This implementation of rw_tryupgrade() behaves slightly differently
from its counterparts on other platforms. It drops the RW_READER lock
and then acquires the RW_WRITER lock leaving a small window where no
lock is held. On other platforms the lock is never released during
the upgrade process. This is necessary under Linux because the kernel
does not provide an upgrade function.
There are currently no callers in the ZFS code where this change in
behavior is a problem. In fact, in most cases the code is already
written such that if the upgrade fails the RW_READER lock is dropped
and the caller blocks waiting to acquire the lock as RW_WRITER.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Matthew Thode <prometheanfire@gentoo.org>
Closes zfsonlinux/zfs#4388
Closes#534
Perf profiling of dd on a zvol revealed that my system spent 3.16% of
its time in random_get_pseudo_bytes(). No SPL consumers need
cryptographic strength entropy, so we can reduce our overhead by
changing the implementation to utilize a fast PRNG.
The Linux kernel did not export a suitable PRNG function until it
exported get_random_int() in Linux 3.10. While we could implement an
autotools check so that we use it when it is available or even try to
access the symbol on older kernels where it is not exported using the
fact that it is exported on newer ones as justification, we can instead
implement our own pseudo-random data generator. For this purpose, I have
written one based on a 128-bit pseudo-random number generator proposed
in a paper by Sebastiano Vigna that itself was based on work by the late
George Marsaglia.
http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
Profiling the same benchmark with an earlier variant of this patch that
used a slightly different generator (roughly same number of
instructions) by the same author showed that time spent in
random_get_pseudo_bytes() dropped to 0.06%. That is a factor of 50
improvement. This particular generator algorithm is also well known to
be fast:
http://xorshift.di.unimi.it/#speed
The benchmark numbers there state that it runs at 1.12ns/64-bits or 7.14
GBps of throughput on an Intel Core i7-4770 in what is presumably a
single-threaded context. Using it in `random_get_pseudo_bytes()` in the
manner I have will probably not reach that level of performance, but it
should be fairly high and many times higher than the Linux
`get_random_bytes()` function that we use now, which runs at 16.3 MB/s
on my Intel Xeon E3-1276v3 processor when measured by using dd on
/dev/urandom.
Also, putting this generator's seed into per-CPU variables allows us to
eliminate overhead from both spin locks and CPU memory barriers, which
is NUMA friendly.
We could have alternatively modified consumers to use something like
`gethrtime() % 3` as suggested by both Matthew Ahrens and Tim Chase, but
that has a few potential problems that this approach avoids:
1. Switching to `gethrtime() % 3` in hot code paths today requires
diverging from illumos-gate and does nothing about potential future
patches from illumos-gate that call our slow `random_get_pseudo_bytes()`
in different hot code paths. Reimplementing `random_get_pseudo_bytes()`
with a per-CPU PRNG avoids both of those things entirely, which means
less work for us in the future.
2. Looking at the code that implements `gethrtime()`, I think it is
unlikely to be faster than this per-CPU PRNG implementation of
`random_get_pseudo_bytes()`. It would be best to go with something fast
now so that there is no point in revisiting this from a performance
perspective.
3. `gethrtime() % 3` can vary in behavior from system to system based on
kernel version, architecture and clock source. In comparison, this
per-CPU PRNG is about ~40 lines of code in `random_get_pseudo_bytes()`
that should behave consistently across all systems regardless of kernel
version, system architecture or machine clock source. It is unlikely
that we would ever need to revisit this per-CPU PRNG while the same
cannot be said for `gethrtime() % 3`.
4. `gethrtime()` uses CPU memory barriers and maybe atomic instructions
depending on the clock source, so replacing `random_get_pseudo_bytes()`
with `gethrtime()` in hot code paths could still require a future person
working on NUMA scalability to reimplement it anyway while this per-CPU
PRNG would not by virtue of using neither CPU memory barriers nor atomic
instructions. Note that I did not check various clock sources for the
presence of atomic instructions. There is simply too much code to read
and given the drawbacks versus this per-cpu PRNG, there is no point in
being certain.
