The exact limitations on what features are supported when booting
vary considerably depending on the environment. In order to minimize
confusion avoid categorical statements which assume GRUB2 is being
used. The supported GRUB2 features are covered earlier in this man
page for easy reference.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#11842
Refer to the correct section or alternative for FreeBSD and Linux.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#11132
* Use all caps for document title.
* Remove section name as it can be inferred from the section number.
* Name "OpenZFS" as the document source.
* Bump modification date.
While here, fixed trailing whitespace reported by igor.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10792
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
The GRUB restrictions are based around the pool's bootfs property.
Given the current situation where GRUB is not staying current with
OpenZFS pool features, having either a non-ZFS /boot or a separate
pool with limited features are pretty much the only long-term answers
for GRUB support. Only the second case matters in this context. For
the restrictions to be useful, the bootfs property would have to be set
on the boot pool, because that is where we need the restrictions, as
that is the pool that GRUB reads from. The documentation for bootfs
describes it as pointing to the root pool. That's also how it's used in
the initramfs. ZFS does not allow setting bootfs to point to a dataset
in another pool. (If it did, it'd be difficult-to-impossible to enforce
these restrictions cross-pool). Accordingly, bootfs is pretty much
useless for GRUB scenarios moving forward.
Even for users who have only one pool, the existing restrictions for
GRUB are incomplete. They don't prevent you from enabling the
unsupported checksums, for example. For that reason, I have ripped out
all the GRUB restrictions.
A little longer-term, I think extending the proposed features=portable
system to define a features=grub is a much more useful approach. The
user could set that on the boot pool at creation, and things would
Just Work.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8627
The device_rebuild feature enables sequential reconstruction when
resilvering. Mirror vdevs can be rebuilt in LBA order which may
more quickly restore redundancy depending on the pools average block
size, overall fragmentation and the performance characteristics
of the devices. However, block checksums cannot be verified
as part of the rebuild thus a scrub is automatically started after
the sequential resilver completes.
The new '-s' option has been added to the `zpool attach` and
`zpool replace` command to request sequential reconstruction
instead of healing reconstruction when resilvering.
zpool attach -s <pool> <existing vdev> <new vdev>
zpool replace -s <pool> <old vdev> <new vdev>
The `zpool status` output has been updated to report the progress
of sequential resilvering in the same way as healing resilvering.
The one notable difference is that multiple sequential resilvers
may be in progress as long as they're operating on different
top-level vdevs.
The `zpool wait -t resilver` command was extended to wait on
sequential resilvers. From this perspective they are no different
than healing resilvers.
Sequential resilvers cannot be supported for RAIDZ, but are
compatible with the dRAID feature being developed.
As part of this change the resilver_restart_* tests were moved
in to the functional/replacement directory. Additionally, the
replacement tests were renamed and extended to verify both
resilvering and rebuilding.
Original-patch-by: Isaac Huang <he.huang@intel.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: John Poduska <jpoduska@datto.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#10349
Moving forward, we wish to use org.openzfs (no dash) rather than
org.open-zfs or org.zfsonlinux for feature GUIDs and property names.
The existing feature GUIDs cannot be changed.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#10003
FreeBSD uses its own crypto framework in-kernel which, at this time,
has no EDONR implementation.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Signed-off-by: Ryan Moeller <ryan@ixsystems.com>
Closes#9664
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9233
Update zpool-features.5 manpage to describe the log_spacemap feature.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#9096
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.
This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.
We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes#8416
The full property name includes "delphix", not "delphxi".
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8985
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7958
As far as I know and can tell from testing, \fB\fB...\fR\fR is exactly
equivalent to \fB...\fR.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
The features are sorted in the en_US locale, not the C locale.
Specifically, that means that bookmark_v2 comes _after_ bookmarks.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
This command is being used to unindent, so it should be at the end of
each block. This is consistent with the other man pages.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
It is org.open-zfs:large_blocks (plural).
