructure
was conflated with enabling ASSERT()s. This patch clarifies things
by cleanly breaking the two subsystem apart. The result of this
is the following behavior.
--enable-debug - Enable/disable code wrapped in ASSERT()s.
--disable-debug ASSERT()s are used to check invariants and
are never required for correct operation.
They are disabled by default because they
may impact performance.
--enable-debug-log - Enable/disable the debug log infrastructure.
--disable-debug-log This infrastructure allows the spl code and
its consumer to log messages to an in-kernel
log. The granularity of the logging can be
controlled by a debug mask. By default the
mask disables most debug messages resulting
in a negligible performance impact. Because
of this the debug log is enabled by default.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Testing has shown that tq->tq_lock can be highly contended when a
large number of small work items are dispatched. The lock hold time
is reduced by the following changes:
1) Use exclusive threads in the work_waitq
When a single work item is dispatched we only need to wake a single
thread to service it. The current implementation uses non-exclusive
threads so all threads are woken when the dispatcher calls wake_up().
If a large number of threads are in the queue this overhead can become
non-negligible.
2) Conditionally add/remove threads from work waitq
Taskq threads need only add themselves to the work wait queue if
there are no pending work items.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #32
This reverts commit ec2b41049f.
A race condition was introduced by which a wake_up() call can be lost
after the taskq thread determines there is no pending work items,
leading to deadlock:
1. taksq thread enables interrupts
2. dispatcher thread runs, queues work item, call wake_up()
3. taskq thread runs, adds self to waitq, sleeps
This could easily happen if an interrupt for an IO completion was
outstanding at the point where the taskq thread reenables interrupts,
just before the call to add_wait_queue_exclusive(). The handler would
run immediately within the race window.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #32
Testing has shown that tq->tq_lock can be highly contended when a
large number of small work items are dispatched. The lock hold time
is reduced by the following changes:
1) Use exclusive threads in the work_waitq
When a single work item is dispatched we only need to wake a single
thread to service it. The current implementation uses non-exclusive
threads so all threads are woken when the dispatcher calls wake_up().
If a large number of threads are in the queue this overhead can become
non-negligible.
2) Conditionally add/remove threads from work waitq outside of tq_lock
Taskq threads need only add themselves to the work wait queue if there
are no pending work items. Furthermore, the add and remove function
calls can be made outside of the taskq lock since the wait queues are
protected from concurrent access by their own spinlocks.
3) Call wake_up() outside of tq->tq_lock
Again, the wait queues are protected by their own spinlock, so the
dispatcher functions can drop tq->tq_lock before calling wake_up().
A new splat test taskq:contention was added in a prior commit to measure
the impact of these changes. The following table summarizes the
results using data from the kernel lock profiler.
tq_lock time %diff Wall clock (s) %diff
original: 39117614.10 0 41.72 0
exclusive threads: 31871483.61 18.5 34.2 18.0
unlocked add/rm waitq: 13794303.90 64.7 16.17 61.2
unlocked wake_up(): 1589172.08 95.9 16.61 60.2
Each row reflects the average result over 5 test runs.
/proc/lock_stats was zeroed out before and collected after each run.
Column 1 is the cumulative hold time in microseconds for tq->tq_lock.
The tests are cumulative; each row reflects the code changes of the
previous rows. %diff is calculated with respect to "original" as
100*(orig-new)/orig.
Although calling wake_up() outside of the taskq lock dramatically
reduced the taskq lock hold time, the test actually took slightly more
wall clock time. This is because the point of contention shifts from
the taskq lock to the wait queue lock. But the change still seems
worthwhile since it removes our taskq implementation as a bottleneck,
assuming the small increase in wall clock time to be statistical
noise.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#32
Add a test designed to generate contention on the taskq spinlock by
using a large number of threads (100) to perform a large number (131072)
of trivial work items from a single queue. This simulates conditions
that may occur with the zio free taskq when a 1TB file is removed from a
ZFS filesystem, for example. This test should always pass. Its purpose
is to provide a benchmark to easily measure the effectiveness of taskq
optimizations using statistics from the kernel lock profiler.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #32
Apply the same fix to SPL that was applied to ZFS earlier at:
zfsonlinux/zfs@d433c20651
Additionally quote @LINUX_SYMBOLS@ because it is a null substitution
in this configuration, which results in a `[ -f ]` expression that
incorrectly evaluates to true.
# ./configure --with-config=user
# make distclean
Making distclean in module
make[1]: Entering directory `/spl/module'
make -C SUBDIRS=`pwd` clean
make: Entering an unknown directory
make: *** SUBDIRS=/spl/module: No such file or directory. Stop.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The Proxmox VE kernel contains a patch which renames the function
invalidate_inodes() to invalidate_inodes_check(). In the process
it adds a 'check' argument and a '#define invalidate_inodes(x)'
compatibility wrapper for legacy callers. Therefore, if either
of these functions are exported invalidate_inodes() can be
safely used.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#58
A preallocated taskq_ent_t's tqent_flags must be checked prior to
servicing the taskq_ent_t. Once a preallocated taskq entry is serviced,
the ownership of the entry is handed back to the caller of
taskq_dispatch, thus the entry's contents can potentially be mangled.