5. I have heard of instances where poor quality pseudo-random numbers
caused problems for HPC code in ways that took more than a year to
identify and were remedied by switching to a higher quality source of
pseudo-random numbers. While filesystems are different than HPC code, I
do not think it is impossible for us to have instances where poor
quality pseudo-random numbers can cause problems. Opting for a well
studied PRNG algorithm that passes tests for statistical randomness over
changing callers to use `gethrtime() % 3` bypasses the need to think
about both whether poor quality pseudo-random numbers can cause problems
and the statistical quality of numbers from `gethrtime() % 3`.
6. `gethrtime()` calls `getrawmonotonic()`, which uses seqlocks. This is
probably not a huge issue, but anyone using kgdb would never be able to
step through a seqlock critical section, which is not a problem either
now or with the per-CPU PRNG:
https://en.wikipedia.org/wiki/Seqlock
The only downside that I can see is that this code's memory requirement
is O(N) where N is NR_CPUS, versus the current code and `gethrtime() %
3`, which are O(1), but that should not be a problem. The seeds will use
64KB of memory at the high end (i.e `NR_CPU == 4096`) and 16 bytes of
memory at the low end (i.e. `NR_CPU == 1`). In either case, we should
only use a few hundred bytes of code for text, especially since
`spl_rand_jump()` should be inlined into `spl_random_init()`, which
should be removed during early boot as part of "Freeing unused kernel
memory". In either case, the memory requirements are minuscule.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#372
This patch add a module parameter spl_taskq_kick. When writing non-zero value
to it, it will scan all the taskq, if a taskq contains a task pending for more
than 5 seconds, it will be forced to spawn a new thread. This is use as an
emergency recovery from deadlock, not a general solution.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#529
I noticed that the SPL implementation of kobj_read_file is not correct
after comparing it with the userland implementation of kobj_read_file()
in zfsonlinux/zfs#4104.
Note that we no longer pass RLIM64_INFINITY with this, but our vn_rdwr
implementation did not support it anyway, so there is no difference.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#513
To prevent taskq_member holding tq_lock and doing linear search, thus causing
contention. We store the taskq pointer to which the thread belongs in tsd.
This way taskq_member will not need to touch tq_lock, and tsd has per slot
spinlock. So the contention should be reduced greatly.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#500Closes#504Closes#505
The pfn_t typedef was inherited from Illumos but never directly
used by any SPL consumers. This didn't cause any issues until
the Linux 4.5 kernel introduced a typedef of the same name.
See torvalds/linux/commit/34c0fd54, this patch removes the
unused Illumos version to prevent a conflict.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Closes#524
In b4ad50a, we abandoned memalloc_noio_save in favor of spl_fstrans_mark
because earlier kernel with it doesn't turn off __GFP_FS. However, for newer
kernel, we would prefer PF_MEMALLOC_NOIO because it would work for allocation
in kernel which we cannot control otherwise. So in this patch, we turn on both
PF_FSTRANS and PF_MEMALLOC_NOIO in spl_fstrans_mark.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#523
For earlier versions of the kernel with memalloc_noio_save, it only turns
off __GFP_IO but leaves __GFP_FS untouched during direct reclaim. This
would cause threads to direct reclaim into ZFS and cause deadlock.
Instead, we should stick to using spl_fstrans_mark. Since we would
explicitly turn off both __GFP_IO and __GFP_FS before allocation, it
will work on every version of the kernel.
This impacts kernel versions 3.9-3.17, see upstream kernel commit
torvalds/linux@934f307 for reference.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#515
Issue zfsonlinux/zfs#4111
This patch provides 2 new kstats to display task queues:
/proc/spl/taskqs-all - Display all task queues
/proc/spl/taskqs - Display only "active" task queues
A task queue is considered to be "active" if it currently has active
(running) threads or if any of its pending, priority, delay or waitq
lists are not empty.
If the task queue has running threads, displays each thread function's
address (symbolically, if possibly) and its argument.
If the task queue has a non-empty list of pending, priority or delayed
task queue entries (taskq_ent_t), displays each entry's thread function
address and arguemnt.
If the task queue has any waiters, displays each waiting task's pid.
Note: This patch also updates some comments in taskq.h which referred to
"taskq_t" when they should have referred to "taskq_ent_t".
