This patch leverages Linux tracepoints from within the ZFS on Linux
code base. It also refactors the debug code to bring it back in sync
with Illumos.
The information exported via tracepoints can be used for a variety of
reasons (e.g. debugging, tuning, general exploration/understanding,
etc). It is advantageous to use Linux tracepoints as the mechanism to
export this kind of information (as opposed to something else) for a
number of reasons:
* A number of external tools can make use of our tracepoints
"automatically" (e.g. perf, systemtap)
* Tracepoints are designed to be extremely cheap when disabled
* It's one of the "accepted" ways to export this kind of
information; many other kernel subsystems use tracepoints too.
Unfortunately, though, there are a few caveats as well:
* Linux tracepoints appear to only be available to GPL licensed
modules due to the way certain kernel functions are exported.
Thus, to actually make use of the tracepoints introduced by this
patch, one might have to patch and re-compile the kernel;
exporting the necessary functions to non-GPL modules.
* Prior to upstream kernel version v3.14-rc6-30-g66cc69e, Linux
tracepoints are not available for unsigned kernel modules
(tracepoints will get disabled due to the module's 'F' taint).
Thus, one either has to sign the zfs kernel module prior to
loading it, or use a kernel versioned v3.14-rc6-30-g66cc69e or
newer.
Assuming the above two requirements are satisfied, lets look at an
example of how this patch can be used and what information it exposes
(all commands run as 'root'):
# list all zfs tracepoints available
$ ls /sys/kernel/debug/tracing/events/zfs
enable filter zfs_arc__delete
zfs_arc__evict zfs_arc__hit zfs_arc__miss
zfs_l2arc__evict zfs_l2arc__hit zfs_l2arc__iodone
zfs_l2arc__miss zfs_l2arc__read zfs_l2arc__write
zfs_new_state__mfu zfs_new_state__mru
# enable all zfs tracepoints, clear the tracepoint ring buffer
$ echo 1 > /sys/kernel/debug/tracing/events/zfs/enable
$ echo 0 > /sys/kernel/debug/tracing/trace
# import zpool called 'tank', inspect tracepoint data (each line was
# truncated, they're too long for a commit message otherwise)
$ zpool import tank
$ cat /sys/kernel/debug/tracing/trace | head -n35
# tracer: nop
#
# entries-in-buffer/entries-written: 1219/1219 #P:8
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss: hdr...
z_rd_int/0-30156 [003] .... 91344.200611: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.201173: zfs_arc__miss: hdr...
z_rd_int/1-30157 [003] .... 91344.201756: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.201795: zfs_arc__miss: hdr...
z_rd_int/2-30158 [003] .... 91344.202099: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.202126: zfs_arc__hit: hdr ...
lt-zpool-30132 [003] .... 91344.202130: zfs_arc__hit: hdr ...
lt-zpool-30132 [003] .... 91344.202134: zfs_arc__hit: hdr ...
lt-zpool-30132 [003] .... 91344.202146: zfs_arc__miss: hdr...
z_rd_int/3-30159 [003] .... 91344.202457: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.202484: zfs_arc__miss: hdr...
z_rd_int/4-30160 [003] .... 91344.202866: zfs_new_state__mru...
lt-zpool-30132 [003] .... 91344.202891: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.203034: zfs_arc__miss: hdr...
z_rd_iss/1-30149 [001] .... 91344.203749: zfs_new_state__mru...
lt-zpool-30132 [001] .... 91344.203789: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.203878: zfs_arc__miss: hdr...
z_rd_iss/3-30151 [001] .... 91344.204315: zfs_new_state__mru...
lt-zpool-30132 [001] .... 91344.204332: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204337: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204352: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204356: zfs_arc__hit: hdr ...
lt-zpool-30132 [001] .... 91344.204360: zfs_arc__hit: hdr ...
