objtool properly complains that it can't decode some of the
instructions from ICP x86 Asm code. As mentioned in the Makefile,
where those object files were excluded from objtool check (but they
can still be visible under IBT and LTO), those are just constants,
not code.
In that case, they must be placed in .rodata, so they won't be
marked as "allocatable, executable" (ax) in EFL headers and this
effectively prevents objtool from trying to decode this data. That
reveals a whole bunch of other issues in ICP Asm code, as previously
objtool was bailing out after that warning message.
Reviewed-by: Attila Fülöp <attila@fueloep.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Lobakin <alobakin@pm.me>
Closes#14035
Commit 43569ee374 ("Fix objtool: missing int3 after ret warning")
addressed replacing all `ret`s in x86 asm code to a macro in the
Linux kernel in order to enable SLS. That was done by copying the
upstream macro definitions and fixed objtool complaints.
Since then, several more mitigations were introduced, including
Rethunk. It requires to have a jump to one of the thunks in order
to work, so the RET macro was changed again. And, as ZFS code
didn't use the mainline defition, but copied it, this is currently
missing.
Objtool reminds about it time to time (Clang 16, CONFIG_RETHUNK=y):
fs/zfs/lua/zlua.o: warning: objtool: setjmp+0x25: 'naked' return
found in RETHUNK build
fs/zfs/lua/zlua.o: warning: objtool: longjmp+0x27: 'naked' return
found in RETHUNK build
Do it the following way:
* if we're building under Linux, unconditionally include
<linux/linkage.h> in the related files. It is available in x86
sources since even pre-2.6 times, so doesn't need any conftests;
* then, if RET macro is available, it will be used directly, so that
we will always have the version actual to the kernel we build;
* if there's no such macro, we define it as a simple `ret`, as it
was on pre-SLS times.
This ensures we always have the up-to-date definition with no need
to update it manually, and at the same time is safe for the whole
variety of kernels ZFS module supports.
Then, there's a couple more "naked" rets left in the code, they're
just defined as:
.byte 0xf3,0xc3
In fact, this is just:
rep ret
`rep ret` instead of just `ret` seems to mitigate performance issues
on some old AMD processors and most likely makes no sense as of
today.
Anyways, address those rets, so that they will be protected with
Rethunk and SLS. Include <sys/asm_linkage.h> here which now always
has RET definition and replace those constructs with just RET.
This wipes the last couple of places with unpatched rets objtool's
been complaining about.
Reviewed-by: Attila Fülöp <attila@fueloep.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Lobakin <alobakin@pm.me>
Closes#14035
Resolve straight-line speculation warnings reported by objtool
for x86_64 assembly on Linux when CONFIG_SLS is set. See the
following LWN article for the complete details.
https://lwn.net/Articles/877845/
Reviewed-by: Ryan Moeller <ryan@iXsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#13528Closes#13575
This commit adds BLAKE3 checksums to OpenZFS, it has similar
performance to Edon-R, but without the caveats around the latter.
Homepage of BLAKE3: https://github.com/BLAKE3-team/BLAKE3
Wikipedia: https://en.wikipedia.org/wiki/BLAKE_(hash_function)#BLAKE3
Short description of Wikipedia:
BLAKE3 is a cryptographic hash function based on Bao and BLAKE2,
created by Jack O'Connor, Jean-Philippe Aumasson, Samuel Neves, and
Zooko Wilcox-O'Hearn. It was announced on January 9, 2020, at Real
World Crypto. BLAKE3 is a single algorithm with many desirable
features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE
and BLAKE2, which are algorithm families with multiple variants.
BLAKE3 has a binary tree structure, so it supports a practically
unlimited degree of parallelism (both SIMD and multithreading) given
enough input. The official Rust and C implementations are
dual-licensed as public domain (CC0) and the Apache License.
Along with adding the BLAKE3 hash into the OpenZFS infrastructure a
new benchmarking file called chksum_bench was introduced. When read
it reports the speed of the available checksum functions.
