This test was accidentally readded to the linux-kernel-disk
topic branch. It is being reverted so it can be reapplied with
a few minor tweaks in the right place.
The dmu_object_info_t structures which are roughly 60 bytes
have been moved from the stack to the heap. Every little
bit helps and there's absolutely no reason these temporary
working variables need to be on the stack.
During module load we could deadlock because the zvol_init()
callpath took the spa_namespace_lock before the zvol_state_lock.
The rest of the zvol code takes the locks in the opposite order.
In particular, I observed the following deadlock cause by the
lock inversion.
I've fixed the ording by creating an unlocked version of
zvol_create_minor and zvol_remove_minor. This allows me to
take the zvol_state_lock before the spa_namespace_lock in
zvol_cr_minors_common and simply call the unlocked version.
With the update to onnv_141 how minor devices were created and
removed for ZVOL was substantially changed. The updated system
is much more tightly integrated with Solaris's /dev/ filesystem.
This is great for Solaris but bad for Linux.
On the kernel side the ZFS_IOC_{CREATE,REMOVE}_MINOR ioctl
entry points have been re-added. They now call directly in
to the ZVOL to create the needed minor node and add the sysfs
entried for udev.
Also as part of this change I've decided it would really be
best if all the zvols were in a /dev/zvol directory like on
Solaris. Organizationally this makes sense and on the code
side it allows us to know a block device is a zvol simply by
where it is located in /dev/. Unless Solaris there still is
to ./dsk or ./rdsk as part of the path.
With the update to onnv_141 how minor devices were created and
removed for ZVOL was substantially changed. The updated system
is much more tightly integrated with Solaris's /dev/ filesystem.
This is great for Solaris but bad for Linux.
This patch keeps as much of those changes as possible which as
useful for Linux. But it also reverts back to use the old system
of explicit minor node creation via a decicated ioctl(). This
worked well in zfs-0.4.9 and it should continue to work well.
The splat module is only needed for the spl regression tests.
But if we add it to MODULES then 'zfs.sh -u' will be able to
unload it if needed, The downside if 'zfs.sh' will always
load it but it's overhead is minimal and in a production
setting you'll always be doing a 'modprobe zfs' anyway so
this is really just for testing.
Extend the Makefiles with an uninstall target to cleanly
remove a package which was installed with 'make install'.
Additionally, ensure a 'depmod -a' is run as part of the
install to update the module dependency information.