As of the Linux 5.9 kernel a fallthrough macro has been added which
should be used to anotate all intentional fallthrough paths. Once
all of the kernel code paths have been updated to use fallthrough
the -Wimplicit-fallthrough option will because the default. To
avoid warnings in the OpenZFS code base when this happens apply
the fallthrough macro.
Additional reading: https://lwn.net/Articles/794944/
Reviewed-by: Tony Nguyen <tony.nguyen@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#12441
It turns out that layouts of union bitfields are a pain, and the
current code results in an inconsistent layout between BE and LE
systems, leading to zstd-active datasets on one erroring out on
the other.
Switch everyone over to the LE layout, and add compatibility code
to read both.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#12008Closes#12022
Update the logic to handle the dedup-case of consecutive
FREEs in the livelist code. The logic still ensures that
all the FREE entries are matched up with a respective
ALLOC by keeping a refcount for each FREE blkptr that we
encounter and ensuring that this refcount gets to zero
by the time we are done processing the livelist.
zdb -y no longer panics when encountering double frees
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#11480Closes#12177
In order for cppcheck to perform a proper analysis it needs to be
aware of how the sources are compiled (source files, include
paths/files, extra defines, etc). All the needed information is
available from the Makefiles and can be leveraged with a generic
cppcheck Makefile target. So let's add one.
Additional minor changes:
* Removing the cppcheck-suppressions.txt file. With cppcheck 2.3
and these changes it appears to no longer be needed. Some inline
suppressions were also removed since they appear not to be
needed. We can add them back if it turns out they're needed
for older versions of cppcheck.
* Added the ax_count_cpus m4 macro to detect at configure time how
many processors are available in order to run multiple cppcheck
jobs. This value is also now used as a replacement for nproc
when executing the kernel interface checks.
* "PHONY =" line moved in to the Rules.am file which is included
at the top of all Makefile.am's. This is just convenient becase
it allows us to use the += syntax to add phony targets.
* One upside of this integration worth mentioning is it now allows
`make cppcheck` to be run in any directory to check that subtree.
* For the moment, cppcheck is not run against the FreeBSD specific
kernel sources. The cppcheck-FreeBSD target will need to be
implemented and testing on FreeBSD to support this.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#11508
If zdb is not built with DEBUG mode, the ASSERT macros will be
eliminated.
This will leave vim defined, but not used (gcc warning) and
checkpoint spacemap validation loop will do nothing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Toomas Soome <tsoome@me.com>
Closes#11932
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11396
In `zpool_find_config()`, the `pools` nvlist is leaked. Part of it (a
sub-nvlist) is returned in `*configp`, but the callers also leak that.
Additionally, in `zdb.c:main()`, the `searchdirs` is leaked.
The leaks were detected by ASAN (`configure --enable-asan`).
This commit resolves the leaks.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#11396
Code cleanup, a follow up commit to 4d55ea81.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Co-authored-by: Ryan Moeller <ryan@freqlabs.com>
Signed-off-by: Christian Schwarz <me@cschwarz.com>
Closes#11020
The zdb is interpreting byte array as textual string in dump_zap,
but there are also binary arrays and we should not output binary
data on terminal.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Toomas Soome <tsoome@me.com>
External-issue: https://www.illumos.org/issues/12012
External-issue: https://www.illumos.org/issues/11713Closes#11006
When a device removal is in progress, there are 2 locations for the data
that's already been moved: the original location, on the device that's
being removed; and the new location, which is pointed to by the indirect
mapping. When doing leak detection, zdb needs to know about both
locations. To determine what's already been copied, we load the
spacemaps of the removing vdev, omit the blocks that are yet to be
copied, and then use the vdev's remap op to find the new location.
The problem is with an optimization to the spacemap-loading code in zdb.
When processing the log spacemaps, we ignore entries that are not
relevant because they are past the point that's been copied. However,
entries which span the point that's been copied (i.e. they are partly
relevant and partly irrelevant) are processed normally. This can lead
to an illegal spacemap operation, for example if offsets up to 100KB
have been copied, and the spacemap log has the following entries:
ALLOC 50KB-150KB (partly relevant)
FREE 50KB-100KB (entirely relevant)
FREE 100KB-150KB (entirely irrlevant - ignored)
ALLOC 50KB-150KB (partly relevant)
Because the entirely irrelevant entry was ignored, its space remains in
the spacemap. When the last entry is processed, we attempt to add it to
the spacemap, but it partially overlaps with the 100-150KB entry that
was left over.
This problem was discovered by ztest/zloop.
One solution would be to also ignore the irrelevant parts of
partially-irrelevant entries (i.e. when processing the ALLOC 50-150, to
only add 50-100 to the spacemap). However, this commit implements a
simpler solution, which is to remove this optimization entirely. I.e.
to process the entire spacemap log, without regard for the point that's
been copied. After reconstructing the entire allocatable range tree,
there's already code to remove the parts that have not yet been copied.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-71820
Closes#10920
This PR adds two new compression types, based on ZStandard:
- zstd: A basic ZStandard compression algorithm Available compression.