In particular, this is a problem in the case where a preallocated taskq
entry is serviced, and the caller clears it's tqent_flags field. Thus,
when the function returns and task_done is called, it looks as though
the entry is **not** a preallocated task (when in fact it **is** a
preallocated task).
In this situation, task_done will place the preallocated taskq_ent_t
structure onto the taskq_t's free list. This is a **huge** mistake. If
the taskq_ent_t is then freed by the caller of taskq_dispatch, the
taskq_t's free list will hold a pointer to garbage data. Even worse, if
nothing has over written the freed memory before the pointer is
dereferenced, it may still look as though it points to a valid list_head
belonging to a taskq_ent_t structure.
Thus, the task entry's flags are now copied prior to servicing the task.
This copy is then checked to see if it is a preallocated task, and
determine if the entry needs to be passed down to the task_done
function.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#71
The taskq_t's active thread list is sorted based on its
tqt_ent->tqent_id field. The list is kept sorted solely by inserting
new taskq_thread_t's in their correct sorted location; no other
means is used. This means that once inserted, if a taskq_thread_t's
tqt_ent->tqent_id field changes, the list runs the risk of no
longer being sorted.
Prior to the introduction of the taskq_dispatch_prealloc() interface,
this was not a problem as a taskq_ent_t actively being serviced under
the old interface should always have a static tqent_id field. Thus,
once the taskq_thread_t is added to the taskq_t's active thread list,
the taskq_thread_t's tqt_ent->tqent_id field would remain constant.
Now, this is no longer the case. Currently, if using the
taskq_dispatch_prealloc() interface, any given taskq_ent_t actively
being serviced _may_ have its tqent_id value incremented. This happens
when the preallocated taskq_ent_t structure is recursively dispatched.
Thus, a taskq_thread_t could potentially have its tqt_ent->tqent_id
field silently modified from under its feet. If this were to happen
to a taskq_thread_t on a taskq_t's active thread list, this would
compromise the integrity of the order of the list (as the list
_may_ no longer be sorted).
To get around this, the taskq_thread_t's taskq_ent_t pointer was
replaced with its own static copy of the tqent_id. So, as a taskq_ent_t
is pulled off of the taskq_t's pending list, a static copy of its
tqent_id is made and this copy is used to sort the active thread
list. Using a static copy is key in ensuring the integrity of the
order of the active thread list. Even if the underlying taskq_ent_t
is recursively dispatched (as has its tqent_id modified), this
static copy stored inside the taskq_thread_t will remain constant.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #71
The splat-taskq test functions were slightly modified to exercise
the new taskq interface in addition to the old interface. If the
old interface passes each of its tests, the new interface is
exercised. Both sub tests (old interface and new interface) must
pass for each test as a whole to pass.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#65
This patch implements the taskq_dispatch_prealloc() interface which
was introduced by the following illumos-gate commit. It allows for
a preallocated taskq_ent_t to be used when dispatching items to a
taskq. This eliminates a memory allocation which helps minimize
lock contention in the taskq when dispatching functions.
commit 5aeb94743e3be0c51e86f73096334611ae3a058e
Author: Garrett D'Amore <garrett@nexenta.com>
Date: Wed Jul 27 07:13:44 2011 -0700
734 taskq_dispatch_prealloc() desired
943 zio_interrupt ends up calling taskq_dispatch with TQ_SLEEP
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
Added another splat taskq test to ensure tasks can be recursively
submitted to a single task queue without issue. When the
taskq_dispatch_prealloc() interface is introduced, this use case
can potentially cause a deadlock if a taskq_ent_t is dispatched
while its tqent_list field is not empty. This _should_ never be
a problem with the existing taskq_dispatch() interface.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
To lay the ground work for introducing the taskq_dispatch_prealloc()
interface, the tq_work_list and tq_threads fields had to be replaced
with new alternatives in the taskq_t structure.
The tq_threads field was replaced with tq_thread_list. Rather than
storing the pointers to the taskq's kernel threads in an array, they are
now stored as a list. In addition to laying the ground work for the
taskq_dispatch_prealloc() interface, this change could also enable taskq
threads to be dynamically created and destroyed as threads can now be
added and removed to this list relatively easily.
The tq_work_list field was replaced with tq_active_list. Instead of
keeping a list of taskq_ent_t's which are currently being serviced, a
list of taskq_threads currently servicing a taskq_ent_t is kept. This
frees up the taskq_ent_t's tqent_list field when it is being serviced
(i.e. now when a taskq_ent_t is being serviced, it's tqent_list field
will be empty).