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#491
This patch only addresses the issues identified by the style checker.
It contains no functional changes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The flags argument in spin_lock_irqsave is modified out side of spin_lock
context. We cannot use a shared variable like tq->tq_lock_flags for them. This
patch removes it and uses local variable for the flags.
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#506
When taskq_dispatch() calls taskq_thread_spawn() to create a new thread
for a taskq, linux lockdep warns of possible recursive locking. This is
a false positive.
One such call chain is as follows, when a taskq needs more threads:
taskq_dispatch->taskq_thread_spawn->taskq_dispatch
The initial taskq_dispatch() holds tq_lock on the taskq that needed more
worker threads. The later call into taskq_dispatch() takes
dynamic_taskq->tq_lock. Without subclassing, lockdep believes these
could potentially be the same lock and complains. A similar case occurs
when taskq_dispatch() then calls task_alloc().
This patch uses spin_lock_irqsave_nested() when taking tq_lock, with one
of two new lock subclasses:
subclass taskq
TQ_LOCK_DYNAMIC dynamic_taskq
TQ_LOCK_GENERAL any other
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #480
spl_inode_{lock,unlock} are triggering possible recursive locking
warnings from lockdep. The warning is a false positive.
The lock is used to protect a parent directory during delete/add
operations, used in zfs when writing/removing the cache file. The inode
lock is taken on both the parent inode and the file inode.
VFS provides an enum to subclass the lock. This patch changes the
spin_lock call to _nested version and uses the provided enum.
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #480
When running a kernel with CONFIG_LOCKDEP=y, lockdep reports possible
recursive locking in some cases and possible circular locking dependency
in others, within the SPL and ZFS modules.
When lockdep detects these conditions, it disables further lock analysis
for all locks. This causes /proc/lock_stats not to reflect full
information about lock contention, even in locks without dependency
issues.
This commit creates a new type of mutex, MUTEX_NOLOCKDEP. This mutex
type causes subsequent attempts to take or release those locks to be
wrapped in lockdep_off() and lockdep_on().
This commit also creates an RW_NOLOCKDEP type analagous to
MUTEX_NOLOCKDEP.
MUTEX_NOLOCKDEP and RW_NOLOCKDEP are also defined in zfs, in a commit to
that repo, for userspace builds.
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #480
The SPL fails to build with some "Configured" kernels (ex. openSUSE
xen Kernel) this change should make same binaries with C compiler
optimization.
Signed-off-by: zgock <zgock@nuc.base.zgock-lab.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#510
For some arm, powerpc, and sparc platforms it was possible that
neither _ILP32 of _LP64 would be defined. Update the isa_defs.h
header to explicitly set these macros and generate a compile error
in the case neither are defined.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: tuxoko <tuxoko@gmail.com>
Issue zfsonlinux/zfs#4048
This reverts commit a430c11f0b. Using
journal_info like this can cause a BUG at kernel fs/jbd2/transaction.c:425!
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #500
The ->journal_info pointer in the task_struct is reserved for use by
filesystems and because the kernel can have multiple file systems on the
same stack due to direct reclaim, each filesystem that touches
->journal_info in a callback function will save the value at the start
of its frame and restore it at the end of its frame. This allows us to
safely use ->journal_info to store a pointer to the taskq's struct in
taskq threads so that ZFS code paths can detect the presence of a taskq.
This could break if the ZFS code were to use taskq_member from the
context of direct reclaim. However, there are no such uses of it in that
manner, so this is safe.
This eliminates an O(N) list traversal under a spinlock with an O(1)
unlocked pointer comparison.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: tuxoko <tuxoko@gmail.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#500
If a vnode is released asynchronously through areleasef(), it is
possible for the user process to reuse the file descriptor before
areleasef is called. When this happens, getf() will return a stale
reference, any operations in the kernel on that file descriptor will
fail (as it is closed) and the operations meant for that fd will
never occur from userspace's perspective.
We correct this by detecting this condition in getf(), doing a putf
on the old file handle, updating the file descriptor and proceeding
as if everything was fine. When the areleasef() is done, it will
harmlessly decrement the reference counter on the Illumos file handle.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#492
Replace DKIOCTRIM with DKIOCFREE and add additional support required
for Nextenta's TRIM support.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#469
The original P2ROUNDUP and P2ROUNDUP_TYPED macros contain -x which
triggers PaX's integer overflow detection for unsigned integers.