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
The first sentence of this commit comes from the wiki, and was
originally written by:
Rich Ercolani <rincebrain@gmail.com>
with changes by:
Tom Caputi <tcaputi@datto.com>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641Closes#8642
encryption depends on bookmark_v2.
bookmark_v2 depends on bookmarks.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
This needs to use tabs instead of spaces to display correctly (i.e. with
things lined up).
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
zfs.8 correctly said that GRUB did not support them, but
zpool-features.5 said that "Booting off pools...is supported." Now,
zpool-features.5 discusses GRUB specifically and indicates its lack of
support for these features. Also, I have clarified the wording in both
places to indicate that the pool feature cannot be used. It's not a
filesystem dataset thing, but pool-wide.
I described this as "cannot be used". I think technically the feature
can be enabled, just not active. However, the effect is essentially the
same: you cannot enable those checksum algorithms on any dataset in the
pool, so you might as well not enable the feature (which is just
pointing a loaded gun at your foot). In the past, an argument could be
made that having all the features enabled was useful for simplicity, as
long as you didn't activate the GRUB-incompatible features, but that's
getting less and less realistic over time. A user can still do that,
but we should not encourage that.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626Closes#8446
The old wording was effectively "You can not use this (except you can)",
which just seems confusing.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
This had a mix of command vs subcommand, quoted vs not quoted, and
bolded vs. not bolded command names.
Also, fix man page sections from 1M (Solaris) to 8 (Linux).
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8626
This patch adds the bookmark v2 feature to the on-disk format. This
feature will be needed for the upcoming redacted sends and for an
upcoming fix that for raw receives. The feature is not currently
used by any code and thus this change is a no-op, aside from the
fact that the user can now enable the feature.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Issue #8308
The implementation of 'zfs remap' has proven to be problematic since
it modifies the objset (but not its logical contents) by dirtying
metadata without owning it. The consequence of which is that
dmu_objset_remap_indirects() is vulnerable to certain races.
For example, if we are in the middle of receiving into the filesystem
while it is being remapped. Then it is possible we could evict the
objset when the receive completes (see dsl_dataset_clone_swap_sync_impl,
or dmu_recv_end_sync), but dmu_objset_remap_indirects() may be still
using the objset. The result of which would be a panic.
Extended runs of ztest(8) have exposed other possible races which
can occur when using 'zfs remap'. Several of these have been fixed
but there may be others which have not yet been encountered and
diagnosed.
Furthermore, the ability to manually remap a filesystem is no longer
particularly useful now that the removal code can map large chunks.
Coupled with the fact that explaining what this command does and why
it may be useful requires a detailed understanding of the internals
of device removal. These are details users should not be bothered
with.
Therefore, the 'zfs remap' command is being disabled but not entirely
removed. It may be removed in the future or potentially reworked
to address the issues described above. Since 'zfs remap' has never
been part of a tagged release its removal is expected to have
minimal impact.
The ZTS tests have been updated to continue to exercise the command
to prevent atrophy, but it has been removed entirely from ztest(8).
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8238
Currently, if a resilver is triggered for any reason while an
existing one is running, zfs will immediately restart the existing
resilver from the beginning to include the new drive. This causes
problems for system administrators when a drive fails while another
is already resilvering. In this case, the optimal thing to do to
reduce risk of data loss is to wait for the current resilver to end
before immediately replacing the second failed drive, which allows
the system to operate with two incomplete drives for the minimum
amount of time.
This patch introduces the resilver_defer feature that essentially
does this for the admin without forcing them to wait and monitor
the resilver manually. The change requires an on-disk feature
since we must mark drives that are part of a deferred resilver in
the vdev config to ensure that we do not assume they are done
resilvering when an existing resilver completes.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: @mmaybee
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7732
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: DHE <git@dehacked.net>
Closes#7920
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#5182
Porting notes:
* As of grub-2.02 these checksums are not supported. However, as
pointed out in #6501 there are alternatives such as EFISTUB which
work and have no such restriction. A warning was added to the
checksum property section of the zfs.8 man page.