Levels for zstd are zstd-1 through zstd-19, where the compression
increases with every level, but speed decreases.
- zstd-fast: A faster version of the ZStandard compression algorithm
zstd-fast is basically a "negative" level of zstd. The compression
decreases with every level, but speed increases.
Available compression levels for zstd-fast:
- zstd-fast-1 through zstd-fast-10
- zstd-fast-20 through zstd-fast-100 (in increments of 10)
- zstd-fast-500 and zstd-fast-1000
For more information check the man page.
Implementation details:
Rather than treat each level of zstd as a different algorithm (as was
done historically with gzip), the block pointer `enum zio_compress`
value is simply zstd for all levels, including zstd-fast, since they all
use the same decompression function.
The compress= property (a 64bit unsigned integer) uses the lower 7 bits
to store the compression algorithm (matching the number of bits used in
a block pointer, as the 8th bit was borrowed for embedded block
pointers). The upper bits are used to store the compression level.
It is necessary to be able to determine what compression level was used
when later reading a block back, so the concept used in LZ4, where the
first 32bits of the on-disk value are the size of the compressed data
(since the allocation is rounded up to the nearest ashift), was
extended, and we store the version of ZSTD and the level as well as the
compressed size. This value is returned when decompressing a block, so
that if the block needs to be recompressed (L2ARC, nop-write, etc), that
the same parameters will be used to result in the matching checksum.
All of the internal ZFS code ( `arc_buf_hdr_t`, `objset_t`,
`zio_prop_t`, etc.) uses the separated _compress and _complevel
variables. Only the properties ZAP contains the combined/bit-shifted
value. The combined value is split when the compression_changed_cb()
callback is called, and sets both objset members (os_compress and
os_complevel).
The userspace tools all use the combined/bit-shifted value.
Additional notes:
zdb can now also decode the ZSTD compression header (flag -Z) and
inspect the size, version and compression level saved in that header.
For each record, if it is ZSTD compressed, the parameters of the decoded
compression header get printed.
ZSTD is included with all current tests and new tests are added
as-needed.
Per-dataset feature flags now get activated when the property is set.
If a compression algorithm requires a feature flag, zfs activates the
feature when the property is set, rather than waiting for the first
block to be born. This is currently only used by zstd but can be
extended as needed.
Portions-Sponsored-By: The FreeBSD Foundation
Co-authored-by: Allan Jude <allanjude@freebsd.org>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Co-authored-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Co-authored-by: Michael Niewöhner <foss@mniewoehner.de>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Allan Jude <allanjude@freebsd.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Signed-off-by: Kjeld Schouten-Lebbing <kjeld@schouten-lebbing.nl>
Signed-off-by: Michael Niewöhner <foss@mniewoehner.de>
Closes#6247Closes#9024Closes#10277Closes#10278
These tunables were renamed from vfs.zfs.arc_min and
vfs.zfs.arc_max to vfs.zfs.arc.min and vfs.zfs.arc.max.
Add legacy compat tunables for the old names.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10579
Livelists and spacemaps are data structures that are logs of allocations
and frees. Livelists entries are block pointers (blkptr_t). Spacemaps
entries are ranges of numbers, most often used as to track
allocated/freed regions of metaslabs/vdevs.
These data structures can become self-inconsistent, for example if a
block or range can be "double allocated" (two allocation records without
an intervening free) or "double freed" (two free records without an
intervening allocation).
ZDB (as well as zfs running in the kernel) can detect these
inconsistencies when loading livelists and metaslab. However, it
generally halts processing when the error is detected.
When analyzing an on-disk problem, we often want to know the entire set
of inconsistencies, which is not possible with the current behavior.
This commit adds a new flag, `zdb -y`, which analyzes the livelist and
metaslab data structures and displays all of their inconsistencies.
Note that this is different from the leak detection performed by
`zdb -b`, which checks for inconsistencies between the spacemaps and the
tree of block pointers, but assumes the spacemaps are self-consistent.
The specific checks added are:
Verify livelists by iterating through each sublivelists and:
- report leftover FREEs
- report double ALLOCs and double FREEs
- record leftover ALLOCs together with their TXG [see Cross Check]
Verify spacemaps by iterating over each metaslab and:
- iterate over spacemap and then the metaslab's entries in the
spacemap log, then report any double FREEs and double ALLOCs
Verify that livelists are consistenet with spacemaps. The space
referenced by livelists (after using the FREE's to cancel out
corresponding ALLOCs) should be allocated, according to the spacemaps.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-66031
Closes#10515
We already enable -DDEBUG unconditionally (meaning regardless
of this is a debug build or a performance build) for zdb and
ztest as they are mostly used for development and debugging.
This patch enables -DDEBUG for libzpool extending the debugging
checks for zdb, ztest, and a couple of other test utilities.