Replace the macros with an equivalent version that does not trigger
the overflow.
Axioms:
A. (-(x)) === (~((x) - 1)) === (~(x) + 1) under two's complement.
B. ~(x & y) === ((~(x)) | (~(y))) under De Morgan's law.
C. ~(~x) === x under the law of excluded middle.
Proof:
0. (-(-(x) & -(align))) original
1. (~(-(x) & -(align)) + 1) by A
2. (((~(-(x))) | (~(-(align)))) + 1) by B
3. (((~(~((x) - 1))) | (~(~((align) - 1)))) + 1) by A
4. (((((x) - 1)) | (((align) - 1))) + 1) by C
Q.E.D.
Signed-off-by: Jason Zaman <jason@perfinion.com>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes zfsonlinux/zfs#2505
Closes#488
Allocate a kmem cache magazine for every possible CPU which might
be added to the system. This ensures that when one of these CPUs
is enabled it can be safely used immediately.
For many systems the number of online CPUs is identical to the
number of present CPUs so this does imply an increased memory
footprint. In fact, dynamically allocating the array of magazine
pointers instead of using the worst case NR_CPUS can end up
decreasing our memory footprint.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#482
If CONFIG_RWSEM_SPIN_ON_OWNER is defined, rw_semaphore will have an owner
field, so we don't need our own.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #473
The spin lock around rw_owner is completely unnecessary. The reason is that it
is only modified in the down_write context. If you race against another thread
modifying it, that means that you aren't holding the rwlock, so taking the
spin lock don't eliminate the race.
Also, we only check rw_owner in RW_WRITE_HELD because spl_rwsem_is_locked
is unnecessary and might need to take spin lock.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #473
Starting from Linux 4.1, bio_vec will be allowed to pass into filesystem via
iter_read/iter_write, so we add a bio_vec field in uio_t to hold it, and use
UIO_BVEC in segflg to determine which "vec".
Also, to be consistent to newer kernel, we make iovec and bio_vec immutable,
and make uio act as an iterator with the new uio_skip field indicating number
of bytes to skip in the first segment.
Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#3511
Issue zfsonlinux/zfs#3640
Closes#468
Prevents ARC collapse when non-ZFS filesystems, the block layer or other
memory consumers use a lot of reclaimable memory in the page cache.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes zfsonlinux/zfs#3680
Closes#471
This patch reverts 77ab5dd. This is now possible because upstream has
refactored the ARC in such a way that these values are only used in a
few key places. Those places have subsequently been updated to use
the Linux equivalent Linux functionality.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#3637
On Linux the meaning of a processes priority is inverted with respect
to illumos. High values on Linux indicate a _low_ priority while high
value on illumos indicate a _high_ priority.
In order to preserve the logical meaning of the minclsyspri and
maxclsyspri macros when they are used by the illumos wrapper functions
their values have been inverted. This way when changes are merged
from upstream illumos we won't need to remember to invert the macro.
It could also lead to confusion.
Note this change also reverts some of the priorities changes in prior
commit 62aa81a. The rational is as follows:
spl_kmem_cache - High priority may result in blocked memory allocs
spl_system_taskq - May perform I/O for file backed VDEVs
spl_dynamic_taskq - New taskq threads should be spawned promptly
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Issue zfsonlinux/zfs#3607
Add a new defclsyspri macro which can be used to request the default
Linux scheduler priority. Neither the minclsyspri or maxclsyspri map
to the default Linux kernel thread priority. This makes it awkward to
create taskqs which run with the same priority as the rest of the kernel
threads on the system which can lead to performance issues.
All SPL callers which previously used minclsyspri or maxclsyspri have
been changed to use defclsyspri. The vast majority of callers were
part of the test suite which won't have an external impact. The few
places where it could impact performance the change was from maxclsyspri
to defclsyspri. This makes it more likely the process will be scheduled
which may help performance.