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
The spl_task structure was renamed to taskq_ent, and all of
its fields were renamed to have a prefix of 'tqent' rather
than 't'. This was to align with the naming convention which
the ZFS code assumes. Previously these fields were private
so the name never mattered.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #65
This change adds the neglected SPLAT_TEST_FINI call for the
SPLAT_TASKQ_TEST6_ID, just as is done for the other 5 SPLAT_TASKQ_*
tests.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#64
The splat_taskq_test4_common function was incorrectly referencing
the splat_taskq-test13_func symbol, when it meant to be using the
splat_taskq_test4_func symbol.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#61
This is a bit of cleanup I'd been meaning to get to for a while
to reduce the chance of a type conflict. Well that conflict
finally occurred with the kstat_init() function which conflicts
with a function in the 2.6.32-6-pve kernel.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#56
As of Linux 3.1 the shrink_dcache_memory and shrink_icache_memory
functions have been removed. This same task is now accomplished
more cleanly with per super block shrinkers. This unfortunately
leaves us no easy way to support the dnlc_reduce_cache() function.
This support has always been entirely optional. So when no
reasonable interface is available allow the dnlc_reduce_cache()
function to effectively become a no-op.
The downside of this change is that it will prevent the zfs arc
meta data limts from being enforced. However, the current zfs
implementation in this regard is already flawed and needs to
be reworked. If the arc needs to enfore a meta data limit it
will need to be extended to coordinate directly with the zpl.
This will allow us to drop all this compatibility code and get
more fine grained control over the cache management.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #52
Prior to Linux 3.1 the kern_path_parent symbol was exported for
use by kernel modules. As of Linux 3.1 it is now longer easily
available. To handle this case the spl will now dynamically
look up address of the missing symbol at module load time.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #52
Be careful not to unconditionally clear the PF_MEMALLOC bit in
the task structure. It may have already been set when entering
kv_alloc() in which case it must remain set on exit. In
particular the kswapd thread will have PF_MEMALLOC set in
order to prevent it from entering direct reclaim. By clearing
it we allow the following NULL deref to potentially occur.
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: [<ffffffff8109c7ab>] balance_pgdat+0x25b/0x4ff
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes ZFS issue #287
This would cause problems when using 'zfs send' with a file as the
target (rather than a pipe or a socket as is usually the case) as
for each write the destination offset in the file would be 0.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes ZFS issue #391
The typo did not have any effect (apart from a negligible performance
impact) because skc->skc_flags * KMC_OFFSLAB is always non-null when
at least one bit in skc->skc_flags is set.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
In a non-debug build the ASSERT() would be optimized away
which could cause pending work items to not be cancelled.
We must also use cancel_delayed_work_sync() rather than just
cancel_delayed_work() to actually wait until work items have
completed. Otherwise they might accidentally access free'd
memory.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes ZFS bugs #279, #62, #363, #418
File descriptors are a per-process resource. The same descriptor
in different processes can refer to different files. find_file()
incorrectly assumed that file descriptors are globally unique.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes ZFS issue #386
No longer print the following warning to the console when the
/etc/hostid file is missing. This is the expected default behavior.
Keeping the hostid in sync with the initramfs is now accomplished
by creating the /etc/hostid in the initramfs not on the system.
SPL: The /etc/hostid file is not found.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When running 'make install' without DESTDIR set the module install
rules would mistakenly destroy the 'modules.*' files for ALL of
your installed kernels. This could lead to a non-functional system
for the alternate kernels because 'depmod -a' will only be run for
the kernel which was compiled against. This issue would not impact
anyone using the 'make <deb|rpm|pkg>' build targets to build and
install packages.
The fix for this issue is to only remove extraneous build products
when DESTDIR is set. This almost exclusively indicates we are
building packages and installed the build products in to a temporary
staging location. Additionally, limit the removal the unneeded
build products to the target kernel version.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#328
Deprecate the /usr/bin/hostid call by reading the /etc/hostid file
directly. Add the spl_hostid_path parameter to override the default
/etc/hostid path.
Rename the set_hostid() function to hostid_exec() to better reflect
actual behavior and complement the new hostid_read() function.
Use HW_INVALID_HOSTID as the spl_hostid sentinel value because
zero seems to be a valid gethostid() result on Linux.
While the splat tests were originally designed to stress test
the Solaris primatives. I am extending them to include some kernel
compatibility tests. Certain linux APIs have changed frequently.
These tests ensure that added compatibility is working properly
and no unnoticed regression have slipped in.