In addition to passing -DDEBUG we also enable -DZFS_DEBUG so
all assertion checks work s expected. We do so not only in
libzpool but in every utility that links to it, even if the
utility doesn't directly use any functionality wrapped in
ZFS_DEBUG macro definitions. The reason is that these utilities
may still include headers that contain structs that have more
fields when ZFS_DEBUG is defined. This can be a problem as
enabling that flag for libzpool but not for zdb can lead into
random problems (e.g. segmentation faults) as zdb may be have
an incorrect view of a struct passed to it by libzpool.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#10549
libtool stores absolute paths in the dependency_libs component of the
.la files. If the Makefile for a dependent library refers to the
libraries by relative path, some libraries end up duplicated on the link
command line.
As an example, libzfs specifies libzfs_core, libnvpair and libuutil as
dependencies to be linked in. The .la file for libzfs_core also
specifies libnvpair, but using an absolute path, with the result that
libnvpair is present twice in the linker command line for producing
libzfs.
While the only thing this causes is to slightly slow down the linking,
we can avoid it by using absolute paths everywhere, including for
convenience libraries just for consistency.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10538
libzutil is currently statically linked into libzfs, libzfs_core and
libzpool. Avoid the unnecessary duplication by removing it from libzfs
and libzpool, and adding libzfs_core to libzpool.
Remove a few unnecessary dependencies:
- libuutil from libzfs_core
- libtirpc from libspl
- keep only libcrypto in libzfs, as we don't use any functions from
libssl
- librt is only used for clock_gettime, however on modern systems that's
in libc rather than librt. Add a configure check to see if we actually
need librt
- libdl from raidz_test
Add a few missing dependencies:
- zlib to libefi and libzfs
- libuuid to zpool, and libuuid and libudev to zed
- libnvpair uses assertions, so add assert.c to provide aok and
libspl_assertf
Sort the LDADD for programs so that libraries that satisfy dependencies
come at the end rather than the beginning of the linker command line.
Revamp the configure tests for libaries to use FIND_SYSTEM_LIBRARY
instead. This can take advantage of pkg-config, and it also avoids
polluting LIBS.
List all the required dependencies in the pkgconfig files, and move the
one for libzfs_core into the latter's directory. Install pkgconfig files
in $(libdir)/pkgconfig on linux and $(prefix)/libdata/pkgconfig on
FreeBSD, instead of /usr/share/pkgconfig, as the more correct location
for library .pc files.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Closes#10538
The block histogram tracks the changes to psize, lsize and asize
both in the count of the number of blocks (by blocksize) and the
total length of all of the blocks for that blocksize. It also
keeps a running total of the cumulative size of all of the blocks
up to each size to help determine the size of caching SSDs to be
added to zfs hardware deployments.
The block history counts and lengths are summarized in bins
which are powers of two. Even rows with counts of zero are printed.
This change is accessed by specifying one of two options:
zdb -bbb pool
zdb -Pbbb pool
The first version prints the table in fixed size columns.
The second prints in "parseable" output that can be placed into
a CSV file.
Fixed Column, nicenum output sample:
block psize lsize asize
size Count Length Cum. Count Length Cum. Count Length Cum.
512: 3.50K 1.75M 1.75M 3.43K 1.71M 1.71M 3.41K 1.71M 1.71M
1K: 3.65K 3.67M 5.43M 3.43K 3.44M 5.15M 3.50K 3.51M 5.22M
2K: 3.45K 6.92M 12.3M 3.41K 6.83M 12.0M 3.59K 7.26M 12.5M
4K: 3.44K 13.8M 26.1M 3.43K 13.7M 25.7M 3.49K 14.1M 26.6M
8K: 3.42K 27.3M 53.5M 3.41K 27.3M 53.0M 3.44K 27.6M 54.2M
16K: 3.43K 54.9M 108M 3.50K 56.1M 109M 3.42K 54.7M 109M
32K: 3.44K 110M 219M 3.41K 109M 218M 3.43K 110M 219M
64K: 3.41K 218M 437M 3.41K 218M 437M 3.44K 221M 439M
128K: 3.41K 437M 874M 3.70K 474M 911M 3.41K 437M 876M
256K: 3.41K 874M 1.71G 3.41K 874M 1.74G 3.41K 874M 1.71G
512K: 3.41K 1.71G 3.41G 3.41K 1.71G 3.45G 3.41K 1.71G 3.42G
1M: 3.41K 3.41G 6.82G 3.41K 3.41G 6.86G 3.41K 3.41G 6.83G
2M: 0 0 6.82G 0 0 6.86G 0 0 6.83G
4M: 0 0 6.82G 0 0 6.86G 0 0 6.83G
8M: 0 0 6.82G 0 0 6.86G 0 0 6.83G
16M: 0 0 6.82G 0 0 6.86G 0 0 6.83G
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Robert E. Novak <novak5@llnl.gov>
Closes: #9158Closes#10315
The l2arc_evict() function is responsible for evicting buffers which
reference the next bytes of the L2ARC device to be overwritten. Teach
this function to additionally TRIM that vdev space before it is
overwritten if the device has been filled with data. This is done by
vdev_trim_simple() which trims by issuing a new type of TRIM,
TRIM_TYPE_SIMPLE.