To facilitate further performance analysis the spl_taskq_thread_priority
module option has been added. When disabled (0) all newly created kernel
threads will use the default kernel thread priority. When enabled (1)
the specified taskq priority will be used. By default this value is
enabled (1).
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Build products from an out of tree build should be written
relative to the build directory. Sources should be referred
to by their locations in the source directory.
This is accomplished by adding the 'src' and 'obj' variables
for the module Makefile.am, using relative paths to reference
source files, and by setting VPATH when source files are not
co-located with the Makefile. This enables the following:
$ mkdir build
$ cd build
$ ../configure
$ make -s
This change also has the advantage of resolving the following
warning which is generated by modern versions of automake.
Makefile.am:00: warning: source file 'xxx' is in a subdirectory,
Makefile.am:00: but option 'subdir-objects' is disabled
Signed-off-by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#1082
The function vmem_qcache_reap() and global variables 'needfree',
'desfree', and 'lotsfree' are all used in the upstream. While
these variables have no meaning under Linux they're being defined
as 0's to avoid needing to make additional changes to the ARC code.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Setting the TASKQ_DYNAMIC flag will create a taskq with dynamic
semantics. Initially only a single worker thread will be created
to service tasks dispatched to the queue. As additional threads
are needed they will be dynamically spawned up to the max number
specified by 'nthreads'. When the threads are no longer needed,
because the taskq is empty, they will automatically terminate.
Due to the low cost of creating and destroying threads under Linux
by default new threads and spawned and terminated aggressively.
There are two modules options which can be tuned to adjust this
behavior if needed.
* spl_taskq_thread_sequential - The number of sequential tasks,
without interruption, which needed to be handled by a worker
thread before a new worker thread is spawned. Default 4.
* spl_taskq_thread_dynamic - Provides the ability to completely
disable the use of dynamic taskqs on the system. This is provided
for the purposes of debugging and troubleshooting. Default 1
(enabled).
This behavior is fundamentally consistent with the dynamic taskq
implementation found in both illumos and FreeBSD.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#458
Added for upstream compatibility, they are of the form:
* IMPLY(a, b) - if (a) then (b)
* EQUIV(a, b) - if (a) then (b) *AND* if (b) then (a)
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Commit f752b46e added the cv_wait_interruptible() function to allow
condition variables to be woken by signals. This function and its
timed wait counterpart should have been named cv_wait_sig() to match
the illumos interface which provides the same functionality.
This patch renames the symbol but leaves a #define compatibility
wrapper in place until the ZFS code can be moved to the correct
name.
This patch also makes a small number of cosmetic changes to make
the condvar source and header cstyle clean.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#456
Stock Linux 2.6.32 and earlier kernels contained a broken version of
rwsem_is_locked() which could return an incorrect value. Because of
this compatibility code was added to detect the broken implementation
and replace it with our own if needed.
The fix for this issue was merged in to the mainline Linux kernel as
of 2.6.33 and the major enterprise distributions based on 2.6.32 have
all backported the fix. Therefore there is no longer a need to carry
this code and it can be removed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#454
Under Illumos taskq_wait() returns when there are no more tasks
in the queue. This behavior differs from ZoL and FreeBSD where
taskq_wait() returns when all the tasks in the queue at the
beginning of the taskq_wait() call are complete. New tasks
added whilst taskq_wait() is running will be ignored.
This difference in semantics makes it possible that new subtle
issues could be introduced when porting changes from Illumos.
To avoid that possibility the taskq_wait() function is being
updated such that it blocks until the queue in empty.
The previous behavior remains available through the
taskq_wait_outstanding() interface. Note that this function
was previously called taskq_wait_all() but has been renamed
to avoid confusion.
Signed-off-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#455
Avoid deadlocks when entering the shrinker from a PF_FSTRANS context.
