Due to I/O buffering the helper may return successfully before
the proc handler has a chance to execute. To catch this case
wait up to 1 second to verify spl_kallsyms_lookup_name_fn was
updated to a non SYMBOL_POISON value.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closeszfsonlinux/zfs#699Closeszfsonlinux/zfs#859
The entire goal of performing the slab allocations asynchronously
is to be able to detect when a vmalloc() deadlocks. In this case,
and only this case, do we want to start allocating emergency objects.
The trick here is to minimize false positives because the overhead
of tracking emergency objects is far higher than normal slab objects.
With that goal in mind the code was reworked to be less sensitive
to slow allocations by increasing the wait time. Once a cache is
is marked deadlocked all subsequent allocations which can not be
satisfied with existing cache objects will immediately allocate new
emergency objects. This behavior persists until the asynchronous
allocation completes and clears the deadlocked flag.
The result of these tweaks is that far fewer emergency objects
get created which is important because this minimizes the cost of
releasing them latter in kmem_cache_free().
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This patch is designed to resolve a deadlock which can occur with
__vmalloc() based slabs. The issue is that the Linux kernel does
not honor the flags passed to __vmalloc(). This makes it unsafe
to use in a writeback context. Unfortunately, this is a use case
ZFS depends on for correct operation.
Fixing this issue in the upstream kernel was pursued and patches
are available which resolve the issue.
https://bugs.gentoo.org/show_bug.cgi?id=416685
However, these changes were rejected because upstream felt that
using __vmalloc() in the context of writeback should never be done.
Their solution was for us to rewrite parts of ZFS to accomidate
the Linux VM.
While that is probably the right long term solution, and it is
something we want to pursue, it is not a trivial task and will
likely destabilize the existing code. This work has been planned
for the 0.7.0 release but in the meanwhile we want to improve the
SPL slab implementation to accomidate this expected ZFS usage.
This is accomplished by performing the __vmalloc() asynchronously
in the context of a work queue. This doesn't prevent the posibility
of the worker thread from deadlocking. However, the caller can now
safely block on a wait queue for the slab allocation to complete.
Normally this will occur in a reasonable amount of time and the
caller will be woken up when the new slab is available,. The objects
will then get cached in the per-cpu magazines and everything will
proceed as usual.
However, if the __vmalloc() deadlocks for the reasons described
above, or is just very slow, then the callers on the wait queues
will timeout out. When this rare situation occurs they will attempt
to kmalloc() a single minimally sized object using the GFP_NOIO flags.
This allocation will not deadlock because kmalloc() will honor the
passed flags and the caller will be able to make forward progress.
As long as forward progress can be maintained then even if the
worker thread is deadlocked the critical thread will make progress.
This will eventually allow the deadlocked worker thread to complete
and normal operation will resume.
These emergency allocations will likely be slow since they require
contiguous pages. However, their use should be rare so the impact
is expected to be minimal. If that turns out not to be the case in
practice further optimizations are possible.
One additional concern is if these emergency objects are long lived.
Right now they are simply tracked on a list which must be walked when
an object is freed. Is they accumulate on a system and the list
grows freeing objects will become more expensive. This could be
handled relatively easily by using a hash instead of a list, but that
optimization (if needed) is left for a follow up patch.
Additionally, these emeregency objects could be repacked in to existing
slabs as objects are freed if the kmem_cache_set_move() functionality
was implemented. See issue https://github.com/zfsonlinux/spl/issues/26
for full details. This work would also help reduce ZFS's memory
fragmentation problems.
The /proc/spl/kmem/slab file has had two new columns added at the
end. The 'emerg' column reports the current number of these emergency
objects in use for the cache, and the following 'max' column shows
the historical worst case. These value should give us a good idea
of how often these objects are needed. Based on these values under
real use cases we can tune the default behavior.
Lastly, as a side benefit using a single work queue for the slab
allocations should reduce cpu contention on the global virtual address
space lock. This should manifest itself as reduced cpu usage for
the system.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Until now the notion of an internal debug logging infrastructure
was conflated with enabling ASSERT()s. This patch clarifies things
by cleanly breaking the two subsystem apart. The result of this
is the following behavior.
--enable-debug - Enable/disable code wrapped in ASSERT()s.