We also implement a "Trim Ahead" feature. It is a zfs module parameter,
expressed in % of the current write size. This trims ahead of the
current write size. A minimum of 64MB will be trimmed. The default is 0
which disables TRIM on L2ARC as it can put significant stress to
underlying storage devices. To enable TRIM on L2ARC we set
l2arc_trim_ahead > 0.
We also implement TRIM of the whole cache device upon addition to a
pool, pool creation or when the header of the device is invalid upon
importing a pool or onlining a cache device. This is dependent on
l2arc_trim_ahead > 0. TRIM of the whole device is done with
TRIM_TYPE_MANUAL so that its status can be monitored by zpool status -t.
We save the TRIM state for the whole device and the time of completion
on-disk in the header, and restore these upon L2ARC rebuild so that
zpool status -t can correctly report them. Whole device TRIM is done
asynchronously so that the user can export of the pool or remove the
cache device while it is trimming (ie if it is too slow).
We do not TRIM the whole device if persistent L2ARC has been disabled by
l2arc_rebuild_enabled = 0 because we may not want to lose all cached
buffers (eg we may want to import the pool with
l2arc_rebuild_enabled = 0 only once because of memory pressure). If
persistent L2ARC has been disabled by setting the module parameter
l2arc_rebuild_blocks_min_l2size to a value greater than the size of the
cache device then the whole device is trimmed upon creation or import of
a pool if l2arc_trim_ahead > 0.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#9713Closes#9789Closes#10224
Functional changes:
We implement refcounts of log blocks and their aligned size on the
cache device along with two corresponding arcstats. The refcounts are
reflected in the header of the device and provide valuable information
as to whether log blocks are accounted for correctly. These are
dynamically adjusted as log blocks are committed/evicted. zdb also uses
this information in the device header and compares it to the
corresponding values as reported by dump_l2arc_log_blocks() which
emulates l2arc_rebuild(). If the refcounts saved in the device header
report higher values, zdb exits with an error. For this feature to work
correctly there should be no active writes on the device. This is also
employed in the tests of persistent L2ARC. We extend the structure of
the cache device header by adding the two new variables mirroring the
refcounts after the existing variables to preserve backward
compatibility in terms of persistent L2ARC.
1) a new arcstat "l2_log_blk_asize" and refcount "l2ad_lb_asize" which
reflect the total aligned size of log blocks on the device. This is
also reflected in the header of the cache device as "dh_lb_asize".
2) a new arcstat "l2arc_log_blk_count" and refcount "l2ad_lb_count"
which reflect the total number of L2ARC log blocks present on cache
devices. It is also reflected in the header of the cache device as
"dh_lb_count".
In l2arc_rebuild_vdev() if the amount of committed log entries in a log
block is 0 and the device header is valid we update the device header.
This will facilitate trimming of the whole device in this case when
TRIM for L2ARC is implemented.
Improve loop protection in l2arc_rebuild() by using the starting offset
of the payload of each log block instead of the starting offset of the
log block.
If the zio in l2arc_write_buffers() fails, restore the lbps array in the
header of the device to its previous state in l2arc_write_done().
If l2arc_rebuild() ends the rebuild process without restoring any L2ARC
log blocks in ARC and without any other error, this means that the lbps
array in the header is pointing to non-existent or invalid log blocks.
Reset the device header in this case.
In l2arc_rebuild() change the zfs_dbgmsg messages to
spa_history_log_internal() making them user visible with zpool history
command.
Non-functional changes:
Make the first test in persistent L2ARC use `zdb -lll` to increase
coverage in `zdb.c`.
Rename psize with asize when referring to log blocks, since
L2ARC_SET_PSIZE stores the vdev aligned size for log blocks. Also
rename dh_log_blk_entries to dh_log_entries to make it clear that
it is a mirror of l2ad_log_entries. Added comments for both changes.
Fix inaccurate comments for example in l2arc_log_blk_restore().
Add asserts at the end in l2arc_evict() and l2arc_write_buffers().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10228
Running zdb -l $disk shows a warning that zfs_arc_max is being ignored.
zdb sets zfs_arc_max below zfs_arc_min, which causes the value to be
ignored by arc_tuning_update().
Set zfs_arc_min to the bare minimum in zdb, which is below zfs_arc_max.