On Linux: cat /proc/spl/kstat/zfs/chksum_bench
On FreeBSD: sysctl kstat.zfs.misc.chksum_bench
This is an example output of an i3-1005G1 test system with Debian 11:
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1196 1602 1761 1749 1762 1759 1751
skein-generic 546 591 608 615 619 612 616
sha256-generic 240 300 316 314 304 285 276
sha512-generic 353 441 467 476 472 467 426
blake3-generic 308 313 313 313 312 313 312
blake3-sse2 402 1289 1423 1446 1432 1458 1413
blake3-sse41 427 1470 1625 1704 1679 1607 1629
blake3-avx2 428 1920 3095 3343 3356 3318 3204
blake3-avx512 473 2687 4905 5836 5844 5643 5374
Output on Debian 5.10.0-10-amd64 system: (Ryzen 7 5800X)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1840 2458 2665 2719 2711 2723 2693
skein-generic 870 966 996 992 1003 1005 1009
sha256-generic 415 442 453 455 457 457 457
sha512-generic 608 690 711 718 719 720 721
blake3-generic 301 313 311 309 309 310 310
blake3-sse2 343 1865 2124 2188 2180 2181 2186
blake3-sse41 364 2091 2396 2509 2463 2482 2488
blake3-avx2 365 2590 4399 4971 4915 4802 4764
Output on Debian 5.10.0-9-powerpc64le system: (POWER 9)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 1213 1703 1889 1918 1957 1902 1907
skein-generic 434 492 520 522 511 525 525
sha256-generic 167 183 187 188 188 187 188
sha512-generic 186 216 222 221 225 224 224
blake3-generic 153 152 154 153 151 153 153
blake3-sse2 391 1170 1366 1406 1428 1426 1414
blake3-sse41 352 1049 1212 1174 1262 1258 1259
Output on Debian 5.10.0-11-arm64 system: (Pi400)
implementation 1k 4k 16k 64k 256k 1m 4m
edonr-generic 487 603 629 639 643 641 641
skein-generic 271 299 303 308 309 309 307
sha256-generic 117 127 128 130 130 129 130
sha512-generic 145 165 170 172 173 174 175
blake3-generic 81 29 71 89 89 89 89
blake3-sse2 112 323 368 379 380 371 374
blake3-sse41 101 315 357 368 369 364 360
Structurally, the new code is mainly split into these parts:
- 1x cross platform generic c variant: blake3_generic.c
- 4x assembly for X86-64 (SSE2, SSE4.1, AVX2, AVX512)
- 2x assembly for ARMv8 (NEON converted from SSE2)
- 2x assembly for PPC64-LE (POWER8 converted from SSE2)
- one file for switching between the implementations
Note the PPC64 assembly requires the VSX instruction set and the
kfpu_begin() / kfpu_end() calls on PowerPC were updated accordingly.
Reviewed-by: Felix Dörre <felix@dogcraft.de>
Reviewed-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tino Reichardt <milky-zfs@mcmilk.de>
Co-authored-by: Rich Ercolani <rincebrain@gmail.com>
Closes#10058Closes#12918
Evaluated every variable that lives in .data (and globals in .rodata)
in the kernel modules, and constified/eliminated/localised them
appropriately. This means that all read-only data is now actually
read-only data, and, if possible, at file scope. A lot of previously-
global-symbols became inlinable (and inlined!) constants. Probably
not in a big Wowee Performance Moment, but hey.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz>
Closes#12899
Since the assembly routines calculating SHA checksums don't use
a standard stack layout, CFI directives are needed to unroll the
stack.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#11733
While evaluating other assembler implementations it turns out that
the precomputed hash subkey tables vary in size, from 8*16 bytes
(avx2/avx512) up to 48*16 bytes (avx512-vaes), depending on the
implementation.
To be able to handle the size differences later, allocate
`gcm_Htable` dynamically rather then having a fixed size array, and
adapt consumers.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#11102
While preparing #9749 some .cfi_{start,end}proc directives
were missed. Add the missing ones.
See upstream https://github.com/openssl/openssl/commit/275a048f
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#11101
There are a couple of x86_64 architectures which support all needed
features to make the accelerated GCM implementation work but the
MOVBE instruction. Those are mainly Intel Sandy- and Ivy-Bridge
and AMD Bulldozer, Piledriver, and Steamroller.
By using MOVBE only if available and replacing it with a MOV
followed by a BSWAP if not, those architectures now benefit from
the new GCM routines and performance is considerably better
compared to the original implementation.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Adam D. Moss <c@yotes.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Followup #9749Closes#10029
Currently SIMD accelerated AES-GCM performance is limited by two
factors:
a. The need to disable preemption and interrupts and save the FPU
state before using it and to do the reverse when done. Due to the
way the code is organized (see (b) below) we have to pay this price
twice for each 16 byte GCM block processed.
b. Most processing is done in C, operating on single GCM blocks.
The use of SIMD instructions is limited to the AES encryption of the
counter block (AES-NI) and the Galois multiplication (PCLMULQDQ).
This leads to the FPU not being fully utilized for crypto
operations.
To solve (a) we do crypto processing in larger chunks while owning
the FPU. An `icp_gcm_avx_chunk_size` module parameter was introduced
to make this chunk size tweakable. It defaults to 32 KiB. This step
alone roughly doubles performance. (b) is tackled by porting and
using the highly optimized openssl AES-GCM assembler routines, which
do all the processing (CTR, AES, GMULT) in a single routine. Both
steps together result in up to 32x reduction of the time spend in
the en/decryption routines, leading up to approximately 12x
throughput increase for large (128 KiB) blocks.
Lastly, this commit changes the default encryption algorithm from
AES-CCM to AES-GCM when setting the `encryption=on` property.
Reviewed-By: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-By: Jason King <jason.king@joyent.com>
Reviewed-By: Tom Caputi <tcaputi@datto.com>
Reviewed-By: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes#9749
Reviewed-by: Ryan Moeller <ryan@ixsystems.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Closes#9239
- Add two new module parameters to icp (icp_aes_impl, icp_gcm_impl)
that control the crypto implementation. At the moment there is a
choice between generic and aesni (on platforms that support it).