To highlight the kind of detailed information that is being exported
using this infrastructure, I've taken the first tracepoint line from the
output above and reformatted it such that it fits in 80 columns:
lt-zpool-30132 [003] .... 91344.200050: zfs_arc__miss:
hdr {
dva 0x1:0x40082
birth 15491
cksum0 0x163edbff3a
flags 0x640
datacnt 1
type 1
size 2048
spa 3133524293419867460
state_type 0
access 0
mru_hits 0
mru_ghost_hits 0
mfu_hits 0
mfu_ghost_hits 0
l2_hits 0
refcount 1
} bp {
dva0 0x1:0x40082
dva1 0x1:0x3000e5
dva2 0x1:0x5a006e
cksum 0x163edbff3a:0x75af30b3dd6:0x1499263ff5f2b:0x288bd118815e00
lsize 2048
} zb {
objset 0
object 0
level -1
blkid 0
}
For the specific tracepoint shown here, 'zfs_arc__miss', data is
exported detailing the arc_buf_hdr_t (hdr), blkptr_t (bp), and
zbookmark_t (zb) that caused the ARC miss (down to the exact DVA!).
This kind of precise and detailed information can be extremely valuable
when trying to answer certain kinds of questions.
For anybody unfamiliar but looking to build on this, I found the XFS
source code along with the following three web links to be extremely
helpful:
* http://lwn.net/Articles/379903/
* http://lwn.net/Articles/381064/
* http://lwn.net/Articles/383362/
I should also node the more "boring" aspects of this patch:
* The ZFS_LINUX_COMPILE_IFELSE autoconf macro was modified to
support a sixth paramter. This parameter is used to populate the
contents of the new conftest.h file. If no sixth parameter is
provided, conftest.h will be empty.
* The ZFS_LINUX_TRY_COMPILE_HEADER autoconf macro was introduced.
This macro is nearly identical to the ZFS_LINUX_TRY_COMPILE macro,
except it has support for a fifth option that is then passed as
the sixth parameter to ZFS_LINUX_COMPILE_IFELSE.
These autoconf changes were needed to test the availability of the Linux
tracepoint macros. Due to the odd nature of the Linux tracepoint macro
API, a separate ".h" must be created (the path and filename is used
internally by the kernel's define_trace.h file).
* The HAVE_DECLARE_EVENT_CLASS autoconf macro was introduced. This
is to determine if we can safely enable the Linux tracepoint
functionality. We need to selectively disable the tracepoint code
due to the kernel exporting certain functions as GPL only. Without
this check, the build process will fail at link time.
In addition, the SET_ERROR macro was modified into a tracepoint as well.
To do this, the 'sdt.h' file was moved into the 'include/sys' directory
and now contains a userspace portion and a kernel space portion. The
dprintf and zfs_dbgmsg* interfaces are now implemented as tracepoint as
well.
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Modify the code to use the utsname() kernel function rather than
a global variable. This results is cleaner more portable code
because utsname() is already provided by the kernel and can be
easily emulated in user space via uname(2). This means that it
will behave consistently in both contexts.
This is also has the benefit that it allows the removal of a few
_KERNEL pre-processor conditions. And it also is a pre-requisite
for a proper FUSE port because we need to provide a valid utsname.
Finally, it allows us to remove this functionality from the SPL
and all the related compatibility code.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #2757
The machelf.h header is never included by anything in the zfs
build process. It is all effectively dead code which can be
safely removed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1265
Specifically, this fixes the two following errors in zdb when a pool
is composed of block devices:
1) 'Value too large for defined data type' when running 'zdb <dataset>'.
2) 'character device required' when running 'zdb -l <block-device>'.
Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory. The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.
For example, this project is designed to work on various different
Linux distributions each of which work slightly differently. This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.
Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution. When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.
wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z
------------------------- run concurrently ----------------------
<ubuntu system> <fedora system> <debian system> <rhel6 system>
mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6
cd ubuntu cd fedora cd debian cd rhel6
../configure ../configure ../configure ../configure
make make make make
make check make check make check make check
This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory. This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.