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Allan Jude <allanjude@freebsd.org>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Ryan Moeller <ryan@iXsystems.com>
Closes#10269
Minor fixes on persistent L2ARC improving code readability and fixing
a typo in zdb.c when byte-swapping a log block. It also improves the
pesist_l2arc_007_pos.ksh test by giving it more time to retrieve log
blocks on the cache device.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#10210
This commit makes the L2ARC persistent across reboots. We implement
a light-weight persistent L2ARC metadata structure that allows L2ARC
contents to be recovered after a reboot. This significantly eases the
impact a reboot has on read performance on systems with large caches.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Saso Kiselkov <skiselkov@gmail.com>
Co-authored-by: Jorgen Lundman <lundman@lundman.net>
Co-authored-by: George Amanakis <gamanakis@gmail.com>
Ported-by: Yuxuan Shui <yshuiv7@gmail.com>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#925Closes#1823Closes#2672Closes#3744Closes#9582
When "zfs destroy" is run, it completes quickly, and in the background
we locate the blocks to free and free them. This background activity
can be observed with `zpool get freeing` and `zpool wait -t free ...`.
This background activity is processed by a single thread (the spa_sync
thread) which calls zio_free() on each of the blocks to free. With even
modest storage performance, the CPU consumption of zio_free() can be the
performance bottleneck.
Performance of zio_free() can be improved by not actually creating a
zio_t in the common case (non-dedup, non-gang), instead calling
metaslab_free() directly. This avoids the CPU cost of allocating the
zio_t, and more importantly the cost of adding and later removing this
zio_t from the parent zio's child list.
The result is that performance of background freeing more than doubles,
from 0.6 million blocks per second to 1.3 million blocks per second.
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#10034
When zdb is printing paths, also print the symlink target if it exists.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Signed-off-by: Justin Keogh <commits@v6y.net>
Closes#9925
zdb -R :b fails due to the indirect block being compressed,
and the 'b' and 'd' flag not working in tandem when specified.
Fix the flag parsing code and create a zfs test for zdb -R
block display. Also fix the zio flags where the dotted notation
for the vdev portion of DVA (i.e. 0.0:offset:length) fails.
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#9640Closes#9729
Allow a range of object identifiers to dump with -d. This may
be useful when dumping a large dataset and you want to break
it up into multiple phases, or to resume where a previous scan
left off. Object type selection flags are supported to reduce
the performance overhead of verbosely dumping unwanted objects,
and to reduce the amount of post-processing work needed to
filter out unwanted objects from zdb output.
This change extends existing syntax in a backward-compatible
way. That is, the base case of a range is to specify a single
object identifier to dump. Ranges and object identifiers can
be intermixed as command line parameters.
Usage synopsis:
Object ranges take the form <start>:<end>[:<flags>]
start Starting object number
end Ending object number, or -1 for no upper bound
flags Optional flags to select object types:
A All objects (this is the default)
d ZFS directories
f ZFS files
m SPA space maps
z ZAPs
- Negate effect of next flag
Examples:
# Dump all file objects
zdb -dd tank/fish 0👎f
# Dump all file and directory objects
zdb -dd tank/fish 0👎fd
# Dump all types except file and directory objects
zdb -dd tank/fish 0👎A-f-d
# Dump object IDs in a specific range
zdb -dd tank/fish 1000:2000
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Paul Zuchowski <pzuchowski@datto.com>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#9832
As an alternative to the dataset name, zdb now allows the decimal
or hexadecimal objset ID to be specified. When permanent errors
are reported as 2 hexadecimal numbers (objset ID : object ID) in
zpool status; you can now use 'zdb <pool>[/objset ID] object' to
determine the names of the objset and object which have the error.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#9733
This interferes with zdb_read_block trying all the decompression
algorithms when the 'd' flag is specified, as some are
expected to fail. Also control the output when guessing
algorithms, try the more common compression types first, allow
specifying lsize/psize, and fix an uninitialized variable.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#9612Closes#9630
Remove the ASSERTV macro and handle suppressing unused
compiler warnings for variables only in ASSERTs using the
__attribute__((unused)) compiler annotation. The annotation
is understood by both gcc and clang.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9671
The checksum display code of zdb_read_block uses a zio
to read in the block and then calls zio_checksum_compute.
Use a new zio in the call to zio_checksum_compute not the zio
from the read which has been destroyed by zio_wait.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#9644Closes#9657
The function zdb_read_block (zdb -R) was always intended to have a :c
flag which would read the DVA and length supplied by the user, and
display the checksum. Since we don't know which checksum goes with
the data, we should calculate and display them all.
For each checksum in the table, read in the data at the supplied
DVA:length, calculate the checksum, and display it. Update the man
page and create a zfs test for the new feature.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl>
Signed-off-by: Paul Zuchowski <pzuchowski@datto.com>
Closes#9607
Provide a common zfs_file_* interface which can be implemented on all
platforms to perform normal file access from either the kernel module
or the libzpool library.
This allows all non-portable vnode_t usage in the common code to be
replaced by the new portable zfs_file_t. The associated vnode and
kobj compatibility functions, types, and macros have been removed
from the SPL. Moving forward, vnodes should only be used in platform
specific code when provided by the native operating system.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9556
FreeBSD has no analog. Buffered block devices were removed a decade
plus ago.
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9508
We don't need to include stdio_ext.h
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9483
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9181
Factor Linux specific pieces out of libspl.
