Commit Graph

2 Commits

Author SHA1 Message Date
Brian Behlendorf ff3e2e3c70 Perform KABI checks in parallel
Reduce the time required for ./configure to perform the needed
KABI checks by allowing kbuild to compile multiple test cases in
parallel.  This was accomplished by splitting each test's source
code from the logic handling whether that code could be compiled
or not.

By introducing this split it's possible to minimize the number of
times kbuild needs to be invoked.  As importantly, it means all of
the tests can be built in parallel.  This does require a little extra
care since we expect some tests to fail, so the --keep-going (-k)
option must be provided otherwise some tests may not get compiled.
Furthermore, since a failure during the kbuild modpost phase will
result in an early exit; the final linking phase is limited to tests
which passed the initial compilation and produced an object file.

Once everything has been built the configure script proceeds as
previously.  The only significant difference is that it now merely
needs to test for the existence of a .ko file to determine the
result of a given test.  This vastly speeds up the entire process.

New test cases should use ZFS_LINUX_TEST_SRC to declare their test
source code and ZFS_LINUX_TEST_RESULT to check the result.  All of
the existing kernel-*.m4 files have been updated accordingly, see
config/kernel-current-time.m4 for a basic example.  The legacy
ZFS_LINUX_TRY_COMPILE macro has been kept to handle special cases
but it's use is not encouraged.

                  master (secs)   patched (secs)
                  -------------   ----------------
autogen.sh        61              68
configure         137             24  (~17% of current run time)
make -j $(nproc)  44              44
make rpms         287             150

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #8547
Closes #9132
Closes #9341
Conflicts:
	Makefile.am
	config/kernel-fpu.m4
2020-01-22 13:49:01 -08:00
Brian Behlendorf 278bee9319 Linux 3.18 compat: Snapshot auto-mounting
Re-factor the .zfs/snapshot auto-mouting code to take in to account
changes made to the upstream kernels.  And to lay the groundwork for
enabling access to .zfs snapshots via NFS clients.  This patch makes
the following core improvements.

* All actively auto-mounted snapshots are now tracked in two global
trees which are indexed by snapshot name and objset id respectively.
This allows for fast lookups of any auto-mounted snapshot regardless
without needing access to the parent dataset.

* Snapshot entries are added to the tree in zfsctl_snapshot_mount().
However, they are now removed from the tree in the context of the
unmount process.  This eliminates the need complicated error logic
in zfsctl_snapshot_unmount() to handle unmount failures.

* References are now taken on the snapshot entries in the tree to
ensure they always remain valid while a task is outstanding.

* The MNT_SHRINKABLE flag is set on the snapshot vfsmount_t right
after the auto-mount succeeds.  This allows to kernel to unmount
idle auto-mounted snapshots if needed removing the need for the
zfsctl_unmount_snapshots() function.

* Snapshots in active use will not be automatically unmounted.  As
long as at least one dentry is revalidated every zfs_expire_snapshot/2
seconds the auto-unmount expiration timer will be extended.

* Commit torvalds/linux@bafc9b7 caused snapshots auto-mounted by ZFS
to be immediately unmounted when the dentry was revalidated.  This
was a consequence of ZFS invaliding all snapdir dentries to ensure that
negative dentries didn't mask new snapshots.  This patch modifies the
behavior such that only negative dentries are invalidated.  This solves
the issue and may result in a performance improvement.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #3589
Closes #3344
Closes #3295
Closes #3257
Closes #3243
Closes #3030
Closes #2841
2015-08-31 13:54:39 -07:00