Authored by: Toomas Soome <tsoome@me.com>
Reviewed by: C Fraire <cfraire@me.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Yuri Pankov <yuripv@yuripv.net>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/8906
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7dec52fCloses#6501Closes#7714
Motivation
==========
The current space map encoding has the following disadvantages:
[1] Assuming 512 sector size each entry can represent at most 16MB for a segment.
This makes the encoding very inefficient for large regions of space.
[2] As vdev-wide space maps have started to be used by new features (i.e.
device removal, zpool checkpoint) we've started imposing limits in the
vdevs that can be used with them based on the maximum addressable offset
(currently 64PB for a top-level vdev).
New encoding
============
The layout can be found at space_map.h and it remains backwards compatible with
the old one. The introduced two-word entry format, besides extending the limits
imposed by the single-entry layout, also includes a vdev field and some extra
padding after its prefix.
The extra padding after the prefix should is reserved for future usage (e.g.
new prefixes for future encodings or new fields for flags). The new vdev field
not only makes the space maps more self-descriptive, but also opens the doors
for pool-wide space maps (expected to be used in the log spacemap project).
One final important note is that the number of bits used for vdevs is reduced
to 24 bits for blkptrs. That was decided as we don't know of any setups that
use more than 16M vdevs for the time being and we wanted to fit the vdev field
in the space map. In addition that gives us some extra bits in dva_t.
Other references:
=================
The new encoding is also discussed towards the end of the Log Space Map
presentation from 2017's OpenZFS summit.
Link: https://www.youtube.com/watch?v=jj2IxRkl5bQ
Authored by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Gordon Ross <gwr@nexenta.com>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/90a56e6d
OpenZFS-issue: https://www.illumos.org/issues/9238Closes#7665
The formatting of the features beginning with large_blocks was broken
when the zpool_checkpoint feature was added.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7658
Details about the motivation of this feature and its usage can
be found in this blogpost:
https://sdimitro.github.io/post/zpool-checkpoint/
A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM
Implementation details can be found in big block comment of
spa_checkpoint.c
Side-changes that are relevant to this commit but not explained
elsewhere:
* renames members of "struct metaslab trees to be shorter without
losing meaning
* space_map_{alloc,truncate}() accept a block size as a
parameter. The reason is that in the current state all space
maps that we allocate through the DMU use a global tunable
(space_map_blksz) which defauls to 4KB. This is ok for metaslab
space maps in terms of bandwirdth since they are scattered all
over the disk. But for other space maps this default is probably
not what we want. Examples are device removal's vdev_obsolete_sm
or vdev_chedkpoint_sm from this review. Both of these have a
1:1 relationship with each vdev and could benefit from a bigger
block size.
Porting notes:
* The part of dsl_scan_sync() which handles async destroys has
been moved into the new dsl_process_async_destroys() function.
* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
to block device backed pools.
* ZTS:
* Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".
* Don't use large dd block sizes on /dev/urandom under Linux in
checkpoint_capacity.
* Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
its attempts to fill the pool
* Create the base and nested pools with sync=disabled to speed up
the "setup" phase.
* Clear labels in test pool between checkpoint tests to avoid
duplicate pool issues.
* The import_rewind_device_replaced test has been marked as "known
to fail" for the reasons listed in its DISCLAIMER.
* New module parameters:
zfs_spa_discard_memory_limit,
zfs_remove_max_bytes_pause (not documented - debugging only)
vdev_max_ms_count (formerly metaslabs_per_vdev)
vdev_min_ms_count
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8Closes#7570
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
Project quota is a new ZFS system space/object usage accounting
and enforcement mechanism. Similar as user/group quota, project
quota is another dimension of system quota. It bases on the new
object attribute - project ID.
Project ID is a numerical value to indicate to which project an
object belongs. An object only can belong to one project though
you (the object owner or privileged user) can change the object
project ID via 'chattr -p' or 'zfs project [-s] -p' explicitly.
The object also can inherit the project ID from its parent when
created if the parent has the project inherit flag (that can be
set via 'chattr +P' or 'zfs project -s [-p]').