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes#9336
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9234
When a pool is imported it will scan the pool to verify the integrity
of the data and metadata. The amount it scans will depend on the
import flags provided. On systems with small amounts of memory or
when importing a pool from the crash kernel, it's possible for
spa_load_verify to issue too many I/Os that it consumes all the memory
of the system resulting in an OOM message or a hang.
To prevent this, we limit the amount of memory that the initial pool
scan can consume. This change will, by default, use 1/16th of the ARC
for scan I/Os to prevent running the system out of memory during import.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: George Wilson george.wilson@delphix.com
External-issue: DLPX-65237
External-issue: DLPX-65238
Closes#9146
When we unload metaslabs today in ZFS, the cached max_size value is
discarded. We instead use the histogram to determine whether or not we
think we can satisfy an allocation from the metaslab. This can result in
situations where, if we're doing I/Os of a size not aligned to a
histogram bucket, a metaslab is loaded even though it cannot satisfy the
allocation we think it can. For example, a metaslab with 16 entries in
the 16k-32k bucket may have entirely 16kB entries. If we try to allocate
a 24kB buffer, we will load that metaslab because we think it should be
able to handle the allocation. Doing so is expensive in CPU time, disk
reads, and average IO latency. This is exacerbated if the write being
attempted is a sync write.
This change makes ZFS cache the max_size after the metaslab is
unloaded. If we ever get a free (or a coalesced group of frees) larger
than the max_size, we will update it. Otherwise, we leave it as is. When
attempting to allocate, we use the max_size as a lower bound, and
respect it unless we are in try_hard. However, we do age the max_size
out at some point, since we expect the actual max_size to increase as we
do more frees. A more sophisticated algorithm here might be helpful, but
this works reasonably well.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#9055
Deleting a clone requires finding blocks are clone-only, not shared
with the snapshot. This was done by traversing the entire block tree
which results in a large performance penalty for sparsely
written clones.
This is new method keeps track of clone blocks when they are
modified in a "Livelist" so that, when it’s time to delete,
the clone-specific blocks are already at hand.
We see performance improvements because now deletion work is
proportional to the number of clone-modified blocks, not the size
of the original dataset.
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Sara Hartse <sara.hartse@delphix.com>
Closes#8416
Creating a pool with not features enabled and running
`zdb -mmmmmm on` it before the patch:
```
Log Space Maps in Pool:
Log Space Map Obsolete Entry Statistics:
0 valid entries out of 0 - txg 0
0 valid entries out of 0 - total
```
After this patch the above output goes away.
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sara Hartse <sara.hartse@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#9048
= Motivation
At Delphix we've seen a lot of customer systems where fragmentation
is over 75% and random writes take a performance hit because a lot
of time is spend on I/Os that update on-disk space accounting metadata.
Specifically, we seen cases where 20% to 40% of sync time is spend
after sync pass 1 and ~30% of the I/Os on the system is spent updating
spacemaps.
The problem is that these pools have existed long enough that we've
touched almost every metaslab at least once, and random writes
scatter frees across all metaslabs every TXG, thus appending to
their spacemaps and resulting in many I/Os. To give an example,
assuming that every VDEV has 200 metaslabs and our writes fit within
a single spacemap block (generally 4K) we have 200 I/Os. Then if we
assume 2 levels of indirection, we need 400 additional I/Os and
since we are talking about metadata for which we keep 2 extra copies
for redundancy we need to triple that number, leading to a total of
1800 I/Os per VDEV every TXG.
We could try and decrease the number of metaslabs so we have less
I/Os per TXG but then each metaslab would cover a wider range on
disk and thus would take more time to be loaded in memory from disk.
In addition, after it's loaded, it's range tree would consume more
memory.
Another idea would be to just increase the spacemap block size
which would allow us to fit more entries within an I/O block
resulting in fewer I/Os per metaslab and a speedup in loading time.
The problem is still that we don't deal with the number of I/Os
going up as the number of metaslabs is increasing and the fact
is that we generally write a lot to a few metaslabs and a little
to the rest of them. Thus, just increasing the block size would
actually waste bandwidth because we won't be utilizing our bigger
block size.
= About this patch
This patch introduces the Log Spacemap project which provides the
solution to the above problem while taking into account all the
aforementioned tradeoffs. The details on how it achieves that can
be found in the references sections below and in the code (see
Big Theory Statement in spa_log_spacemap.c).
Even though the change is fairly constraint within the metaslab
and lower-level SPA codepaths, there is a side-change that is
user-facing. The change is that VDEV IDs from VDEV holes will no
longer be reused. To give some background and reasoning for this,
when a log device is removed and its VDEV structure was replaced
with a hole (or was compacted; if at the end of the vdev array),
its vdev_id could be reused by devices added after that. Now
with the pool-wide space maps recording the vdev ID, this behavior
can cause problems (e.g. is this entry referring to a segment in
the new vdev or the removed log?). Thus, to simplify things the
ID reuse behavior is gone and now vdev IDs for top-level vdevs
are truly unique within a pool.