- This enables support for AES-NI and PCLMULQDQ-NI on AMD Family
15h (bulldozer) and newer CPUs (zen).
- Modify aes_key_t to track what implementation it was generated
with as key schedules generated with various implementations
are not necessarily interchangable.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Signed-off-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Closes#7102Closes#7103
Currently, the ICP contains accelerated assembly code to be
used specifically on CPUs with AES-NI enabled. This code
makes heavy use of the movaps instruction which assumes that
it will be provided aes keys that are 16 byte aligned. This
assumption seems to hold on Illumos, but on Linux some kernel
options such as 'slub_debug=P' will violate it. This patch
changes all instances of this instruction to movups which is
the same except that it can handle unaligned memory.
This patch also adds a few flags which were accidentally never
given to the assembly compiler, resulting in objtool warnings.
Reviewed by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Nathaniel R. Lewis <linux.robotdude@gmail.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7065Closes#7108
Clang doesn't support `/` as comment in assembly, this patch replaces
them with `#`.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Leorize <alaviss@users.noreply.github.com>
Closes#6311
Properly annotate functions and data section so that objtool does not complain
when CONFIG_STACK_VALIDATION and CONFIG_FRAME_POINTER are enabled.
Pass KERNELCPPFLAGS to assembler.
Use kfpu_begin()/kfpu_end() to protect SIMD regions in Linux kernel.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Closes#5872Closes#5041
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Haakan T Johansson <f96hajo@chalmers.se>
Closes#5547Closes#5543
Similar to commit a3600a106. Asm files need an explicit note
that they do not require an executable stack.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Jason Zaman <jason@perfinion.com>
Closes#5332
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported by: Tony Hutter <hutter2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/4185
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/45818ee
Porting Notes:
This code is ported on top of the Illumos Crypto Framework code:
b5e030c8db
The list of porting changes includes:
- Copied module/icp/include/sha2/sha2.h directly from illumos
- Removed from module/icp/algs/sha2/sha2.c:
#pragma inline(SHA256Init, SHA384Init, SHA512Init)
- Added 'ctx' to lib/libzfs/libzfs_sendrecv.c:zio_checksum_SHA256() since
it now takes in an extra parameter.
- Added CTASSERT() to assert.h from for module/zfs/edonr_zfs.c
- Added skein & edonr to libicp/Makefile.am
- Added sha512.S. It was generated from sha512-x86_64.pl in Illumos.
- Updated ztest.c with new fletcher_4_*() args; used NULL for new CTX argument.
- In icp/algs/edonr/edonr_byteorder.h, Removed the #if defined(__linux) section
to not #include the non-existant endian.h.
- In skein_test.c, renane NULL to 0 in "no test vector" array entries to get
around a compiler warning.
- Fixup test files:
- Rename <sys/varargs.h> -> <varargs.h>, <strings.h> -> <string.h>,
- Remove <note.h> and define NOTE() as NOP.
- Define u_longlong_t
- Rename "#!/usr/bin/ksh" -> "#!/bin/ksh -p"
- Rename NULL to 0 in "no test vector" array entries to get around a
compiler warning.
- Remove "for isa in $($ISAINFO); do" stuff
- Add/update Makefiles
- Add some userspace headers like stdio.h/stdlib.h in places of
sys/types.h.
- EXPORT_SYMBOL *_Init/*_Update/*_Final... routines in ICP modules.
- Update scripts/zfs2zol-patch.sed
- include <sys/sha2.h> in sha2_impl.h
- Add sha2.h to include/sys/Makefile.am
- Add skein and edonr dirs to icp Makefile
- Add new checksums to zpool_get.cfg
- Move checksum switch block from zfs_secpolicy_setprop() to
zfs_check_settable()
- Fix -Wuninitialized error in edonr_byteorder.h on PPC
- Fix stack frame size errors on ARM32
- Don't unroll loops in Skein on 32-bit to save stack space
- Add memory barriers in sha2.c on 32-bit to save stack space
- Add filetest_001_pos.ksh checksum sanity test
- Add option to write psudorandom data in file_write utility
If there is no explicit note in the .S files, the obj file will mark it
as requiring an executable stack. This is unneeded and causes issues on
hardened systems.
More info:
https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
Signed-off-by: Jason Zaman <jason@perfinion.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4947Closes#4962
A port of the Illumos Crypto Framework to a Linux kernel module (found
in module/icp). This is needed to do the actual encryption work. We cannot
use the Linux kernel's built in crypto api because it is only exported to
GPL-licensed modules. Having the ICP also means the crypto code can run on
any of the other kernels under OpenZFS. I ended up porting over most of the
internals of the framework, which means that porting over other API calls (if
we need them) should be fairly easy. Specifically, I have ported over the API
functions related to encryption, digests, macs, and crypto templates. The ICP
is able to use assembly-accelerated encryption on amd64 machines and AES-NI
instructions on Intel chips that support it. There are place-holder
directories for similar assembly optimizations for other architectures
(although they have not been written).
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4329