By accounting the spaces/objects belong to the same project, we
can know how many spaces/objects used by the project. And if we
set the upper limit then we can control the spaces/objects that
are consumed by such project. It is useful when multiple groups
and users cooperate for the same project, or a user/group needs
to participate in multiple projects.
Support the following commands and functionalities:
zfs set projectquota@project
zfs set projectobjquota@project
zfs get projectquota@project
zfs get projectobjquota@project
zfs get projectused@project
zfs get projectobjused@project
zfs projectspace
zfs allow projectquota
zfs allow projectobjquota
zfs allow projectused
zfs allow projectobjused
zfs unallow projectquota
zfs unallow projectobjquota
zfs unallow projectused
zfs unallow projectobjused
chattr +/-P
chattr -p project_id
lsattr -p
This patch also supports tree quota based on the project quota via
"zfs project" commands set as following:
zfs project [-d|-r] <file|directory ...>
zfs project -C [-k] [-r] <file|directory ...>
zfs project -c [-0] [-d|-r] [-p id] <file|directory ...>
zfs project [-p id] [-r] [-s] <file|directory ...>
For "df [-i] $DIR" command, if we set INHERIT (project ID) flag on
the $DIR, then the proejct [obj]quota and [obj]used values for the
$DIR's project ID will be shown as the total/free (avail) resource.
Keep the same behavior as EXT4/XFS does.
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by Ned Bass <bass6@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fan Yong <fan.yong@intel.com>
TEST_ZIMPORT_POOLS="zol-0.6.1 zol-0.6.2 master"
Change-Id: Ib4f0544602e03fb61fd46a849d7ba51a6005693c
Closes#6290
Large_blocks feature activation was not consistent with man page,
which erroneously stated that the feature was active when the
recordsize was increased past the stock 128KB. It actually
becomes active when data is written to the dataset.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: bunder2015 <omfgbunder@gmail.com>
Closes#6275Closes#7093
This change incorporates three major pieces:
The first change is a keystore that manages wrapping
and encryption keys for encrypted datasets. These
commands mostly involve manipulating the new
DSL Crypto Key ZAP Objects that live in the MOS. Each
encrypted dataset has its own DSL Crypto Key that is
protected with a user's key. This level of indirection
allows users to change their keys without re-encrypting
their entire datasets. The change implements the new
subcommands "zfs load-key", "zfs unload-key" and
"zfs change-key" which allow the user to manage their
encryption keys and settings. In addition, several new
flags and properties have been added to allow dataset
creation and to make mounting and unmounting more
convenient.
The second piece of this patch provides the ability to
encrypt, decyrpt, and authenticate protected datasets.
Each object set maintains a Merkel tree of Message
Authentication Codes that protect the lower layers,
similarly to how checksums are maintained. This part
impacts the zio layer, which handles the actual
encryption and generation of MACs, as well as the ARC
and DMU, which need to be able to handle encrypted
buffers and protected data.
The last addition is the ability to do raw, encrypted
sends and receives. The idea here is to send raw
encrypted and compressed data and receive it exactly
as is on a backup system. This means that the dataset
on the receiving system is protected using the same
user key that is in use on the sending side. By doing
so, datasets can be efficiently backed up to an
untrusted system without fear of data being
compromised.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#494Closes#5769
The userobj_accounting feature described in the zpool-features.5
man page was incorrectly indented. Fix it.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6402
Authored by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Dan McDonald <danmcd@nexenta.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/2932
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/810e43bCloses#5984Closes#5216
This patch tracks dnode usage for each user/group in the
DMU_USER/GROUPUSED_OBJECT ZAPs. ZAP entries dedicated to dnode
accounting have the key prefixed with "obj-" followed by the UID/GID
in string format (as done for the block accounting).
A new SPA feature has been added for dnode accounting as well as
a new ZPL version. The SPA feature must be enabled in the pool
before upgrading the zfs filesystem. During the zfs version upgrade,
a "quotacheck" will be executed by marking all dnode as dirty.