--disable-debug ASSERT()s are used to check invariants and
are never required for correct operation.
They are disabled by default because they
may impact performance.
--enable-debug-log - Enable/disable the debug log infrastructure.
--disable-debug-log This infrastructure allows the spl code and
its consumer to log messages to an in-kernel
log. The granularity of the logging can be
controlled by a debug mask. By default the
mask disables most debug messages resulting
in a negligible performance impact. Because
of this the debug log is enabled by default.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This is a bit of cleanup I'd been meaning to get to for a while
to reduce the chance of a type conflict. Well that conflict
finally occurred with the kstat_init() function which conflicts
with a function in the 2.6.32-6-pve kernel.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#56
Provide a call_usermodehelper() alternative by letting the hostid be passed as
a module parameter like this:
$ modprobe spl spl_hostid=0x12345678
Internally change the spl_hostid variable to unsigned long because that is the
type that the coreutils /usr/bin/hostid returns.
Move the hostid command into GET_HOSTID_CMD for consistency with the similar
GET_KALLSYMS_ADDR_CMD invocation.
Use argv[0] instead of sh_path for consistency internally and with other Linux
drivers.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
One of the most common things you want to know when looking at
the slab is how much memory is being used. This information was
available in /proc/spl/kmem/slab but only on a per-slab basis.
This commit adds the following /proc/sys/kernel/spl/kmem/slab*
entries to make total slab usage easily available at a glance.
slab_kmem_total - Total kmem slab size
slab_kmem_avail - Alloc'd kmem slab size
slab_kmem_max - Max observed kmem slab size
slab_vmem_total - Total vmem slab size
slab_vmem_avail - Alloc'd vmem slab size
slab_vmem_max - Max observed vmem slab size
NOTE: The slab_*_max values are expected to over report because
they show maximum values since boot, not current values.
The 'slab_fail', 'slab_create', and 'slab_destroy' columns in the slab
output have been removed because they are virtually always zero and
not very useful.
The much more useful 'size' and 'alloc' columns have been added which
show the total slab size and how much of the total size has been
allocated to objects.
Finally, the formatting has been updated to be much more human
readable while still being friendly for tool like awk to parse.
To avoid conflicts with symbols defined by dependent packages
all debugging symbols have been prefixed with a 'S' for SPL.
Any dependent package needing to integrate with the SPL debug
should include the spl-debug.h header and use the 'S' prefixed
macros. They must also build with DEBUG defined.
To avoid symbol conflicts with dependent packages the debug
header must be split in to several parts. The <sys/debug.h>
header now only contains the Solaris macro's such as ASSERT
and VERIFY. The spl-debug.h header contain the spl specific
debugging infrastructure and should be included by any package
which needs to use the spl logging. Finally the spl-trace.h
header contains internal data structures only used for the log
facility and should not be included by anythign by spl-debug.c.
This way dependent packages can include the standard Solaris
headers without picking up any SPL debug macros. However, if
the dependant package want to integrate with the SPL debugging
subsystem they can then explicitly include spl-debug.h.
Along with this change I have dropped the CHECK_STACK macros
because the upstream Linux kernel now has much better stack
depth checking built in and we don't need this complexity.
Additionally SBUG has been replaced with PANIC and provided as
part of the Solaris macro set. While the Solaris version is
really panic() that conflicts with the Linux kernel so we'll
just have to make due to PANIC. It should rarely be called
directly, the prefered usage would be an ASSERT or VERIFY.
There's lots of change here but this cleanup was overdue.
As of linux-2.6.33 the ctl_name member of the ctl_table struct
has been entirely removed. The upstream code has been updated
to depend entirely on the the procname member. To handle this
all references to ctl_name are wrapped in a CTL_NAME macro which
simply expands to nothing for newer kernels. Older kernels are
supported by having it expand to .ctl_name = X just as before.
Under linux the proc.h header is for the /proc filesystem, and under
Solaris the proc/h header if for processes. This patch correctly
moves the Linux proc functionality in a linux/proc_compat.h header
and leaves the sys/proc.h for use by Solaris. Minor updates were
required to all the call sites where it was included of course.
Updated AUTHORS, COPYING, DISCLAIMER, and INSTALL files. Added
standardized headers to all source file to clearly indicate the
copyright, license, and to give credit where credit is due.