Test 1 and 2 add basic regression tests for shrink_icache_memory
and shrink_dcache_memory. These are simply functional tests to
ensure we can call these functions safely. Checking for correct
behavior is more difficult since other running processes will
influence the behavior. However, these functions are provided
by the kernel so if we can successfully call them we assume they
are working correctly.
Test 3 checks that shrinker functions are being registered and
called correctly. As of Linux 3.0 the shrinker API has changed
four different times so I felt the need to add a trivial test
case to ensure each variant works as expected.
Update the the wrapper macros for the memory shrinker to handle
this 4th API change. The callback function now takes a
shrink_control structure. This is certainly a step in the
right direction but it's annoying to have to accomidate yet
another version of the API.
It has become necessary to be able to optionally disable
direct memory reclaim for certain taskqs. To support
this the TASKQ_NORECLAIM flags has been added which sets
the PF_MEMALLOC bit for all threads in the taskq.
Change the SPL kernel messages for module loading and module
unloading so that they are similar to the ZFS kernel messages.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This reverts commit 1814251453.
Demote the gawk call back to awk and ensure that stderr is attached. GNU gawk
tolerates a missing stderr handle, but many utilities do not, which could be
why a regular awk call was unexplainably failing on some systems.
Use argv[0] instead of sh_path for consistency internally and with other Linux
drivers.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Provide a call_usermodehelper() alternative by letting the hostid be passed as
a module parameter like this:
$ modprobe spl spl_hostid=0x12345678
Internally change the spl_hostid variable to unsigned long because that is the
type that the coreutils /usr/bin/hostid returns.
Move the hostid command into GET_HOSTID_CMD for consistency with the similar
GET_KALLSYMS_ADDR_CMD invocation.
Use argv[0] instead of sh_path for consistency internally and with other Linux
drivers.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The function zlib_deflate_workspacesize() now take 2 arguments.
This was done to avoid always having to allocate the maximum size
workspace (268K). The caller can now specific the windowBits and
memLevel compression parameters to get a smaller workspace.
For our purposes we introduce a spl_zlib_deflate_workspacesize()
wrapper which accepts both arguments. When the two argument
version of zlib_deflate_workspacesize() is available the arguments
are passed through. When it's not we assume the worst case and
a maximally sized workspace is used.
The path_lookup() function has been renamed to kern_path_parent()
and the flags argument has been removed. The only behavior now
offered is that of LOOKUP_PARENT. The spl already always passed
this flag so dropping the flag does not impact us.
This is a long over due compatibility change. Way, way, way back
in 2007 there was a push to remove all consumers of SPIN_LOCK_UNLOCKED.
Finally, in 2011 with 2.6.39 all the consumers have been updated
and SPIN_LOCK_UNLOCKED was removed. It's about time we use the
new API as well, this change does exactly that. DEFINE_SPINLOCK()
was available as far back as 2.6.12 so there doesn't need to be
any additional autoconf-foo for this change.
Flagged by the default -Wunused-but-set-variable gcc option when
running under Fedora 15. Since it's correct this variable is
entirely unused this commit removes it.
To resolve a potiential filesystem corruption issue a second
argument was added to invalidate_inodes(). This argument controls
whether dirty inodes are dropped or treated as busy when invalidating
a super block. When only the legacy API is available the second
argument will be dropped for compatibility.
Provide the dnlc_reduce_cache() function which attempts to prune
cached entries from the dcache and icache. After the entries are
pruned any slabs which they may have been using are reaped.
Note the API takes a reclaim percentage but we don't have easy
access to the total number of cache entries to calculate the
reclaim count. However, in practice this doesn't need to be
exactly correct. We simply need to reclaim some useful fraction
(but not all) of the cache. The caller can determine if more
needs to be done.
One of the most common things you want to know when looking at
the slab is how much memory is being used. This information was
available in /proc/spl/kmem/slab but only on a per-slab basis.
This commit adds the following /proc/sys/kernel/spl/kmem/slab*
entries to make total slab usage easily available at a glance.
slab_kmem_total - Total kmem slab size
slab_kmem_avail - Alloc'd kmem slab size
slab_kmem_max - Max observed kmem slab size
slab_vmem_total - Total vmem slab size
slab_vmem_avail - Alloc'd vmem slab size
slab_vmem_max - Max observed vmem slab size
NOTE: The slab_*_max values are expected to over report because
they show maximum values since boot, not current values.
The 'slab_fail', 'slab_create', and 'slab_destroy' columns in the slab
output have been removed because they are virtually always zero and
not very useful.
The much more useful 'size' and 'alloc' columns have been added which
show the total slab size and how much of the total size has been
allocated to objects.
Finally, the formatting has been updated to be much more human
readable while still being friendly for tool like awk to parse.
The Linux shrinker has gone through three API changes since 2.6.22.
Rather than force every caller to understand all three APIs this
change consolidates the compatibility code in to the mm-compat.h
header. The caller then can then use a single spl provided
shrinker API which does the right thing for your kernel.