ZoL-bug-id: https://github.com/zfsonlinux/zfs/issues/3500
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Johann Lombardi <johann.lombardi@intel.com>
Authored by: ilovezfs <ilovezfs@icloud.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported by: Tony Hutter <hutter2@llnl.gov>
In any pool without the extensible dataset feature flag already enabled,
creating a dataset with dedup set to use one of the new checksums would
result in the following panic as soon as any data was added:
panic[cpu0]/thread=ffffff0006761c40: feature_get_refcount(spa, feature,
&refcount) != 48 (0x30 != 0x30), file: ../../common/fs/zfs/zfeature.c
line 390
Inpsection showed that feature->fi_feature was 7, which is the value of
SPA_FEATURE_EXTENSIBLE_DATASET in the spa_feature enum. This commit
adds extensible dataset as a dependency for the sha512, edonr, and skein
feature flags, which prevents the panic.
OpenZFS-issue: https://www.illumos.org/issues/6585
OpenZFS-commit: 892586e8a1
Porting Notes:
This code was originally from Illumos, but I actually ported it from:
openzfsonosx/zfs@b62a652
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported by: Tony Hutter <hutter2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/4185
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee
Porting Notes:
This code is ported on top of the Illumos Crypto Framework code:
b5e030c8db
The list of porting changes includes:
- Copied module/icp/include/sha2/sha2.h directly from illumos
- Removed from module/icp/algs/sha2/sha2.c:
#pragma inline(SHA256Init, SHA384Init, SHA512Init)
- Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since
it now takes in an extra parameter.
- Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c
- Added skein & edonr to libicp/Makefile.am
- Added sha512.S. It was generated from sha512-x86_64.pl in Illumos.
- Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument.
- In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section
to not #include the non-existant endian.h.
- In skein_test.c, renane NULL to 0 in "no test vector" array entries to get
around a compiler warning.
- Fixup test files:
- Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>,
- Remove <note.h> and define NOTE() as NOP.
- Define u_longlong_t
- Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p"
- Rename NULL to 0 in "no test vector" array entries to get around a
compiler warning.
- Remove "for isa in $($ISAINFO); do" stuff
- Add/update Makefiles
- Add some userspace headers like stdio.h/stdlib.h in places of
sys/types.h.
- EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules.
- Update scripts/zfs2zol-patch.sed
- include <sys/sha2.h> in sha2_impl.h
- Add sha2.h to include/sys/Makefile.am
- Add skein and edonr dirs to icp Makefile
- Add new checksums to zpool_get.cfg
- Move checksum switch block from zfs_secpolicy_setprop() to
zfs_check_settable()
- Fix -Wuninitialized error in edonr_byteorder.h on PPC
- Fix stack frame size errors on ARM32
- Don't unroll loops in Skein on 32-bit to save stack space
- Add memory barriers in sha2.c on 32-bit to save stack space
- Add filetest_001_pos.ksh checksum sanity test
- Add option to write psudorandom data in file_write utility
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
Correct some misspelled words and grammatical errors, and remove
trailing white space in the man pages.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4115
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
3897 zfs filesystem and snapshot limits
Author: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://www.illumos.org/issues/3897https://github.com/illumos/illumos-gate/commit/a2afb61
Porting Notes:
dsl_dataset_snapshot_check(): reduce stack usage using kmem_alloc().
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by Matthew Ahrens <mahrens@delphix.com>
Reviewed by Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://github.com/illumos/illumos-gate/commit/b8289d2https://www.illumos.org/issues/3756
Porting notes:
The static function zfs_prop_activate_feature() was removed because
this change removes the only caller. The function was not removed
from Illumos but instead left as dead code. However, to keep gcc
happy it was removed from Linux and may be easily restored if needed.
Ported by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1540
4757 ZFS embedded-data block pointers ("zero block compression")
4913 zfs release should not be subject to space checks
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/4757https://www.illumos.org/issues/4913https://github.com/illumos/illumos-gate/commit/5d7b4d4
Porting notes:
For compatibility with the fastpath code the zio_done() function
needed to be updated. Because embedded-data block pointers do
not require DVAs to be allocated the associated vdevs will not
be marked and therefore should not be unmarked.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2544