This patch also reverts commit d0d5dd7 which added MUTEX_FSTRANS. Its
use has been deprecated within ZFS as it was an ineffective mechanism
to eliminate deadlocks. Among other things, it introduced the need for
strict ordering of mutex locking and unlocking in order that the
PF_FSTRANS flag wouldn't set incorrectly.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#446
Also add support for the "name" parameter in mutex_init(). The name
allows for better diagnostics, namely in /proc/lock_stats when
lock debugging is enabled. Nested mutexes are necessary to support
CONFIG_PROVE_LOCKING. ZoL can use mutex_enter_nested()'s "class" argument
to to convey the locking hierarchy.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#439
There are regions in the ZFS code where it is desirable to be able
to be set PF_FSTRANS while a specific mutex is held. The ZFS code
could be updated to set/clear this flag in all the correct places,
but this is undesirable for a few reasons.
1) It would require changes to a significant amount of the ZFS
code. This would complicate applying patches from upstream.
2) It would be easy to accidentally miss a critical region in
the initial patch or to have an future change introduce a
new one.
Both of these concerns can be addressed by adding a new mutex type
which is responsible for managing PF_FSTRANS, support for which was
added to the SPL in commit 9099312 - Merge branch 'kmem-rework'.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Issue #435
To minimize the size of a kmutex_t a MUTEX_OWNER check was added.
It allowed the kmutex_t wrapper to leverage the mutex owner which was
already stored in the mutex for certain kernel configurations.
The upside to this was that it reduced the size of the kmutex_t wrapper
structure by the size of a task_struct pointer (4/8 bytes). The
downside was that two mutex implementations needed to be maintained.
Depending on your exact kernel configuration the correct one would
be selected.
Over the years this solution worked but it could be fragile since it
depending heavily on assumed kernel mutex implementation details. For
example the SPL_AC_MUTEX_OWNER_TASK_STRUCT configure check needed to
be added when the kernel changed how the owner was stored. It also
made the code more complicated than it needed to be.
Therefore, in the name of simplicity and portability this optimization
is being retired. It will slightly increase the memory requirements
for a kmutex_t but only very slightly.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Issue #435
This patch only addresses the issues identified by the style checker
in mutex.h. It contains no functional changes.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Issue #435
In the original implementation of the SPL wrappers were provided
for module initialization and cleanup. This was done to abstract
away any compatibility code which might be needed for the SPL.
As it turned out the only significant compatibility issue was that
the default pwd during module load differed under Illumos and Linux.
Since this is such as minor thing and the wrappers complicate the
code they are being retired.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue zfsonlinux/zfs#2985
The __get_free_pages() function must be used in place of kmalloc()
to ensure the __GFP_COMP is strictly honored. This is due to
kmalloc() being layered on the generic Linux slab caches. It
wasn't until recently that all caches were created using __GFP_COMP.
This means that it is possible for a kmalloc() which passed the
__GFP_COMP flag to be returned a non-compound allocation.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This change is designed to improve the memory utilization of
slabs by more carefully setting their size. The way the code
currently works is problematic for slabs which contain large
objects (>1MB). This is due to slabs being unconditionally
rounded up to a power of two which may result in unused space
at the end of the slab.
The reason the existing code rounds up every slab is because it
assumes it will backed by the buddy allocator. Since the buddy
allocator can only performs power of two allocations this is
desirable because it avoids wasting any space. However, this
logic breaks down if slab is backed by vmalloc() which operates
at a page level granularity. In this case, the optimal thing to
do is calculate the minimum required slab size given certain
constraints (object size, alignment, objects/slab, etc).
Therefore, this patch reworks the spl_slab_size() function so
that it sizes KMC_KMEM slabs differently than KMC_VMEM slabs.
KMC_KMEM slabs are rounded up to the nearest power of two, and
KMC_VMEM slabs are allowed to be the minimum required size.
This change also reduces the default number of objects per slab.
This reduces how much memory a single cache object can pin, which
can result in significant memory saving for highly fragmented
caches. But depending on the workload it may result in slabs
being allocated and freed more frequently. In practice, this
has been shown to be a better default for most workloads.
Also the maximum slab size has been reduced to 4MB on 32-bit
systems. Due to the limited virtual address space it's critical
the we be as frugal as possible. A limit of 4M still lets us
reasonably comfortably allocate a limited number of 1MB objects.
Finally, the kmem:slab_small and kmem:slab_large SPLAT tests
were extended to provide better test coverage of various object
sizes and alignments. Caches are created with random parameters
and their basic functionality is verified by allocating several
slabs worth of objects.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>