SPL_SHRINKER_CALLBACK_PROTO(shrinker_callback, cb, nr_to_scan, gfp_mask);
SPL_SHRINKER_DECLARE(shrinker_struct, shrinker_callback, seeks);
spl_register_shrinker(&shrinker_struct);
spl_unregister_shrinker(&&shrinker_struct);
spl_exec_shrinker(&shrinker_struct, nr_to_scan, gfp_mask);
Solaris credentials don't have an fsuid/fsguid field but Linux
credentials do. To handle this case the Solaris API is being
modestly extended to include the crgetfsuid()/crgetfsgid()
helper functions.
Addititionally, because the crget*() helpers are implemented
identically regardless of HAVE_CRED_STRUCT they have been
moved outside the #ifdef to common code. This simplification
means we only have one version of the helper to keep to to date.
As part of vmalloc() a __pte_alloc_kernel() allocation may occur. This
internal allocation does not honor the gfp flags passed to vmalloc().
This means even when vmalloc(GFP_NOFS) is called it is possible that a
synchronous reclaim will occur. This reclaim can trigger file IO which
can result in a deadlock. This issue can be avoided by explicitly
setting PF_MEMALLOC on the process to subvert synchronous reclaim when
vmalloc() is called with !__GFP_FS.
An example stack of the deadlock can be found here (1), along with the
upstream kernel bug (2), and the original bug discussion on the
linux-mm mailing list (3). This code can be properly autoconf'ed
when the upstream bug is fixed.
1) http://github.com/behlendorf/zfs/issues/labels/Vmalloc#issue/133
2) http://bugzilla.kernel.org/show_bug.cgi?id=30702
3) http://marc.info/?l=linux-mm&m=128942194520631&w=4
The xvattr support in the spl has always simply consisted of
defining a couple structures and a few #defines. This was enough
to enable compilation of code which just passed xvattr types
around but not enough to effectively manipulate them.
This change removes even this minimal support leaving it up
to packages which leverage the spl to prove the full xvattr
support. By removing it from the spl we ensure not conflict
with the higher level packages.
This just leaves minimal vnode support for basical manipulation
of files. This code is does have the proper support functions
in the spl and a set of regression tests.
Additionally, this change removed the unused 'caller_context_t *'
type and replaces it with a 'void *'.
A zlib regression test has been added to verify the correct behavior
of z_compress_level() and z_uncompress. The test case simply takes
a 128k buffer, it compresses the buffer, it them uncompresses the
buffer, and finally it compares the buffers after the transform.
If the buffers match then everything is fine and no data was lost.
It performs this test for all 9 zlib compression levels.
While portions of the code needed to support z_compress_level() and
z_uncompress() where in place. In reality the current implementation
was non-functional, it just was compilable.
The critical missing component was to setup a workspace for the
compress/uncompress stream structures to use. A kmem_cache was
added for the workspace area because we require a large chunk
of memory. This avoids to need to continually alloc/free this
memory and vmap() the pages which is very slow. Several objects
will reside in the per-cpu kmem_cache making them quick to acquire
and release. A further optimization would be to adjust the
implementation to additional ensure the memory is local to the cpu.
Currently that may not be the case.
In the 2.6.37 kernel the function invalidate_inodes() is no longer
exported for use by modules. This memory management functionality
is needed to invalidate the inodes attached to a super block without
unmounting the filesystem.
Because this function still exists in the kernel and the prototype
is available is a common header all we strictly need is the symbol
address. The address is obtained using spl_kallsyms_lookup_name()
and assigned to the variable invalidate_inodes_fn. Then a #define
is used to replace all instances of invalidate_inodes() with a
call to the acquired address. All the complexity is hidden behind
HAVE_INVALIDATE_INODES and invalidate_inodes() can be used as usual.
Long term we should try to get this, or another, interface made
available to modules again.
Previously we would ASSERT in cv_destroy() if it was ever called
with active waiters. However, I've now seen several instances in
OpenSolaris code where they do the following:
cv_broadcast();
cv_destroy();
This leaves no time for active waiters to be woken up and scheduled
and we trip the ASSERT. This has not been observed to be an issue
on OpenSolaris because their cv_destroy() basically does nothing.
They still do run the risk of the memory being free'd after the
cv_destroy() and hitting a bad paging request. But in practice
this race is so small and unlikely it either doesn't happen, or
is so unlikely when it does happen the root cause has not yet been
identified.
Rather than risk the same issue in our code this change updates
cv_destroy() to block until all waiters have been woken and
scheduled. This may take some time because each waiter must
acquire the mutex.
This change may have an impact on performance for frequently
created and destroyed condition variables. That however is a price
worth paying it avoid crashing your system. If performance issues
are observed they can be addressed by the caller.