As of linux-2.6.32 the 'struct file *filp' argument was dropped from
the proc_handle() prototype. It was apparently unused _almost_
everywhere in the kernel and this was simply cleanup.
I've added a new SPL_AC_5ARGS_PROC_HANDLER autoconf check for this and
the proper compat macros to correctly define the prototypes and some
helper functions. It's not pretty but API compat changes rarely are.
This patch is another step towards updating the code to handle the
32-bit kernels which I have not been regularly testing. This changes
do not really impact the common case I'm expected which is the latest
kernel running on an x86_64 arch.
Until the linux-2.6.31 kernel the x86 arch did not have support for
64-bit atomic operations. Additionally, the new atomic_compat.h support
for this case was wrong because it embedded a spinlock in the atomic
variable which must always and only be 64-bits total. To handle these
32-bit issues we now simply fall back to the --enable-atomic-spinlock
implementation if the kernel does not provide the 64-bit atomic funcs.
The second issue this patch addresses is the DEBUG_KMEM assumption that
there will always be atomic64 funcs available. On 32-bit archs this may
not be true, and actually that's just fine. In that case the kernel will
will never be able to allocate more the 32-bits worth anyway. So just
check if atomic64 funcs are available, if they are not it means this
is a 32-bit machine and we can safely use atomic_t's instead.
Cleanup the --enable-debug-* configure options, this has been pending
for quite some time and I am glad I finally got to it. To summerize:
1) All SPL_AC_DEBUG_* macros were updated to be a more autoconf
friendly. This mainly involved shift to the GNU approved usage of
AC_ARG_ENABLE and ensuring AS_IF is used rather than directly using
an if [ test ] construct.
2) --enable-debug-kmem=yes by default. This simply enabled keeping
a running tally of total memory allocated and freed and reporting a
memory leak if there was one at module unload. Additionally, it
ensure /proc/spl/kmem/slab will exist by default which is handy.
The overhead is low for this and it should not impact performance.
3) --enable-debug-kmem-tracking=no by default. This option was added
to provide a configure option to enable to detailed memory allocation
tracking. This support was always there but you had to know where to
turn it on. By default this support is disabled because it is known
to badly hurt performence, however it is invaluable when chasing a
memory leak.
4) --enable-debug-kstat removed. After further reflection I can't see
why you would ever really want to turn this support off. It is now
always on which had the nice side effect of simplifying the proc handling
code in spl-proc.c. We can now always assume the top level directory
will be there.
5) --enable-debug-callb removed. This never really did anything, it was
put in provisionally because it might have been needed. It turns out
it was not so I am just removing it to prevent confusion.
For a generic explanation of why mutexs needed to be reimplemented
to work with the kernel lock profiling see commits:
e811949a57 and
d28db80fd0
The specific changes made to the mutex implemetation are as follows.
The Linux mutex structure is now directly embedded in the kmutex_t.
This allows a kmutex_t to be directly case to a mutex struct and
passed directly to the Linux primative.
Just like with the rwlocks it is critical that these functions be
implemented as '#defines to ensure the location information is
preserved. The preprocessor can then do a direct replacement of
the Solaris primative with the linux primative.
Just as with the rwlocks we need to track the lock owner. Here
things get a little more interesting because depending on your
kernel version, and how you've built your kernel Linux may already
do this for you. If your running a 2.6.29 or newer kernel on a
SMP system the lock owner will be tracked. This was added to Linux
to support adaptive mutexs, more on that shortly. Alternately, your
kernel might track the lock owner if you've set CONFIG_DEBUG_MUTEXES
in the kernel build. If neither of the above things is true for
your kernel the kmutex_t type will include and track the lock owner
to ensure correct behavior. This is all handled by a new autoconf
check called SPL_AC_MUTEX_OWNER.
Concerning adaptive mutexs these are a very recent development and
they did not make it in to either the latest FC11 of SLES11 kernels.
Ideally, I'd love to see this kernel change appear in one of these
distros because it does help performance. From Linux kernel commit:
0d66bf6d3514b35eb6897629059443132992dbd7
"Testing with Ingo's test-mutex application...
gave a 345% boost for VFS scalability on my testbox"
However, if you don't want to backport this change yourself you
can still simply export the task_curr() symbol. The kmutex_t
implementation will use this symbol when it's available to
provide it's own adaptive mutexs.