= Testing
The illumos implementation of this feature has been used internally
for a year and has been in production for ~6 months. For this patch
specifically there don't seem to be any regressions introduced to
ZTS and I have been running zloop for a week without any related
problems.
= Performance Analysis (Linux Specific)
All performance results and analysis for illumos can be found in
the links of the references. Redoing the same experiments in Linux
gave similar results. Below are the specifics of the Linux run.
After the pool reached stable state the percentage of the time
spent in pass 1 per TXG was 64% on average for the stock bits
while the log spacemap bits stayed at 95% during the experiment
(graph: sdimitro.github.io/img/linux-lsm/PercOfSyncInPassOne.png).
Sync times per TXG were 37.6 seconds on average for the stock
bits and 22.7 seconds for the log spacemap bits (related graph:
sdimitro.github.io/img/linux-lsm/SyncTimePerTXG.png). As a result
the log spacemap bits were able to push more TXGs, which is also
the reason why all graphs quantified per TXG have more entries for
the log spacemap bits.
Another interesting aspect in terms of txg syncs is that the stock
bits had 22% of their TXGs reach sync pass 7, 55% reach sync pass 8,
and 20% reach 9. The log space map bits reached sync pass 4 in 79%
of their TXGs, sync pass 7 in 19%, and sync pass 8 at 1%. This
emphasizes the fact that not only we spend less time on metadata
but we also iterate less times to convergence in spa_sync() dirtying
objects.
[related graphs:
stock- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGStock.png
lsm- sdimitro.github.io/img/linux-lsm/NumberOfPassesPerTXGLSM.png]
Finally, the improvement in IOPs that the userland gains from the
change is approximately 40%. There is a consistent win in IOPS as
you can see from the graphs below but the absolute amount of
improvement that the log spacemap gives varies within each minute
interval.
sdimitro.github.io/img/linux-lsm/StockVsLog3Days.png
sdimitro.github.io/img/linux-lsm/StockVsLog10Hours.png
= Porting to Other Platforms
For people that want to port this commit to other platforms below
is a list of ZoL commits that this patch depends on:
Make zdb results for checkpoint tests consistent
db587941c5
Update vdev_is_spacemap_addressable() for new spacemap encoding
419ba59145
Simplify spa_sync by breaking it up to smaller functions
8dc2197b7b
Factor metaslab_load_wait() in metaslab_load()
b194fab0fb
Rename range_tree_verify to range_tree_verify_not_present
df72b8bebe
Change target size of metaslabs from 256GB to 16GB
c853f382db
zdb -L should skip leak detection altogether
21e7cf5da8
vs_alloc can underflow in L2ARC vdevs
7558997d2f
Simplify log vdev removal code
6c926f426a
Get rid of space_map_update() for ms_synced_length
425d3237ee
Introduce auxiliary metaslab histograms
928e8ad47d
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
8eef997679
= References
Background, Motivation, and Internals of the Feature
- OpenZFS 2017 Presentation:
youtu.be/jj2IxRkl5bQ
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemaps-project
Flushing Algorithm Internals & Performance Results
(Illumos Specific)
- Blogpost:
sdimitro.github.io/post/zfs-lsm-flushing/
- OpenZFS 2018 Presentation:
youtu.be/x6D2dHRjkxw
- Slides:
slideshare.net/SerapheimNikolaosDim/zfs-log-spacemap-flushing-algorithm
Upstream Delphix Issues:
DLPX-51539, DLPX-59659, DLPX-57783, DLPX-61438, DLPX-41227, DLPX-59320
DLPX-63385
Reviewed-by: Sean Eric Fagan <sef@ixsystems.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8442
ztest creates some extremely large files as part of its
operation. When zdb tries to dump a large enough file, it
can run out of memory or spend an extremely long time
attempting to print millions or billions of uint64_ts.
We cap the amount of data from a uint64 object that we
are willing to read and print.
Reviewed-by: Don Brady <don.brady@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
External-issue: DLPX-53814
Closes#8947
When used with verbosity >= 4 zdb fails an assertion in dump_bookmarks()
because it expects snprintf() to retun 0 on success.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#8948
Redacted send/receive allows users to send subsets of their data to
a target system. One possible use case for this feature is to not
transmit sensitive information to a data warehousing, test/dev, or
analytics environment. Another is to save space by not replicating
unimportant data within a given dataset, for example in backup tools
like zrepl.
Redacted send/receive is a three-stage process. First, a clone (or
clones) is made of the snapshot to be sent to the target. In this
clone (or clones), all unnecessary or unwanted data is removed or
modified. This clone is then snapshotted to create the "redaction
snapshot" (or snapshots). Second, the new zfs redact command is used
to create a redaction bookmark. The redaction bookmark stores the
list of blocks in a snapshot that were modified by the redaction
snapshot(s). Finally, the redaction bookmark is passed as a parameter
to zfs send. When sending to the snapshot that was redacted, the
redaction bookmark is used to filter out blocks that contain sensitive
or unwanted information, and those blocks are not included in the send
stream. When sending from the redaction bookmark, the blocks it
contains are considered as candidate blocks in addition to those
blocks in the destination snapshot that were modified since the
creation_txg of the redaction bookmark. This step is necessary to
allow the target to rehydrate data in the case where some blocks are
accidentally or unnecessarily modified in the redaction snapshot.