Previously these were defined to noops but rather than give
the misleading impression that these are actually implemented
I'm removing the type entirely for clarity.
Both of these caches were previously allowed to be either a
vmem or kmem cache based on the size of the object involved.
Since we know the object won't be to large and performce is
much better for a kmem cache for them to be kmem backed.
The cv_timedwait() function by definition must wait unconditionally
for cv_signal()/cv_broadcast() before waking. This causes processes
to go in the D state which increases the load average. The load
average is the summation of processes in D state and run queue.
To avoid this it can be desirable to sleep interruptibly. These
processes do not count against the load average but may be woken by
a signal. It is up to the caller to determine why the process
was woken it may be for one of three reasons.
1) cv_signal()/cv_broadcast()
2) the timeout expired
3) a signal was received
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Create spl_inode_lock/spl_inode_unlock compability macros to simply
access to the inode mutex/sem. This avoids the need to have to ugly
up the code with the required #define's at every call site. At the
moment the SPL only uses this in one place but higher layers can
benefit from the macro.
To validate the correct behavior of the TSD interfaces it's
important that we add a regression test. This test is designed
to minimally exercise the fundamental TSD behavior, it does not
attempt to validate all potential corner cases.
The test will first create 32 keys via tsd_create() and register
a common destructor. Next 16 wait threads will be created each
of which set/verify a random value for all 32 keys, then block
waiting to be released by the control thread. Meanwhile the
control thread verifies that none of the destructors have been
run prematurely.
The next phase of the test is to create 16 exit threads which
set/verify a random value for all 32 keys. They then immediately
exit. This is is designed to verify tsd_exit() which will be
called via thread_exit(). This must result in all registered
destructors being run and the memory for the tsd being free'd.
After this tsd_destroy() is verified by destroying all 32 keys.
Once again we must see the expected number of destructors run
and the tsd memory free'd. At this point the blocked threads
are released and they exit calling tsd_exit() which should do
very little since all the tsd has already been destroyed.
If this all goes off without a hitch the test passes. To ensure
no memory has been leaked, I have manually verified that after
spl module unload no memory is reported leaked.
Thread specific data has implemented using a hash table, this avoids
the need to add a member to the task structure and allows maximum
portability between kernels. This implementation has been optimized
to keep the tsd_set() and tsd_get() times as small as possible.
The majority of the entries in the hash table are for specific tsd
entries. These entries are hashed by the product of their key and
pid because by design the key and pid are guaranteed to be unique.
Their product also has the desirable properly that it will be uniformly
distributed over the hash bins providing neither the pid nor key is zero.
Under linux the zero pid is always the init process and thus won't be
used, and this implementation is careful to never to assign a zero key.
By default the hash table is sized to 512 bins which is expected to
be sufficient for light to moderate usage of thread specific data.
The hash table contains two additional type of entries. They first
type is entry is called a 'key' entry and it is added to the hash during
tsd_create(). It is used to store the address of the destructor function
and it is used as an anchor point. All tsd entries which use the same
key will be linked to this entry. This is used during tsd_destory() to
quickly call the destructor function for all tsd associated with the key.
The 'key' entry may be looked up with tsd_hash_search() by passing the
key you wish to lookup and DTOR_PID constant as the pid.
The second type of entry is called a 'pid' entry and it is added to the
hash the first time a process set a key. The 'pid' entry is also used
as an anchor and all tsd for the process will be linked to it. This
list is using during tsd_exit() to ensure all registered destructors
are run for the process. The 'pid' entry may be looked up with
tsd_hash_search() by passing the PID_KEY constant as the key, and
the process pid. Note that tsd_exit() is called by thread_exit()
so if your using the Solaris thread API you should not need to call
tsd_exit() directly.
For debugging purposes the condition varaibles keep track of the
mutex used during a wait. The idea is to validate that all callers
always use the same mutex. Unfortunately, we have seen cases where
the caller reuses the condition variable with a different mutex but
in a way which is known to be safe. My reading of the man pages
suggests you should not do this and always cv_destroy()/cv_init()
a new mutex. However, there is overhead in doing this and it does
appear to be allowed under Solaris.
To accomidate this behavior cv_wait_common() and __cv_timedwait()
have been modified to clear the associated mutex when the last
waiter is dropped. This ensures that while the condition variable
is in use the incorrect mutex case is detected. It also allows the
condition variable to be safely recycled without requiring the
overhead of a cv_destroy()/cv_init() as long as it isn't currently
in use.
Finally, spin lock cv->cv_lock was removed because it is not required.