Finally, DEBUG_MUTEX support was removed including the proc handlers.
This was done because now that we are cleanly integrated with the
kernel profiling all this information and much much more is available
in debug kernel builds. This code was now redundant.
Update mutexs validated on:
- SLES10 (ppc64)
- SLES11 (x86_64)
- CHAOS4.2 (x86_64)
- RHEL5.3 (x86_64)
- RHEL6 (x86_64)
- FC11 (x86_64)
- Configure check, the div64_64() function was renamed to
div64_u64() as of 2.6.26.
- Configure check, the global_page_state() fuction was introduced
in 2.6.18 kernels. The earlier 2.6.16 based SLES10 must not try
and use it, thankfully get_zone_counts() is still available.
- To simplify debugging poison all symbols aquired dynamically
using spl_kallsyms_lookup_name() with SYMBOL_POISON.
- Add console messages when the user mode helpers fail.
- spl_kmem_init_globals() use bit shifts instead of division.
- When the monotonic clock is unavailable __gethrtime() must perform
the HZ division as an 'unsigned long long' because the SPL only
implements __udivdi3(), and not __divdi3() for 'long long' division
on 32-bit arches.
Fixes hostid mismatch which leads to assertion failure when the hostid/hw_serial is a 10-character decimal number:
$ zpool status
pool: lustre
state: ONLINE
lt-zpool: zpool_main.c:3176: status_callback: Assertion `reason == ZPOOL_STATUS_OK' failed.
zsh: 5262 abort zpool status
Remove all instances of functions being reimplemented in the SPL.
When the prototypes are available in the linux headers but the
function address itself is not exported use kallsyms_lookup_name()
to find the address. The function name itself can them become a
define which calls a function pointer. This is preferable to
reimplementing the function in the SPL because it ensures we get
the correct version of the function for the running kernel. This
is actually pretty safe because the prototype is defined in the
headers so we know we are calling the function properly.
This patch also includes a rhel5 kernel patch we exports the needed
symbols so we don't need to use kallsyms_lookup_name(). There are
autoconf checks to detect if the symbol is exported and if so to
use it directly. We should add patches for stock upstream kernels
as needed if for no other reason than so we can easily track which
additional symbols we needed exported. Those patches can also be
used by anyone willing to rebuild their kernel, but this should
not be a requirement. The rhel5 version of the export-symbols
patch has been applied to the chaos kernel.
Additional fixes:
1) Implement vmem_size() function using get_vmalloc_info()
2) SPL_CHECK_SYMBOL_EXPORT macro updated to use $LINUX_OBJ instead
of $LINUX because Module.symvers is a build product. When
$LINUX_OBJ != $LINUX we will not properly detect exported symbols.
3) SPL_LINUX_COMPILE_IFELSE macro updated to add include2 and
$LINUX/include search paths to allow proper compilation when
the kernel target build directory is not the source directory.
Minimal support added for the zone_get_hostid() function. Only
global zones are supported therefore this function must be called
with a NULL argumment. Additionally, I've added the HW_HOSTID_LEN
define and updated all instances where a hard coded magic value
of 11 was used; "A good riddance of bad rubbish!"
Added support for Solaris swapfs_minfree, and swapfs_reserve tunables.
In additional availrmem is now available and return a reasonable value
which is reasonably analogous to the Solaris meaning. On linux we
return the sun of free and inactive pages since these are all easily
reclaimable.
All tunables are available in /proc/sys/kernel/spl/vm/* and they may
need a little adjusting once we observe the real behavior. Some of
the defaults are mapped to similar linux counterparts, others are
straight from the OpenSolaris defaults.
Support added to provide reasonable values for the global Solaris
VM variables: minfree, desfree, lotsfree, needfree. These values
are set to the sum of their per-zone linux counterparts which
should be close enough for Solaris consumers.
When a non-GPL app links against the SPL we cannot use the udev
interfaces, which means non of the device special files are created.
Because of this I had added a poor mans udev which cause the SPL
to invoke an upcall and create the basic devices when a minor
is registered. When a minor is unregistered we use the vnode
interface to unlink the special file.