The changes to bookmarks to enable fast space estimation involve
adding deadlists to bookmarks. There is also logic to manage the
life cycles of these deadlists.
The new size estimation process operates in cases where previously
an accurate estimate could not be provided. In those cases, a send
is performed where no data blocks are read, reducing the runtime
significantly and providing a byte-accurate size estimate.
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Chris Williamson <chris.williamson@delphix.com>
Reviewed-by: Pavel Zhakarov <pavel.zakharov@delphix.com>
Reviewed-by: Sebastien Roy <sebastien.roy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes#7958
When Multihost is enabled, and a pool is imported, uberblock writes
include ub_mmp_delay to allow an importing node to calculate the
duration of an activity test. This value, is not enough information.
If zfs_multihost_fail_intervals > 0 on the node with the pool imported,
the safe minimum duration of the activity test is well defined, but does
not depend on ub_mmp_delay:
zfs_multihost_fail_intervals * zfs_multihost_interval
and if zfs_multihost_fail_intervals == 0 on that node, there is no such
well defined safe duration, but the importing host cannot tell whether
mmp_delay is high due to I/O delays, or due to a very large
zfs_multihost_interval setting on the host which last imported the pool.
As a result, it may use a far longer period for the activity test than
is necessary.
This patch renames ub_mmp_sequence to ub_mmp_config and uses it to
record the zfs_multihost_interval and zfs_multihost_fail_intervals
values, as well as the mmp sequence. This allows a shorter activity
test duration to be calculated by the importing host in most situations.
These values are also added to the multihost_history kstat records.
It calculates the activity test duration differently depending on
whether the new fields are present or not; for importing pools with
only ub_mmp_delay, it uses
(zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals
Which results in an activity test duration less sensitive to the leaf
count.
In addition, it makes a few other improvements:
* It updates the "sequence" part of ub_mmp_config when MMP writes
in between syncs occur. This allows an importing host to detect MMP
on the remote host sooner, when the pool is idle, as it is not limited
to the granularity of ub_timestamp (1 second).
* It issues writes immediately when zfs_multihost_interval is changed
so remote hosts see the updated value as soon as possible.
* It fixes a bug where setting zfs_multihost_fail_intervals = 1 results
in immediate pool suspension.
* Update tests to verify activity check duration is based on recorded
tunable values, not tunable values on importing host.
* Update tests to verify the expected number of uberblocks have valid
MMP fields - fail_intervals, mmp_interval, mmp_seq (sequence number),
that sequence number is incrementing, and that uberblock values match
tunable settings.
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7842
with builds on illumos based platform we can see build issue
because label_t has been redefined.
for reduce build issues on others platforms we should rename
label_t to zdb_label_t.
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Igor Kozhukhov <igor@dilos.org>
Closes#8397
Initially, metaslabs and space maps used to be the same thing
in ZFS. Later, we started differentiating them by referring
to the space map as the on-disk state of the metaslab, making
the metaslab a higher-level concept that is metadata that deals
with space accounting. Today we've managed to split that code
furthermore, with the space map being its own on-disk data
structure used in areas of ZFS besides metaslabs (e.g. the
vdev-wide space maps used for zpool checkpoint or vdev removal
features).
This patch refactors the space map code to further split the
space map code from the metaslab code. It does so by getting
rid of the idea that the space map can have a different in-core
and on-disk length (sm_length vs smp_length) which is something
that is only used for the metaslab code, and other consumers
of space maps just have to deal with. Instead, this patch
introduces changes that move the old in-core length of the
metaslab's space map to the metaslab structure itself (see
ms_synced_length field) while making the space map code only
care about the actual space map's length on-disk.
The result of this is that space map consumers no longer have
to deal with syncing two different lengths for the same
structure (e.g. space_map_update() goes away) while metaslab
specific behavior stays within the metaslab code. Specifically,
the ms_synced_length field keeps track of the amount of data
metaslab_load() can read from the metaslab's space map while
working concurrently with metaslab_sync() that may be
appending to that same space map.
As a side note, the patch also adds a few comments around
the metaslab code documenting some assumptions and expected
behavior.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8328
Currently the point of -L option in zdb is to disable leak
tracing and the loading of space maps because they are expensive,
yet still do leak detection in terms of space. Unfortunately,
there is a scenario where this is a lie. If we are using zdb -L
on a pool where a vdev is being removed, zdb_claim_removing()
will open the metaslab space maps of that device.
This patch makes it so zdb -L skips leak detection altogether
and ensures that no space maps are loaded.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8335