When the condition variable is used properly the caller will always
be holding the mutex so the spin lock is redundant. The lock was
originally added because I expected to need to protect more than
just the cv->cv_mutex. It turns out that was not the case.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
As of linux-2.6.36 the last in-tree consumer of fops->ioctl() has
been removed and thus fops()->ioctl() has also been removed. The
replacement hook is fops->unlocked_ioctl() which has existed in
kernel since 2.6.12. Since the SPL only contains support back
to 2.6.18 vintage kernels, I'm not adding an autoconf check for
this and simply moving everything to use fops->unlocked_ioctl().
In the linux-2.6.36 kernel the fs_struct lock was changed from a
rwlock_t to a spinlock_t. If the kernel would export the set_fs_pwd()
symbol by default this would not have caused us any issues, but they
don't. So we're forced to add a new autoconf check which sets the
HAVE_FS_STRUCT_SPINLOCK define when a spinlock_t is used. We can
then correctly use either spin_lock or write_lock in our custom
set_fs_pwd() implementation.
Flagged by the default compile options on archlinux 2010.05, we should
be using the krw_t type not the krw_type_t type in the private data.
module/splat/splat-rwlock.c: In function ‘splat_rwlock_test4_func’:
module/splat/splat-rwlock.c:432:6: warning: case value ‘1’ not in
enumerated type ‘krw_type_t’
As of linux-2.6.35 the shrinker callback API now takes an additional
argument. The shrinker struct is passed to the callback so that users
can embed the shrinker structure in private data and use container_of()
to access it. This removes the need to always use global state for the
shrinker.
To handle this we add the SPL_AC_3ARGS_SHRINKER_CALLBACK autoconf
check to properly detect the API. Then we simply setup a callback
function with the correct number of arguments. For now we do not make
use of the new 3rd argument.
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/spl/spl-x.y.z.tar.gz
tar -xzf spl-x.y.z.tar.gz
cd spl-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This is something the project has almost supported for a long time
but finishing this support should save me lots of time.
At some point we are going to need to implement the kmem cache
move callbacks to allow for kmem cache defragmentation. This
commit simply lays a small part of the API ground work, it does
not actually implement any of this feature. This is safe for
now because the move callbacks are just an optimization. Even
if they are registered we don't ever really have to call them.
Unless __GFP_IO and __GFP_FS are removed from the file mapping gfp
mask we may enter memory reclaim during IO. In this case shrink_slab()
entered another file system which is notoriously hungry for stack.
This additional stack usage may cause a stack overflow. This patch
removes __GFP_IO and __GFP_FS from the mapping gfp mask of each file
during vn_open() to avoid any reclaim in the vn_rdwr() IO path. The
original mask is then restored at vn_close() time. Hats off to the
loop driver which does something similiar for the same reason.
[...]
shrink_slab+0xdc/0x153
try_to_free_pages+0x1da/0x2d7
__alloc_pages+0x1d7/0x2da
do_generic_mapping_read+0x2c9/0x36f
file_read_actor+0x0/0x145
__generic_file_aio_read+0x14f/0x19b
generic_file_aio_read+0x34/0x39
do_sync_read+0xc7/0x104
vfs_read+0xcb/0x171
:spl:vn_rdwr+0x2b8/0x402
:zfs:vdev_file_io_start+0xad/0xe1
[...]
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When TQ_SLEEP is used, taskq_dispatch() should always succeed even if the
number of pending tasks is above tq->tq_maxalloc. This semantic is similar
to KM_SLEEP in kmem allocations, which also always succeed.
However, we cannot block forever otherwise there is a risk of deadlock.
Therefore, we still allow the number of pending tasks to go above
tq->tq_maxalloc with TQ_SLEEP, but we may sleep up to 1 second per task
dispatch, thereby throttling the task dispatch rate.
One of the existing splat tests was also augmented to test for this scenario.
The test would fail with the previous implementation but now it succeeds.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Using kmem_free() results in deducting X bytes from the memory
accounting when --enable-debug is set. Unfortunately, currently
the counterpart kmem_asprintf() and friends do not properly
account for memory allocated, so we must do the same on free.
If we don't then we end up with a negative number of lost bytes
reported when the module is unloaded.
A better long term fix would be to add the accounting in to the
allocation side but that's a project for another day.
Extend the Makefiles with an uninstall target to cleanly
remove a package which was installed with 'make install'.
Additionally, ensure a 'depmod -a' is run as part of the
install to update the module dependency information.
The Solaris semantics for kmem_alloc() and vmem_alloc() are that they
must never fail when called with KM_SLEEP. They may only fail if
called with KM_NOSLEEP otherwise they must block until memory is
available. This is quite different from how the Linux memory
allocators work, under Linux a memory allocation failure is always
possible and must be dealt with.
At one point in the past the kmem code did properly implement this
behavior, however as the code evolved this behavior was overlooked
in places. This patch goes through all three implementations of
the kmem/vmem allocation functions and ensures that they will all
block in the KM_SLEEP case when memory is not available. They
may still fail in the KM_NOSLEEP case in which case the caller
is responsible for handling the failure.
Special care is taken in vmalloc_nofail() to avoid thrashing the
system on the virtual address space spin lock. The down side of
course is if you do see a failure here, which is unlikely for
64-bit systems, your allocation will delay for an entire second.
Still this is preferable to locking up your system and it is the
best we can do given the constraints.
Additionally, the code was cleaned up to be much more readable
and comments were added to describe the various kmem-debug-*
configure options. The default configure options remain:
"--enable-debug-kmem --disable-debug-kmem-tracking"
In cmd/splat.c there was a comparison between an __u32 and an int. To
resolve the issue simply use a __u32 and strtoul() when converting the
provided user string.
In module/spl/spl-vnode.c we should explicitly cast nd->last.name to
a const char * which is what is expected by the prototype.
Commit 55abb0929e removed the never
used format1 argument of spl_debug_msg(). That in turn resulted
in some deadcode which should be removed since it's now useless.
When the kvasprintf() call fails they should reset the arguments
by calling va_start()/va_copy() and va_end() inside the loop,
otherwise they'll try to read more arguments rather than starting
over and reading them from the beginning.
Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
To avoid conflicts with symbols defined by dependent packages
all debugging symbols have been prefixed with a 'S' for SPL.
Any dependent package needing to integrate with the SPL debug
should include the spl-debug.h header and use the 'S' prefixed
macros. They must also build with DEBUG defined.
To avoid symbol conflicts with dependent packages the debug
header must be split in to several parts. The <sys/debug.h>
header now only contains the Solaris macro's such as ASSERT
and VERIFY. The spl-debug.h header contain the spl specific
debugging infrastructure and should be included by any package
which needs to use the spl logging. Finally the spl-trace.h
header contains internal data structures only used for the log
facility and should not be included by anythign by spl-debug.c.
This way dependent packages can include the standard Solaris
headers without picking up any SPL debug macros. However, if
the dependant package want to integrate with the SPL debugging
subsystem they can then explicitly include spl-debug.h.
Along with this change I have dropped the CHECK_STACK macros
because the upstream Linux kernel now has much better stack
depth checking built in and we don't need this complexity.
Additionally SBUG has been replaced with PANIC and provided as
part of the Solaris macro set. While the Solaris version is
really panic() that conflicts with the Linux kernel so we'll
just have to make due to PANIC. It should rarely be called
directly, the prefered usage would be an ASSERT or VERIFY.
There's lots of change here but this cleanup was overdue.
The threads in the splat atomic:64-bit test share the data structure
atomic_priv_t ap, which lives on the kernel stack of the splat user-space
utility. If splat terminates before the threads, accesses to that memory
location by the other threads become invalid. Splat synchronizes with
the threads with the call:
wait_event_interruptible(ap.ap_waitq, splat_atomic_test1_cond(&ap, i));
Apparently, the SIGINT wakes and terminates splat prematurely, so that
GPFs or other bad things happen when the threads subsequently access ap.
This commit prevents this by using the uninterruptible form:
wait_event(ap.ap_waitq, splat_atomic_test1_cond(&ap, i));
The prototype for filp_fsync() drop the unused argument 'stuct dentry *'.
I've fixed this by adding the needed autoconf check and moving all of
those filp related functions to file_compat.h. This will simplify
handling any further API changes in the future.
Up until now no SPL consumer attempted to perform signed 64-bit
division so there was no need to support this. That has now
changed so I adding 64-bit division support for 32-bit platforms.
The signed implementation is based on the unsigned version.
Since the have been several bug reports in the past concerning
correct 64-bit division on 32-bit platforms I added some long
over due regression tests. Much to my surprise the unsigned
64-bit division regression tests failed.
This was surprising because __udivdi3() was implemented by simply
calling div64_u64() which is provided by the kernel. This meant
that the linux kernels 64-bit division algorithm on 32-bit platforms
was flawed. After some investigation this turned out to be exactly
the case.
Because of this I was forced to abandon the kernel helper and
instead to fully implement 64-bit division in the spl. There are
several published implementation out there on how to do this
properly and I settled on one proposed in the book Hacker's Delight.
Their proposed algoritm is freely available without restriction
and I have just modified it to be linux kernel friendly.
The update implementation now passed all the unsigned and signed
regression tests. This should be functional, but not fast, which is
good enough for out purposes. If you want fast too I'd strongly
suggest you upgrade to a 64-bit platform. I have also reported the
kernel bug and we'll see if we can't get it fixed up stream.
For some reason when awk invoked by the usermode helper the command
always fails. Interestingly gawk does not suffer from this problem
which is why I never observed this failure since the distro I tested
with all had gawk installed instead of awk. Anyway, the simplest
thing to do here is to just make gawk mandatory. I've added a
configure check for gawk specifically and have updated the command
to call gawk not awk.